1
|
Kang J, Li S, Su J, Xiao Z, Zhang S, Liu S, Ge P. Effect of sodium zirconium cyclosilicate on hyperkalemia after parathyroidectomy in secondary hyperparathyroidism patients with maintenance hemodialysis: A randomized trial. Medicine (Baltimore) 2024; 103:e40917. [PMID: 39969301 PMCID: PMC11688067 DOI: 10.1097/md.0000000000040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/22/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Postoperative hyperkalemia is 1 common complication after parathyroidectomy (PTX), which requires close monitoring and prompt treatment. This study aimed to determine whether using sodium zirconium cyclosilicate (SZC) would lower the risk of hyperkalemia in patients with maintenance hemodialysis after PTX. METHODS Sixty-two patients with secondary hyperparathyroidism (SHPT) were randomly divided into the experimental and control groups. Patients in the experimental group were required to take 10 g of SZC before PTX. Laboratory chemistries were obtained before and after surgery. RESULTS Parathyroid hormone (PTH) decreased dramatically in the experimental and control groups after PTX. There were no significant differences in serum potassium ion (K+) between the 2 groups at 6 am on the day of surgery and immediately after surgery. However, serum potassium in the experimental group at 9 pm on the day of surgery was significantly lower than in the control group. Three patients with severe hyperkalemia in the control group received emergency hemodialysis or insulin and glucose treatment, while none in the experimental group required hemodialysis. Serum calcium levels declined immediately after the operation, but no significant differences were found between these 2 groups at all time points. CONCLUSION SZC has the potential to reduce the occurrence of hyperkalemia and avoid urgent hemodialysis after PTX. We recommended that SZC could be used routinely in SHPT patients on the day of PTX surgery.
Collapse
Affiliation(s)
- Jing Kang
- Department of Otolaryngology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, P.R. China
| | - Sijia Li
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, P.R. China
| | - Jinglin Su
- Department of Otolaryngology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, P.R. China
| | - Zhixue Xiao
- Department of Otolaryngology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, P.R. China
| | - Siyi Zhang
- Department of Otolaryngology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, P.R. China
- Department of Otolaryngology, School of Medicine South China University of Technology, Guangzhou City, P.R. China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, P.R. China
| | - Pingjiang Ge
- Department of Otolaryngology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, P.R. China
- Department of Otolaryngology, School of Medicine South China University of Technology, Guangzhou City, P.R. China
| |
Collapse
|
2
|
Abstract
Muscles convert energy from ATP into useful work, which can be used to move limbs and to transport ions across membranes. The energy not converted into work appears as heat. At the start of contraction heat is also produced when Ca(2+) binds to troponin-C and to parvalbumin. Muscles use ATP throughout an isometric contraction at a rate that depends on duration of stimulation, muscle type, temperature and muscle length. Between 30% and 40% of the ATP used during isometric contraction fuels the pumping Ca(2+) and Na(+) out of the myoplasm. When shortening, muscles produce less force than in an isometric contraction but use ATP at a higher rate and when lengthening force output is higher than the isometric force but rate of ATP splitting is lower. Efficiency quantifies the fraction of the energy provided by ATP that is converted into external work. Each ATP molecule provides 100 zJ of energy that can potentially be converted into work. The mechanics of the myosin cross-bridge are such that at most 50 zJ of work can be done in one ATP consuming cycle; that is, the maximum efficiency of a cross-bridge is ∼50%. Cross-bridges in tortoise muscle approach this limit, producing over 90% of the possible work per cycle. Other muscles are less efficient but contract more rapidly and produce more power.
Collapse
Affiliation(s)
- C J Barclay
- School of Allied Health Sciences/Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Barclay CJ. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles. J Physiol 2012; 590:6199-212. [PMID: 23027818 DOI: 10.1113/jphysiol.2012.242073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.
Collapse
Affiliation(s)
- C J Barclay
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland 4222, Australia.
| |
Collapse
|
4
|
Suwannachot P, Verkleij CB, Kocsis S, van Weeren PR, Evertst ME. Specificity and reversibility of the training effects on the concentration of Na+, K+-ATPase in foal skeletal muscle. Equine Vet J 2010; 33:250-5. [PMID: 11352346 DOI: 10.2746/042516401776249714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of the present study was to determine whether training and detraining affect the Na+,K+-ATPase concentration in horse skeletal muscles, and whether these effects are specific for the muscles involved in the training programme. Twenty-four Dutch Warmblood foals age 7 days were assigned randomly to 3 groups: Box (box-rest without training), Training (box-rest with training: short-sprint) and Pasture (pasture without training). Exercise regimens were carried out for 5 months and were followed by 6 months of detraining. Five of the foals in each group were subjected to euthanasia at age 5 months and the remaining foals at 11 months. Muscle samples were collected from the deep part of the gluteus medius, semitendinosus and masseter muscles. The Na+,K+-ATPase concentration was quantified by [3H]ouabain binding. In the Training group, the concentration of Na+,K+-ATPase in gluteus medius and semitendinosus muscle, but not in masseter muscle, showed a relative increase of 20% (P<0.05) as compared to Box foals. After detraining for the subsequent 6 months, the concentration of Na+,K+-ATPase in semitendinosus muscle remained the same, while that in gluteus medius muscle was reduced by 10%. It is concluded that: 1) short-sprint training for 5 months induced an increase of the Na+,K+-ATPase concentration in gluteus medius and semitendinosus muscles of the foal. Interestingly, this effect persisted during the 6 months of the detraining period. Whether the higher Na+,K+-ATPase concentration due to training of young foals leads to a better athletic performance when they become mature still needs to be established; 2) the factors that initiate an increase in Na+,K+-ATPase concentration following training are likely to be located in the muscle itself and 3) the training effect may last for several months after returning to normal activity, especially in muscles containing a high percentage of fast-twitch fibres.
Collapse
Affiliation(s)
- P Suwannachot
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
5
|
Barclay CJ, Woledge RC, Curtin NA. Energy turnover for Ca2+ cycling in skeletal muscle. J Muscle Res Cell Motil 2007; 28:259-74. [PMID: 17882515 DOI: 10.1007/s10974-007-9116-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
The majority of energy consumed by contracting muscle can be accounted for by two ATP-dependent processes, cross-bridge cycling and Ca(2+) cycling. The energy for Ca(2+) cycling is necessary for contraction but is an overhead cost, energy that cannot be converted into mechanical work. Measurement of the energy used for Ca(2+) cycling also provides a means of determining the total Ca(2+) released from the sarcoplasmic reticulum into the sarcoplasm during a contraction. To make such a measurement requires a method to selectively inhibit cross-bridge cycling without altering Ca(2+) cycling. In this review, we provide a critical analysis of the methods used to partition skeletal muscle energy consumption between cross-bridge and non-cross-bridge processes and present a summary of data for a wide range of skeletal muscles. It is striking that the cost of Ca(2+) cycling is almost the same, 30-40% of the total cost of isometric contraction, for most muscles studied despite differences in muscle contractile properties, experimental conditions, techniques used to measure energy cost and to partition energy use and in absolute rates of energy use. This fraction increases with temperature for amphibian or fish muscle. Fewer data are available for mammalian muscle but most values are similar to those for amphibian muscle. For mammalian muscles there are no obvious effects of animal size, muscle fibre type or temperature.
Collapse
Affiliation(s)
- C J Barclay
- School of Physiotherapy and Exercise Science, Griffith University, PMB50 Gold Coast Mail Centre, Gold Coast, QLD 9726, Australia.
| | | | | |
Collapse
|
6
|
Zhang L, Ng YC. Fiber specific differential phosphorylation of the alpha1-subunit of the Na(+),K (+)-ATPase in rat skeletal muscle: the effect of aging. Mol Cell Biochem 2007; 303:231-7. [PMID: 17457517 DOI: 10.1007/s11010-007-9479-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/03/2007] [Indexed: 11/29/2022]
Abstract
In skeletal muscle, the Na(+),K(+)-ATPase maintains the Na(+) and K(+) gradients and modulates contractile functions. The different fibers of the skeletal muscle possess diverse properties and functions, and thus, the demands for the Na-pump activity might be different. Because phosphorylation of the alpha1-subunit of the Na(+),K(+)-ATPase appears to serve a regulatory role in the activity of Na(+),K(+)-ATPase, we postulated that a difference in the phosphorylation of the alpha1-subunit may be found among the fibers. We utilized two well-characterized specific antibodies for the alpha1-subunit, namely the McK1 and alpha6F, to determine, by immunofluorescence, if the alpha1-subunit in rat skeletal muscle fiber is differentially phosphorylated. McK1 has the unique property that its binding to the alpha1-subunit is greatly reduced when Ser-18 is phosphorylated. Our data show that, in red gastrocnemius muscle, only a small number of the fibers were stained on the sarcolemmal membrane by McK1, while other fibers were almost completely devoid of any staining. By contrast, the staining pattern by McK1 in the white gastrocnemius muscle was mostly uniform. Immunostaining of serial sections using the alpha6F antibody showed that the alpha1-subunit is expressed in all fibers. Dephosphorylation of the tissue sections by phosphatase partially restored immunostaining of the alpha1-subunit by McK1. Fiber typing results showed that, in red gastrocnemius, those fibers stained positive for alpha1-subunit by McK1 are the Type I fibers, whereas those stained negative are the Type IIA, IID, and IIB fibers. With age, the number of fibers in red gastrocnemius stained positive for McK1 increased markedly in 30-month old rats compared to 6-month old rats. In conclusion, our result suggests that, in rats, the alpha1-subunit of the Na(+),K(+)-ATPase is differentially phosphorylated in the fibers of the red gastrocnemius muscle. Furthermore, advanced age is associated with an apparent decrease in the phosphorylation of the alpha1-subunit, in addition to the previously demonstrated increase in the levels of expression of the subunit.
Collapse
Affiliation(s)
- Lianqin Zhang
- Department of Pharmacology, The Milton S Hershey Medical Center, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
7
|
Chen WH, Yin HL, Lin HS, Chen SS, Liu JS. Delayed hypokalemic paralysis following a convulsion due to alcohol abstinence. J Clin Neurosci 2006; 13:453-6. [PMID: 16678724 DOI: 10.1016/j.jocn.2005.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 04/07/2005] [Indexed: 11/29/2022]
Abstract
We encountered three patients with hypokalemic paralysis following a convulsion in the early stages of alcohol abstinence. The transtubular potassium gradient was less than 2.0, suggesting intracellular potassium shift. Hypokalaemic paralysis may result from retention of intracellular cationic potassium bound by anionic phosphorylated compounds, precipitated by an acceleration of the (Na+)-(K+) pump in alcohol withdrawal and convulsions. These findings warn of the lethal hypokalemia that may occur after convulsions, particularly soon after alcohol abstinence associated with moderate withdrawal symptoms.
Collapse
Affiliation(s)
- Wei-Hsi Chen
- Department of Neurology, Chang Gung Memorial Hospital, 100 Tai Pei Road, Niao Sung Hsiang, Kaohsiung 833, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Suwannachot P, Joosten BJLJ, Klarenbeek A, Hofma J, Enzerink E, van Weeren PR, Everts ME. Effects of training on potassium homeostasis during exercise and skeletal muscle Na+,K(+)-ATPase concentration in young adult and middle-aged Dutch Warmblood horses. Am J Vet Res 2005; 66:1252-8. [PMID: 16111166 DOI: 10.2460/ajvr.2005.66.1252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of moderate short-term training on K+ regulation in plasma and erythrocytes during exercise and on skeletal muscle Na+,K(+)-ATPase concentration in young adult and middle-aged horses. ANIMALS Four 4- to 6-year-old and four 10- to 16-year-old Dutch Warmblood horses. PROCEDURE The horses underwent a 6-minute exercise trial before and after 12 days of training. Skeletal muscle Na+,K(+)-ATPase concentration was analyzed in gluteus medius and semitendinosus muscle specimens before and after the 12-day training period. Blood samples were collected before and immediately after the trials and at 3, 5, 7, and 10 minutes after cessation of exercise for assessment of several hematologic variables and analysis of plasma and whole-blood K+ concentrations. RESULTS After training, Na+,K(+)-ATPase concentration in the gluteus medius, but not semitendinosus, muscle of middle-aged horses increased (32%), compared with pretraining values; this did not affect the degree of hyperkalemia that developed during exercise. The development of hyperkalemia during exercise in young adult horses was blunted (albeit not significantly) without any change in the concentration of Na+,K(+)-ATPase in either of the muscles. After training, the erythrocyte K+ concentration increased (7% to 10%) significantly in both groups of horses but did not change during the exercise trials. CONCLUSIONS AND CLINICAL RELEVANCE In horses, the activation of skeletal muscle Na+,K(+)-ATPase during exercise is likely to decrease with age. Training appears to result in an increase in Na+,K(+)-ATPase activity in skeletal muscle with subsequent upregulation of Na+,K(+)-ATPase concentration if the existing Na+,K(+)-ATPase capacity cannot meet requirements.
Collapse
Affiliation(s)
- Pisit Suwannachot
- Department of Pathobiology, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Barr DJ, Green HJ, Lounsbury DS, Rush JWE, Ouyang J. Na+-K+-ATPase properties in rat heart and skeletal muscle 3 mo after coronary artery ligation. J Appl Physiol (1985) 2005; 99:656-64. [PMID: 15817721 DOI: 10.1152/japplphysiol.00343.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study was designed to determine whether chronic heart failure (CHF) results in changes in Na(+)-K(+)-ATPase properties in heart and skeletal muscles of different fiber-type composition. Adult rats were randomly assigned to a control (Con; n = 8) or CHF (n = 8) group. CHF was induced by ligation of the left main coronary artery. Examination of Na(+)-K(+)-ATPase activity (means +/- SE) 12 wk after the ligation measured, using the 3-O-methylfluorescein phosphatase assay (3-O-MFPase), indicated higher (P < 0.05) levels in soleus (Sol) (250 +/- 13 vs. 179 +/- 18 nmol.mg protein(-1).h(-1)) and lower (P < 0.05) levels in diaphragm (Dia) (200 +/- 12 vs. 272 +/- 27 nmol.mg protein(-1).h(-1)) and left ventricle (LV) (760 +/- 62 vs. 992 +/- 16 nmol.mg protein(-1).h(-1)) in CHF compared with Con, respectively. Na(+)-K(+)-ATPase protein content, measured by the [(3)H]ouabain binding technique, was higher (P < 0.05) in white gastrocnemius (WG) (166 +/- 12 vs. 135 +/- 7.6 pmol/g wet wt) and lower (P < 0.05) in Sol (193 +/- 20 vs. 260 +/- 8.6 pmol/g wet wt) and LV (159 +/- 10 vs. 221 +/- 10 pmol/g wet wt) in CHF compared with Con, respectively. Isoform content in CHF, measured by Western blot techniques, showed both increases (WG; P < 0.05) and decreases (Sol; P < 0.05) in alpha(1). For alpha(2), only increases [red gastrocnemius (RG), Sol, and Dia; P < 0.05] occurred. The beta(2)-isoform was decreased (LV, Sol, RG, and WG; P < 0.05) in CHF, whereas the beta(1) was both increased (WG and Dia; P < 0.05) and decreased (Sol and LV; P < 0.05). For beta(3), decreases (P < 0.05) in RG were observed in CHF, whereas no differences were found in Sol and WG between CHF and Con. It is concluded that CHF results in alterations in Na(+)-K(+)-ATPase that are muscle specific and property specific. Although decreases in Na(+)-K(+)-ATPase content would appear to explain the lower 3-O-MFPase in the LV, such does not appear to be the case in skeletal muscles where a dissociation between these properties was observed.
Collapse
Affiliation(s)
- D J Barr
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
10
|
Chiu WY, Yang CC, Huang IC, Huang TS. Dysphagia as a manifestation of thyrotoxicosis: report of three cases and literature review. Dysphagia 2004; 19:120-4. [PMID: 15382800 DOI: 10.1007/s00455-003-0510-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myopathy is frequently associated with thyrotoxicosis. Skeletal muscles are predominantly involved in thyrotoxic myopathy, but dysphagia is extremely rare. We report three cases of thyrotoxicosis with dysphagia and review of the literature of the past 30 years. Most of these patients had antecedent muscle weakness before the onset of dysphagia although some suffered from a sudden onset of bulbar palsy. Either a myopathic or neuropathic pattern was found on electromyography. The incidence of oropharyngeal dysphagia was higher than that of esophageal motility dysfunction. Aspiration pneumonia occurred more accompanied by oropharyngeal dysphagia. The swallowing disorder could be resolved completely within 3 weeks after treatment for thyrotoxicosis. In light of these clinical experiences, early intensive treatment that includes antithyroid agent, beta-blocker, and Lugol solution may be necessary.
Collapse
Affiliation(s)
- Wei-Yih Chiu
- Department of Internal Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
11
|
Fowles JR, Green HJ, Ouyang J. Na+-K+-ATPase in rat skeletal muscle: content, isoform, and activity characteristics. J Appl Physiol (1985) 2004; 96:316-26. [PMID: 12882989 DOI: 10.1152/japplphysiol.00745.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate the hypothesis that muscle Na+-K+-ATPase activity is directly related to Na+-K+-ATPase content and the content of the alpha2-catalytic isoform in muscles of different fiber-type composition. To investigate this hypothesis, tissue was sampled from soleus (Sol), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus (EDL) muscles at rest from 38 male Wistar rats weighing 413 +/- 6.0 g (mean +/- SE). Na+-K+-ATPase activity was determined in homogenates (Hom) and isolated crude membranes (CM) by the regenerating ouabain-inhibitable hydrolytic activity assay (ATPase) and the 3-O-methylfluorescein K+-stimulated phosphatase (3-O-MFPase) assay in vitro. In addition, Na+-K+-ATPase content (Bmax) and the distribution of alpha1-, alpha2-, beta1-, and beta2-isoforms were determined by [3H]ouabain binding and Western blot, respectively. For the ATPase assay, differences (P < 0.05) in enzyme activity between muscles were observed in Hom (EDL > WG) and in CM (Sol > EDL = WG). For the 3-O-MFPase assay, differences (P < 0.05) were also found for Hom (Sol > RG = EDL > WG) and CM (Sol = WG > RG). For Bmax, differences in the order of RG = EDL > Sol = WG (P < 0.05) were observed. Isoform distribution was similar between Hom and CM and indicated in CM, a greater density (P < 0.05) of alpha1 in Sol than WG and EDL (P < 0.05), but more equal distribution of alpha2 between muscles. The beta1 was greater (P < 0.05) in Sol and RG, and the beta2 was greater in EDL and WG (P < 0.05). Over all muscles, the correlation (r) between Hom 3-O-MFPase and Bmax was 0.45 (P < 0.05) and between Hom alpha2 and Bmax, 0.59 (P < 0.05). The alpha1 distribution correlated to Hom 3-O-MFPase (r = 0.79, P < 0.05) CM ATPase (r = 0.69, P < 0.005) and CM 3-O-MFPase activity (r = 0.32, P < 0.05). The alpha2 distribution was not correlated with any of the Na+-K+-ATPase activity measurements. The results indicate generally poor relationships between activity and total pump content and alpha2 isoform content of the Na+-K+-ATPase. Several factors, including the type of preparation and the type of assay, appear important in this regard.
Collapse
Affiliation(s)
- J R Fowles
- Deparment of Kinesiology, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | | | |
Collapse
|
12
|
Abstract
Clausen, Torben. Na+-K+ Pump Regulation and Skeletal Muscle Contractility. Physiol Rev 83: 1269-1324, 2003; 10.1152/physrev.00011.2003.—In skeletal muscle, excitation may cause loss of K+, increased extracellular K+ ([K+]o), intracellular Na+ ([Na+]i), and depolarization. Since these events interfere with excitability, the processes of excitation can be self-limiting. During work, therefore, the impending loss of excitability has to be counterbalanced by prompt restoration of Na+-K+ gradients. Since this is the major function of the Na+-K+ pumps, it is crucial that their activity and capacity are adequate. This is achieved in two ways: 1) by acute activation of the Na+-K+ pumps and 2) by long-term regulation of Na+-K+ pump content or capacity. 1) Depending on frequency of stimulation, excitation may activate up to all of the Na+-K+ pumps available within 10 s, causing up to 22-fold increase in Na+ efflux. Activation of the Na+-K+ pumps by hormones is slower and less pronounced. When muscles are inhibited by high [K+]o or low [Na+]o, acute hormone- or excitation-induced activation of the Na+-K+ pumps can restore excitability and contractile force in 10-20 min. Conversely, inhibition of the Na+-K+ pumps by ouabain leads to progressive loss of contractility and endurance. 2) Na+-K+ pump content is upregulated by training, thyroid hormones, insulin, glucocorticoids, and K+ overload. Downregulation is seen during immobilization, K+ deficiency, hypoxia, heart failure, hypothyroidism, starvation, diabetes, alcoholism, myotonic dystrophy, and McArdle disease. Reduced Na+-K+ pump content leads to loss of contractility and endurance, possibly contributing to the fatigue associated with several of these conditions. Increasing excitation-induced Na+ influx by augmenting the open-time or the content of Na+ channels reduces contractile endurance. Excitability and contractility depend on the ratio between passive Na+-K+ leaks and Na+-K+ pump activity, the passive leaks often playing a dominant role. The Na+-K+ pump is a central target for regulation of Na+-K+ distribution and excitability, essential for second-to-second ongoing maintenance of excitability during work.
Collapse
Affiliation(s)
- Torben Clausen
- Department of Physiology, University of Aarhus, Arhus, Denmark.
| |
Collapse
|
13
|
Abstract
This invited lecture reviews recent evidence that, in skeletal muscle, excitability and contractility depend on the transmembrane distribution of Na(+) and K(+) and the membrane potential, which in turn are determined by the operation of the Na(+)-K(+) pump. Action potentials are elicited by passive fluxes of Na(+) and K(+). Because of their size and sudden onset, these transport events constitute the major challenge for the Na(+)-K(+) pumps. When the Na(+)-K(+) pumps cannot readily restore the Na(+)-K(+) gradients, working muscle cells often undergo net loss of K(+) and gain of Na(+). This leads to loss of excitability and force, in particular, in muscles where excitation-induced passive Na(+)-K(+) fluxes are large. Thus, excitability depends on the leak/pump ratio for Na(+) and K(+). When this ratio is increased by inhibition or downregulation of the Na(+)-K(+) pumps, the force decline seen during continued stimulation is accelerated. This effect is highly significant already within the first seconds of electrical stimulation. Fortunately, electrical stimulation also increases Na(+)-K(+) pumping rate within seconds. Thus, maximum increase (20-fold above the resting level) may be reached in 10 seconds, with utilization of all available Na(+)-K(+) pumps. In muscles, where excitability was inhibited by exposure to high [K(+)](o) (10-12.5 mM), activation of the Na(+)-K(+) pumps by hormones or electrical stimulation restored excitability and contractile force. In working muscles, the Na(+)-K(+) pumps, because of rapid activation of their large transport capacity, play a dynamic regulatory role in the second-to-second ongoing restoration and maintenance of excitability and force. The Na(+)-K(+) pumps become a limiting factor for contractile endurance, in particular, if their capacity is reduced by inactivity or disease.
Collapse
Affiliation(s)
- Torben Clausen
- Department of Physiology, University of Aarhus, Denmark.
| |
Collapse
|
14
|
Carlsen RC, Villarin JJ. Membrane excitability and calcium homeostasis in exercising skeletal muscle. Am J Phys Med Rehabil 2002; 81:S28-39. [PMID: 12409809 DOI: 10.1097/00002060-200211001-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Preservation of the membrane electrochemical gradients for Na, K, and Ca is vital to the maintenance of skeletal muscle structure and function. Muscle excitability may be depressed during contractile activity by changes in the gradients for Na and K, while muscle force may be reduced by an activity-induced increase in free intracellular Ca. Compensatory processes help to maintain ion electrochemical gradients in normal, active muscles, but compensatory mechanisms may be impaired in injured or diseased muscles, contributing to muscle pathology.
Collapse
Affiliation(s)
- Richard C Carlsen
- Department of Human Physiology, School of Medicine, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|
15
|
Sejersted OM, Sjøgaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 2000; 80:1411-81. [PMID: 11015618 DOI: 10.1152/physrev.2000.80.4.1411] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since it became clear that K(+) shifts with exercise are extensive and can cause more than a doubling of the extracellular [K(+)] ([K(+)](s)) as reviewed here, it has been suggested that these shifts may cause fatigue through the effect on muscle excitability and action potentials (AP). The cause of the K(+) shifts is a transient or long-lasting mismatch between outward repolarizing K(+) currents and K(+) influx carried by the Na(+)-K(+) pump. Several factors modify the effect of raised [K(+)](s) during exercise on membrane potential (E(m)) and force production. 1) Membrane conductance to K(+) is variable and controlled by various K(+) channels. Low relative K(+) conductance will reduce the contribution of [K(+)](s) to the E(m). In addition, high Cl(-) conductance may stabilize the E(m) during brief periods of large K(+) shifts. 2) The Na(+)-K(+) pump contributes with a hyperpolarizing current. 3) Cell swelling accompanies muscle contractions especially in fast-twitch muscle, although little in the heart. This will contribute considerably to the lowering of intracellular [K(+)] ([K(+)](c)) and will attenuate the exercise-induced rise of intracellular [Na(+)] ([Na(+)](c)). 4) The rise of [Na(+)](c) is sufficient to activate the Na(+)-K(+) pump to completely compensate increased K(+) release in the heart, yet not in skeletal muscle. In skeletal muscle there is strong evidence for control of pump activity not only through hormones, but through a hitherto unidentified mechanism. 5) Ionic shifts within the skeletal muscle t tubules and in the heart in extracellular clefts may markedly affect excitation-contraction coupling. 6) Age and state of training together with nutritional state modify muscle K(+) content and the abundance of Na(+)-K(+) pumps. We conclude that despite modifying factors coming into play during muscle activity, the K(+) shifts with high-intensity exercise may contribute substantially to fatigue in skeletal muscle, whereas in the heart, except during ischemia, the K(+) balance is controlled much more effectively.
Collapse
Affiliation(s)
- O M Sejersted
- Institute for Experimental Medical Research, University of Oslo, Ullevaal Hospital, Oslo, Norway.
| | | |
Collapse
|
16
|
|
17
|
Rankinen T, Pérusse L, Borecki I, Chagnon YC, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. The Na(+)-K(+)-ATPase alpha2 gene and trainability of cardiorespiratory endurance: the HERITAGE family study. J Appl Physiol (1985) 2000; 88:346-51. [PMID: 10642400 DOI: 10.1152/jappl.2000.88.1.346] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na(+)-K(+)-ATPase plays an important role in the maintenance of electrolyte balance in the working muscle and thus may contribute to endurance performance. This study aimed to investigate the associations between genetic variants at the Na(+)-K(+)-ATPase alpha2 locus and the response (Delta) of maximal oxygen consumption (VO(2 max)) and maximal power output (W(max)) to 20 wk of endurance training in 472 sedentary Caucasian subjects from 99 families. VO(2 max) and W(max) were measured during two maximal cycle ergometer exercise tests before and again after the training program, and restriction fragment length polymorphisms at the Na(+)-K(+)-ATPase alpha2 (exons 1 and 21-22 with Bgl II) gene were typed. Sibling-pair linkage analysis revealed marginal evidence for linkage between the alpha2 haplotype and DeltaVO(2 max) (P = 0.054) and stronger linkages between the alpha2 exon 21-22 marker (P = 0.005) and alpha2 haplotype (P = 0.003) and DeltaW(max). In the whole cohort, DeltaVO(2 max) in the 3.3-kb homozygotes of the exon 1 marker (n = 5) was 41% lower than in the 8.0/3.3-kb heterozygotes (n = 87) and 48% lower than in the 8.0-kb homozygotes (n = 380; P = 0.018, adjusted for age, gender, baseline VO(2 max), and body weight). Among offspring, 10.5/10.5-kb homozygotes (n = 14) of the exon 21-22 marker showed a 571 +/- 56 (SE) ml O(2)/min increase in VO(2 max), whereas the increases in the 10.5/4.3-kb (n = 93) and 4.3/4.3-kb (n = 187) genotypes were 442 +/- 22 and 410 +/- 15 ml O(2)/min, respectively (P = 0.017). These data suggest that genetic variation at the Na(+)-K(+)-ATPase alpha2 locus influences the trainability of VO(2 max) in sedentary Caucasian subjects.
Collapse
Affiliation(s)
- T Rankinen
- Pennington Biomedical Research Center, Human Genomics Laboratory, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lunde PK, Verburg E, Vøllestad NK, Sejersted OM. Skeletal muscle fatigue in normal subjects and heart failure patients. Is there a common mechanism? ACTA PHYSIOLOGICA SCANDINAVICA 1998; 162:215-28. [PMID: 9578367 DOI: 10.1046/j.1365-201x.1998.0343f.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle fatigue develops gradually during all forms of exercise, and develops more rapidly in heart failure patients. The fatigue mechanism is still not known, but is most likely localized to the muscle cells themselves. During high intensity exercise the perturbations of the Na+ and K+ balance in the exercising muscle favour depolarization, smaller action potentials and inexcitability. The Na+, K+ pump becomes strongly activated and limits, but does not prevent the rise in extracellular Na+, K+ pump concentration and intracellular Na+ concentration. However, by virtue of its electrogenic property the pump may contribute in maintaining excitability and contractility by keeping the cells more polarized than the ion gradients predict. With prolonged exercise perturbations of Na+ and K+ are smaller and fatigue may be associated with altered cellular handling of Ca2+ and Mg2+. Release of Ca2+ from the sarcoplasmic reticulum (SR) is reduced in the absence of changes of the cellular content of Ca2+ and Mg2+. In heart failure several clinical reports indicate severe electrolyte perturbations in skeletal muscle. However, in well controlled studies small or insignificant changes are found. We conclude that with high intensity exercise perturbations of Na+ and K+ in muscle cells may contribute to fatigue, whereas with endurance type of exercise and in heart failure patients the skeletal muscle fatigue is more likely to reside in the intracellular control of Ca2+ release and reuptake.
Collapse
Affiliation(s)
- P K Lunde
- Institute for Experimental Medical Research, University of Oslo, Ullevaal Hospital, Norway
| | | | | | | |
Collapse
|