1
|
Gitler S, Ramirez-Soto I, Jiménez-Graduño A, Ortega A. Calcium ATPase (PMCA) and GLUT-4 Upregulation in the Transverse Tubule Membrane of Skeletal Muscle from a Rat Model of Chronic Heart Failure. Int J Mol Sci 2024; 25:11180. [PMID: 39456962 PMCID: PMC11508325 DOI: 10.3390/ijms252011180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Intolerance to exercise is a symptom associated with chronic heart failure (CHF) resulting in SM waste and weakness in humans. The effect of CHF on skeletal muscle (SM) arose from experimental evidence in rat models to explain the underlying mechanism. We investigated SM mechanical and metabolic properties in sham rats and with coronary ligation-induced CHF. After twelve weeks of CHF, rats were catheterized to measure right auricular pressure, SM mechanical properties, SERCA-ATPase activity and plasma membrane Ca2+-ATPase (PMCA) hydrolytic activity in isolated sarcoplasmic reticulum (SR) and transverse tubule (TT membrane), respectively, in the sham and CHF. The right auricular pressure and plasma nitrite concentration in CHF increased two-fold with respect to the sham. Pleural effusion and ascites were detected in CHF, confirming CHF. SERCA activity was conserved in CHF. In TT membranes from CHF, the glucose transporter GLUT4 increased seven-fold, and the PMCA hydrolytic activity increased five-fold, but in isolated muscle, the mechanical properties were unaffected. The absence of a deleterious effect of coronary ligation-induced CHF in the rat model on SM could be explained by the increased activity of PMCA and increased presence of GLUT-4 on the TT membrane, which may be involved in the mechanical outcome of the EDL.
Collapse
Affiliation(s)
- Sofia Gitler
- Department of Biochemistry, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.R.-S.); (A.J.-G.)
- Department of Internal Medicine, ABC Medical Center, Sur 136 166, Alvaro Obregón, Mexico City 01120, Mexico
| | - Ibrahim Ramirez-Soto
- Department of Biochemistry, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.R.-S.); (A.J.-G.)
| | - Aura Jiménez-Graduño
- Department of Biochemistry, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.R.-S.); (A.J.-G.)
- Department of Health Sciences, Universidad de Las Américas Puebla, San Andrés Cholula 72810, Mexico
| | - Alicia Ortega
- Department of Biochemistry, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.R.-S.); (A.J.-G.)
| |
Collapse
|
2
|
Lopez MA, Pardo PS, Mohamed JS, Boriek AM. ANKRD1 expression is aberrantly upregulated in the mdm mouse model of muscular dystrophy and induced by stretch through NFκB. J Muscle Res Cell Motil 2024:10.1007/s10974-024-09671-x. [PMID: 38683293 DOI: 10.1007/s10974-024-09671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
The muscular dystrophy with myositis (mdm) mouse model results in a severe muscular dystrophy due to an 83-amino-acid deletion in the N2A region of titin, an expanded sarcomeric protein that functions as a molecular spring which senses and modulates the response to mechanical forces in cardiac and skeletal muscles. ANKRD1 is one of the muscle ankyrin repeat domain proteins (MARPs) a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. The aberrant over-activation of Nuclear factor Kappa B (NF-κB) and the Ankyrin-repeat domain containing protein 1 (ANKRD1) occurs in several models of progressive muscle disease including Duchenne muscular dystrophy. We hypothesized that mechanical regulation of ANKRD1 is mediated by NF-κB activation in skeletal muscles and that this mechanism is perturbed by small deletion of the stretch-sensing titin N2A region in the mdm mouse. We applied static mechanical stretch of the mdm mouse diaphragm and cyclic mechanical stretch of C2C12 myotubes to examine the interaction between NF-κΒ and ANKRD1 expression utilizing Western blot and qRTPCR. As seen in skeletal muscles of other severe muscular dystrophies, an aberrant increased basal expression of NF-κB and ANKRD1 were observed in the diaphragm muscles of the mdm mice. Our data show that in the mdm diaphragm, basal levels of NF-κB are increased, and pharmacological inhibition of NF-κB does not alter basal levels of ANKRD1. Alternatively, NF-κB inhibition did alter stretch-induced ANKRD1 upregulation. These data show that NF-κB activity is at least partially responsible for the stretch-induced expression of ANKRD1.
Collapse
Affiliation(s)
- Michael A Lopez
- Departments of Medicine and Molecular Physiology and Biophysics, Baylor College of Medicine, Suite 523-D2, Houston, TX, 77030, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Patricia S Pardo
- Departments of Medicine and Molecular Physiology and Biophysics, Baylor College of Medicine, Suite 523-D2, Houston, TX, 77030, USA
| | - Junaith S Mohamed
- Departments of Medicine and Molecular Physiology and Biophysics, Baylor College of Medicine, Suite 523-D2, Houston, TX, 77030, USA
- Laboratory of Muscle and Nerve, Department of Diagnostic and Helath Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Aladin M Boriek
- Departments of Medicine and Molecular Physiology and Biophysics, Baylor College of Medicine, Suite 523-D2, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Exercise as a therapy for cancer-induced muscle wasting. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:186-194. [PMID: 35782998 PMCID: PMC9219331 DOI: 10.1016/j.smhs.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a progressive disorder characterized by body weight, fat, and muscle loss. Cachexia induces metabolic disruptions that can be analogous and distinct from those observed in cancer, obscuring both diagnosis and treatment options. Inflammation, hypogonadism, and physical inactivity are widely investigated as systemic mediators of cancer-induced muscle wasting. At the cellular level, dysregulation of protein turnover and energy metabolism can negatively impact muscle mass and function. Exercise is well known for its anti-inflammatory effects and potent stimulation of anabolic signaling. Emerging evidence suggests the potential for exercise to rescue muscle's sensitivity to anabolic stimuli, reduce wasting through protein synthesis modulation, myokine release, and subsequent downregulation of proteolytic factors. To date, there is no recommendation for exercise in the management of cachexia. Given its complex nature, a multimodal approach incorporating exercise offers promising potential for cancer cachexia treatment. This review's primary objective is to summarize the growing body of research examining exercise regulation of cancer cachexia. Furthermore, we will provide evidence for exercise interactions with established systemic and cellular regulators of cancer-induced muscle wasting.
Collapse
|
4
|
Webster JM, Kempen LJAP, Hardy RS, Langen RCJ. Inflammation and Skeletal Muscle Wasting During Cachexia. Front Physiol 2020; 11:597675. [PMID: 33329046 PMCID: PMC7710765 DOI: 10.3389/fphys.2020.597675] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cachexia is the involuntary loss of muscle and adipose tissue that strongly affects mortality and treatment efficacy in patients with cancer or chronic inflammatory disease. Currently, no specific treatments or interventions are available for patients developing this disorder. Given the well-documented involvement of pro-inflammatory cytokines in muscle and fat metabolism in physiological responses and in the pathophysiology of chronic inflammatory disease and cancer, considerable interest has revolved around their role in mediating cachexia. This has been supported by association studies that report increased levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in some, but not all, cancers and in chronic inflammatory diseases such as chronic obstructive pulmonary disease (COPD) and rheumatoid arthritis (RA). In addition, preclinical studies including animal disease models have provided a substantial body of evidence implicating a causal contribution of systemic inflammation to cachexia. The presence of inflammatory cytokines can affect skeletal muscle through several direct mechanisms, relying on activation of the corresponding receptor expressed by muscle, and resulting in inhibition of muscle protein synthesis (MPS), elevation of catabolic activity through the ubiquitin-proteasomal system (UPS) and autophagy, and impairment of myogenesis. Additionally, systemic inflammatory mediators indirectly contribute to muscle wasting through dysregulation of tissue and organ systems, including GCs via the hypothalamus-pituitary-adrenal (HPA) axis, the digestive system leading to anorexia-cachexia, and alterations in liver and adipocyte behavior, which subsequently impact on muscle. Finally, myokines secreted by skeletal muscle itself in response to inflammation have been implicated as autocrine and endocrine mediators of cachexia, as well as potential modulators of this debilitating condition. While inflammation has been shown to play a pivotal role in cachexia development, further understanding how these cytokines contribute to disease progression is required to reveal biomarkers or diagnostic tools to help identify at risk patients, or enable the design of targeted therapies to prevent or delay the progression of cachexia.
Collapse
Affiliation(s)
- Justine M. Webster
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Laura J. A. P. Kempen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Rowan S. Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J Funct Morphol Kinesiol 2020; 5:jfmk5040076. [PMID: 33467291 PMCID: PMC7739346 DOI: 10.3390/jfmk5040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle's ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance.
Collapse
|
6
|
Monnerat G, Sánchez CAR, Santos CGM, Paulucio D, Velasque R, Evaristo GPC, Evaristo JAM, Nogueira FCS, Domont GB, Serrato M, Lima AS, Bishop D, Campos de Carvalho AC, Pompeu FAMS. Different Signatures of High Cardiorespiratory Capacity Revealed With Metabolomic Profiling in Elite Athletes. Int J Sports Physiol Perform 2020; 15:1156-1167. [PMID: 32335533 DOI: 10.1123/ijspp.2019-0267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE High cardiorespiratory capacity is a key determinant of human performance and life expectancy; however, the underlying mechanisms are not fully understood. The objective of this pilot study was to investigate biochemical signatures of endurance-performance athletes using high-resolution nontargeted metabolomics. METHODS Elite long-distance runners with similar training and anthropometrical records were studied. After athletes' maximal oxygen consumption (V˙O2max) was measured, they were divided into 2 groups: low V˙O2max (<65 mL·kg-1·min-1, n = 7) and high V˙O2max (>75 mL·kg-1·min-1, n = 7). Plasma was collected under basal conditions after 12 hours of fasting and after a maximal exercise test (nonfasted) and analyzed by high-resolution LC-MS. Multivariate and univariate statistics were applied. RESULTS A total of 167 compounds were putatively identified with an LC-MS-based metabolomics pipeline. Partial least-squares discriminant analysis showed a clear separation between groups. Significant variations in metabolites highlighted group differences in diverse metabolic pathways, including lipids, vitamins, amino acids, purine, histidine, xenobiotics, and others, either under basal condition or after the maximal exercise test. CONCLUSIONS Taken together, the metabolic alterations revealed in the study affect cellular energy use and availability, oxidative stress management, muscle damage, central nervous system signaling metabolites, nutrients, and compound bioavailability, providing new insights into metabolic alterations associated with exercise and cardiorespiratory fitness levels in trained athletes.
Collapse
|
7
|
Is It Time to Rethink Our Weight Loss Paradigms? BIOLOGY 2020; 9:biology9040070. [PMID: 32252392 PMCID: PMC7235705 DOI: 10.3390/biology9040070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Strategies aiming to promote weight loss usually include anything that results in an increase in energy expenditure (exercise) or a decrease in energy intake (diet). However, the probability of losing weight is low and the probability of sustained weight loss is even lower. Herein, we bring some questions and suggestions about the topic, with a focus on exercise interventions. Based on the current evidence, we should look at how metabolism changes in response to interventions instead of counting calories, so we can choose more efficient models that can account for the complexity of human organisms. In this regard, high-intensity training might be particularly interesting as a strategy to promote fat loss since it seems to promote many physiological changes that might favor long-term weight loss. However, it is important to recognize the controversy of the results regarding interval training (IT), which might be explained by the large variations in its application. For this reason, we have to be more judicious about how exercise is planned and performed and some factors, like supervision, might be important for the results. The intensity of exercise seems to modulate not only how many calories are expended after exercise, but also where they came from. Instead of only estimating the number of calories ingested and expended, it seems that we have to act positively in order to create an adequate environment for promoting healthy and sustainable weight loss.
Collapse
|
8
|
Exploring the Interface between Inflammatory and Therapeutic Glucocorticoid Induced Bone and Muscle Loss. Int J Mol Sci 2019; 20:ijms20225768. [PMID: 31744114 PMCID: PMC6888251 DOI: 10.3390/ijms20225768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023] Open
Abstract
Due to their potent immunomodulatory anti-inflammatory properties, synthetic glucocorticoids (GCs) are widely utilized in the treatment of chronic inflammatory disease. In this review, we examine our current understanding of how chronic inflammation and commonly used therapeutic GCs interact to regulate bone and muscle metabolism. Whilst both inflammation and therapeutic GCs directly promote systemic osteoporosis and muscle wasting, the mechanisms whereby they achieve this are distinct. Importantly, their interactions in vivo are greatly complicated secondary to the directly opposing actions of GCs on a wide array of pro-inflammatory signalling pathways that underpin catabolic and anti-anabolic metabolism. Several clinical studies have attempted to address the net effects of therapeutic glucocorticoids on inflammatory bone loss and muscle wasting using a range of approaches. These have yielded a wide array of results further complicated by the nature of inflammatory disease, underlying the disease management and regimen of GC therapy. Here, we report the latest findings related to these pathway interactions and explore the latest insights from murine models of disease aimed at modelling these processes and delineating the contribution of pre-receptor steroid metabolism. Understanding these processes remains paramount in the effective management of patients with chronic inflammatory disease.
Collapse
|
9
|
Native Whey Induces Similar Adaptation to Strength Training as Milk, despite Higher Levels of Leucine, in Elderly Individuals. Nutrients 2019; 11:nu11092094. [PMID: 31487819 PMCID: PMC6770720 DOI: 10.3390/nu11092094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Large amounts of protein (40 g) or supplementing suboptimal servings of protein with leucine are able to overcome the anabolic resistance in elderly muscle. Our aim was to compare the effects of supplementation of native whey, high in leucine, with milk on gains in muscle mass and strength during a period of strength training, in elderly individuals. METHODS In this double-blinded, randomized, controlled study, a total of 30 healthy men and women received two daily servings of 20 g of either milk protein or native whey, during an 11-week strength training intervention. Muscle strength, lean mass, m. vastus lateralis thickness, muscle fiber area, and resting and post-exercise phosphorylation of p70S6K, 4E-BP1, and eEF-2 were assessed prior to and after the intervention period. RESULTS Muscle mass and strength increased, by all measures applied in both groups (p < 0.001), with no differences between groups (p > 0.25). p70S6K phosphorylation increased (~1000%, p < 0.045) 2 h after exercise in the untrained and trained state, with no differences between supplements. Total and phosphorylated mTORC-1 decreased after training. CONCLUSION Supplementation with milk or native whey during an 11-week strength training period increased muscle mass and strength similarly in healthy elderly individuals.
Collapse
|
10
|
Abdelaal AAM, Abdulaziz EM. Effect of exercise therapy on physical performance and functional balance in patients on maintenance renal hemodialysis: randomized controlled study. J Exerc Rehabil 2019; 15:472-480. [PMID: 31316944 PMCID: PMC6614770 DOI: 10.12965/jer.1938176.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Physical performance (PP) and functional balance (FB) abnormalities are frequently encountered problems in patients on maintenance renal hemodialysis (MRH). Although the exercise therapy is an adjunctive to the routine medical care for patients with chronic kidney disease of various stages; but the benefits as well as the long-term effects of different exercises on the PP and FB in patients on MRH are not yet fully described. In this study; Sixty-six patients on MRH (36 males, 30 females), age 35–45 years, were randomly assigned into one of the three groups: aerobic exercise training group (AETG), resistance exercise training group (RETG), and control group (CG). The PP (evaluated using the 6-min walk test “6MWT”) and the FB (evaluated via the Berg balance scale “BBS”) were the main study outcomes evaluated prestudy (evaluation-1), after 3 months (evaluation-2) and 2 months poststudy cessation (evaluation-3). Results revealed that the PP and FB mean values and percentages of changes at evaluation-2 were 444.25±21.83 (33.1%), 413.57±28.55 (22.52%), 337±12.23 (0.33%) m, 50.05±0.89 (22.95%), 49.95±2.06 (22.52%), 41.28±1.75 (0.94%) for AETG, RETG, and CG respectively. At evaluation-3; the PP and FB mean values and the percentage of changes were 425±21.49 (27.36), 366.86±17.47 (8.5%), 336.68 (0.42%) m, 44.4±1.85 (8.06%), 42.95±2.04 (5.003%), 39.48±2.06 (−4.44%) for AETG, RETG, and CG respectively. In conclusions; both aerobic exercise training (AET) and resistance exercise training (RET) have favorable effects, with the AET has higher short and long-term favorable effects on the PP and FB than RET in patients on MRH.
Collapse
Affiliation(s)
- Ashraf Abdelaal Mohamed Abdelaal
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Ehab Mohamed Abdulaziz
- Consultant in Nephrology and Internal Medicine, National Institute of Liver, Gastroenterology & Infectious Diseases, Cairo, Egypt
| |
Collapse
|
11
|
Smerdu V, Perše M. Effect of high-fat mixed lipid diet and swimming on fibre types in skeletal muscles of rats with colon tumours. Eur J Histochem 2018; 62. [PMID: 30043597 PMCID: PMC6065050 DOI: 10.4081/ejh.2018.2945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle fibre types, whose characteristics are determined by myosin heavy chain (MyHC) isoforms, can adapt to changed physiological demands with changed MyHC isoform expression resulting in the fibre type transitions. The endurance training is known to induce fastto- slow transitions and has beneficial effect in carcinogenesis, whereas the effect of an excessive fat intake and its interaction with the effect of swimming are less conclusive. Therefore, we studied the effect of high-fat mixed lipid (HFML) diet and long-term (21-week) swimming on fibre type transitions and their average diameters by immunohistochemical demonstration of MyHC isoforms in slow soleus (SOL), fast extensor digitorum longus (EDL), and mixed gastrocnemius medialis and lateralis (GM, GL) muscles, divided to deep and superficial portions (GMd, GMs, GLd, GLs), of sedentary and swimming Wistar rats with experimentally (dimethylhydrazine) induced colon tumours and fed either with HFML or low-fat corn oil (LFCO) diet. HFML diet induced only a trend for fast-to-slow transitions in SOL and in the opposite direction in GMd. Swimming triggered significant transitions in unexpected slow-to-fast direction in SOL, whereas in GMs the transitions had tendency to proceed in the expected fast-toslow direction. The average diameters of fibre types were mostly unaffected. Hence, it can be concluded that if present, the effects of HFML diet and swimming on fibre type transitions were counteractive and muscle-specific implying that each muscle possesses its own adaptive range of response to changed physiological conditions.
Collapse
Affiliation(s)
- Vika Smerdu
- University of Ljubljana, Faculty of Medicine, Institute of Anatomy.
| | | |
Collapse
|
12
|
Satellite cell activation and mTOR signaling pathway response to resistance and combined exercise in elite weight lifters. Eur J Appl Physiol 2017; 117:2355-2363. [PMID: 28940037 DOI: 10.1007/s00421-017-3722-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/13/2017] [Indexed: 01/20/2023]
Abstract
PURPOSE Our aim was to compare the effects of a single exercise training mode (resistance exercise) with a combined exercise training (resistance and plyometric exercise) mode on satellite cell activity and anabolic signaling at the molecular level. METHODS Eighteen male weight lifters (20 ± 4 years, BMI 27 ± 6 kg/m2) were randomly assigned to either a series of resistance exercise or a series of combined exercise group. The intensity of the exercise was set at 60% of their 1 RM weight and subjects completed three sets each of six repetitions. The combined exercise group performed three different types of resistance exercise alternating with three different types of plyometric exercise, whereas the resistance exercise group performed only the three different types of resistance exercise which was repeated twice. Muscle biopsies were obtained the vastus lateralis muscle immediately before and 3 h after one bout of exercise. RESULTS Exercise induced increases in satellite cell activation and myofibrillar protein synthesis following both exercise modes, but the resistance exercise group was superior compared to the combined exercise group in satellite cell activity expressed by Ki67/CD56 (165 vs 232%) and PI3K/Akt protein expression (121 vs 157%), mTOR protein expression (117 vs 288%), p70S6K protein expression (253 vs 809%), and 4E-BP1 protein expression (70 vs 139%) of anabolic signaling pathway. CONCLUSIONS These results suggest that the previous findings showing a greater effect of combined as opposed to a single exercise mode could be the effect of a greater training volume rather than a true-training effect of a combined exercise program.
Collapse
|
13
|
Dube S, Chionuma H, Matoq A, Alshiekh-Nasany R, Abbott L, Poiesz BJ, Dube DK. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles. Open Vet J 2017; 7:180-191. [PMID: 28717602 PMCID: PMC5498770 DOI: 10.4314/ovj.v7i2.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/15/2017] [Indexed: 01/09/2023] Open
Abstract
In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM), a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4) generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle.
Collapse
Affiliation(s)
- Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Henry Chionuma
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Amr Matoq
- University of Florida, College of Medicine-Jacksonville, Suite 1130, 841 Prudential Drive, Jacksonville, FL 32207, USA
| | - Ruham Alshiekh-Nasany
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Lynn Abbott
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
14
|
Petriz BA, Gomes CPC, Almeida JA, de Oliveira GP, Ribeiro FM, Pereira RW, Franco OL. The Effects of Acute and Chronic Exercise on Skeletal Muscle Proteome. J Cell Physiol 2016; 232:257-269. [PMID: 27381298 DOI: 10.1002/jcp.25477] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 01/16/2023]
Abstract
Skeletal muscle plasticity and its adaptation to exercise is a topic that is widely discussed and investigated due to its primary role in the field of exercise performance and health promotion. Repetitive muscle contraction through exercise stimuli leads to improved cardiovascular output and the regulation of endothelial dysfunction and metabolic disorders such as insulin resistance and obesity. Considerable improvements in proteomic tools and data analysis have broth some new perspectives in the study of the molecular mechanisms underlying skeletal muscle adaptation in response to physical activity. In this sense, this review updates the main relevant studies concerning muscle proteome adaptation to acute and chronic exercise, from aerobic to resistance training, as well as the proteomic profile of natural inbred high running capacity animal models. Also, some promising prospects in the muscle secretome field are presented, in order to better understand the role of physical activity in the release of extracellular microvesicles and myokines activity. Thus, the present review aims to update the fast-growing exercise-proteomic scenario, leading to some new perspectives about the molecular events under skeletal muscle plasticity in response to physical activity. J. Cell. Physiol. 232: 257-269, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jeeser A Almeida
- Curso de Educação Física, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil.,S-Inova Biotech, Universidade Cat ólica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brasil
| | - Getulio P de Oliveira
- Programa de Pós-Graduação em Patologia Molecular-Universidade de Brasília, DF, Brasil
| | - Filipe M Ribeiro
- Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| | - Rinaldo W Pereira
- Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| | - Octavio L Franco
- S-Inova Biotech, Universidade Cat ólica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brasil.,Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| |
Collapse
|
15
|
Reidy PT, Rasmussen BB. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J Nutr 2016; 146:155-83. [PMID: 26764320 PMCID: PMC4725426 DOI: 10.3945/jn.114.203208] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/03/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on this effect during long-term exercise interventions. There were no differences in strength or mass/muscle mass on RET outcomes between protein types when a leucine threshold (>2 g/dose) was reached. Future research with larger sample sizes and more homogeneity in design is necessary to understand the underlying adaptations and to better evaluate the individual variability in the muscle-adaptive response to protein/AA supplementation during RET.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
16
|
Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2013; 2:2829-70. [PMID: 23720267 DOI: 10.1002/cphy.c110066] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
17
|
Krüger K, Gessner DK, Seimetz M, Banisch J, Ringseis R, Eder K, Weissmann N, Mooren FC. Functional and muscular adaptations in an experimental model for isometric strength training in mice. PLoS One 2013; 8:e79069. [PMID: 24236089 PMCID: PMC3827300 DOI: 10.1371/journal.pone.0079069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/27/2013] [Indexed: 01/13/2023] Open
Abstract
Exercise training induces muscular adaptations that are highly specific to the type of exercise. For a systematic study of the differentiated exercise adaptations on a molecular level mouse models have been used successfully. The aim of the current study was to develop a suitable mouse model of isometric strength exercise training characterized by specific adaptations known from strength training. C57BL/6 mice performed an isometric strength training (ST) for 10 weeks 5 days/week. Additionally, either a sedentary control group (CT) or a regular endurance training group (ET) groups were used as controls. Performance capacity was determined by maximum holding time (MHT) and treadmill spirometry, respectively. Furthermore, muscle fiber types and diameter, muscular concentration of phosphofructokinase 1 (PFK), succinate dehydrogenase (SDHa), and glucose transporter type 4 (GLUT4) were determined. In a further approach, the effect of ST on glucose intolerance was tested in diabetic mice. In mice of the ST group we observed an increase of MHT in isometric strength tests, a type II fiber hypertrophy, and an increased GLUT4 protein content in the membrane fraction. In contrast, in mice of the ET group an increase of VO2max, a shift to oxidative muscle fiber type and an increase of oxidative enzyme content was measured. Furthermore strength training was effective in reducing glucose intolerance in mice fed a high fat diet. An effective murine strength training model was developed and evaluated, which revealed marked differences in adaptations known from endurance training. This approach seems also suitable to test for therapeutical effects of strength training.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Seimetz
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardiopulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jasmin Banisch
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University Giessen, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardiopulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Frank C. Mooren
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Abstract
The physiological adaptation to training is specific to the muscle activity, dominant energy system involved, muscle groups trained, as well as intensity and volume of training. Despite increasing popularity of snowboarding only little scientific data is available on the physiological characteristics of female and male competitive snowboarders. Therefore, the purpose of this study was to compare the aerobic capacity and maximal anaerobic power of elite Polish snowboarders with untrained subjects. Ten snowboarders and ten aged matched students of Physical Education performed two exercise tests. First, a 30-second Wingate test was conducted and next, a cycle ergometer exercise test with graded intensity. In the first test, peak anaerobic power, the total work, relative peak power and relative mean power were measured. During the second test, relative maximal oxygen uptake and lactate threshold were evaluated. There were no significant differences in absolute and relative maximal oxygen uptake between snowboarders and the control group. Mean maximal oxygen uptake and lactate threshold were significantly higher in men than in women. Significant differences were found between trained men and women regarding maximal power and relative maximal power. The elite snowboarders demonstrated a high level of anaerobic power. The level of relative peak power in trained women correlated negatively with maximal oxygen uptake. In conclusion, our results seem to indicate that the demanding competition program of elite snowboarders provides a significant training stimulus mainly for anaerobic power with minor changes in anaerobic performance.
Collapse
|
19
|
Park KD, Park J, Ko J, Kim BC, Kim HS, Ahn K, Do KT, Choi H, Kim HM, Song S, Lee S, Jho S, Kong HS, Yang YM, Jhun BH, Kim C, Kim TH, Hwang S, Bhak J, Lee HK, Cho BW. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 2012; 13:473. [PMID: 22971240 PMCID: PMC3472166 DOI: 10.1186/1471-2164-13-473] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Thoroughbred horses are the most expensive domestic animals, and their running ability and knowledge about their muscle-related diseases are important in animal genetics. While the horse reference genome is available, there has been no large-scale functional annotation of the genome using expressed genes derived from transcriptomes. RESULTS We present a large-scale analysis of whole transcriptome data. We sequenced the whole mRNA from the blood and muscle tissues of six thoroughbred horses before and after exercise. By comparing current genome annotations, we identified 32,361 unigene clusters spanning 51.83 Mb that contained 11,933 (36.87%) annotated genes. More than 60% (20,428) of the unigene clusters did not match any current equine gene model. We also identified 189,973 single nucleotide variations (SNVs) from the sequences aligned against the horse reference genome. Most SNVs (171,558 SNVs; 90.31%) were novel when compared with over 1.1 million equine SNPs from two SNP databases. Using differential expression analysis, we further identified a number of exercise-regulated genes: 62 up-regulated and 80 down-regulated genes in the blood, and 878 up-regulated and 285 down-regulated genes in the muscle. Six of 28 previously-known exercise-related genes were over-expressed in the muscle after exercise. Among the differentially expressed genes, there were 91 transcription factor-encoding genes, which included 56 functionally unknown transcription factor candidates that are probably associated with an early regulatory exercise mechanism. In addition, we found interesting RNA expression patterns where different alternative splicing forms of the same gene showed reversed expressions before and after exercising. CONCLUSION The first sequencing-based horse transcriptome data, extensive analyses results, deferentially expressed genes before and after exercise, and candidate genes that are related to the exercise are provided in this study.
Collapse
Affiliation(s)
- Kyung-Do Park
- Department of Biotechnology, Hankyong National University, Anseong, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee I, Hüttemann M, Liu J, Grossman LI, Malek MH. Deletion of heart-type cytochrome c oxidase subunit 7a1 impairs skeletal muscle angiogenesis and oxidative phosphorylation. J Physiol 2012; 590:5231-43. [PMID: 22869013 DOI: 10.1113/jphysiol.2012.239707] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxidative metabolism is needed for sustained skeletal muscle function. A key component of such metabolism is cytochrome c oxidase, the 13-subunit terminal complex of the mitochondrial electron transport chain. We used mice null for one of the two isoforms of Cox subunit 7a, heart/skeletal muscle-specific Cox7a1, to examine the cellular and functional responses of muscle adaptation in response to mitochondrial dysfunction. Specifically we determined if deletion of Cox7a1 would (1) limit exercise capacity, and (2) alter genes responsible for skeletal muscle capillarity and mitochondrial biogenesis. Sixteen male mice (Cox7a1 null mice, n = 8, and littermate controls, n = 8) performed incremental and run-to-exhaustion treadmill tests. The hindlimb muscles for both groups were analysed. The results indicated that capillary indices were reduced (by 30.7–44.9%) in the Cox7a1 null mice relative to controls. In addition, resting ATP levels and Cox specific activity were significantly reduced (>60%) in both glycolytic and oxidative muscle fibre types despite an increase in a major regulator of mitochondrial biogenesis, PGC-1β. These changes in the skeletal muscle resulted in exercise intolerance for the Cox7a1 null mice. Thus, our data indicate that deletion of the Cox7a1 isoform results in reduced muscle bioenergetics and hindlimb capillarity, helping to explain the observed impairment of muscle structure and function.
Collapse
Affiliation(s)
- Icksoo Lee
- Center for Molecular Medicine and Genetics, Wayne State University, Eugene Applebaum College of Pharmacy & Health Sciences, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
21
|
Meier P, Renga M, Hoppeler H, Baum O. The impact of antioxidant supplements and endurance exercise on genes of the carbohydrate and lipid metabolism in skeletal muscle of mice. Cell Biochem Funct 2012; 31:51-9. [PMID: 22865599 DOI: 10.1002/cbf.2859] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/15/2012] [Accepted: 07/05/2012] [Indexed: 11/08/2022]
Abstract
To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.
Collapse
Affiliation(s)
- Patrick Meier
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
22
|
Green HJ, Batada A, Cole B, Burnett ME, Kollias H, McKay S, Roy B, Schertzer JD, Smith IC, Tupling S. Muscle cellular properties in the ice hockey player: a model for investigating overtraining? Can J Physiol Pharmacol 2012; 90:567-78. [PMID: 22471993 DOI: 10.1139/y2012-017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we hypothesized that athletes involved in 5-6 months of sprint-type training would display higher levels of proteins and processes involved in muscle energy supply and utilization. Tissue was sampled from the vastus lateralis of 13 elite ice hockey players (peak oxygen consumption = 51.8 ± 1.3 mL·kg(-1)·min(-1); mean ± standard error) at the end of a season (POST) and compared with samples from 8 controls (peak oxygen consumption = 45.5 ± 1.4 mL·kg(-1)·min(-1)) (CON). Compared with CON, higher activities were observed in POST (p < 0.05) only for succinic dehydrogenase (3.32 ± 0.16 mol·(mg protein)(-1)·min(-1) vs. 4.10 ± 0.11 mol·(mg protein)(-1)·min(-1)) and hexokinase (0.73 ± 0.05 mol·(mg protein)(-1)·min(-1) vs. 0.90 ± 0.05mol·(mg protein)(-1)·min(-1)) but not for phosphorylase, phosphofructokinase, and creatine phosphokinase. No differences were found in Na(+),K(+)-ATPase concentration (β(max): 262 ± 36 pmol·(g wet weight)(-1) vs. 275 ± 27 pmol·(g wet weight)(-1)) and the maximal activity of the sarcoplasmic reticulum Ca(2+)-ATPase (98.1 ± 6.1 µmol·(g protein)(-1)·min(-1) vs. 102 ± 3.3 µmol·(g protein)(-1)·min(-1)). Cross-sectional area was lower (p < 0.05) in POST but only for the type IIA fibres (6312 ± 684 μm(2) vs. 5512 ± 335 μm(2)), while the number of capillary counts per fibre and the capillary to fibre area ratio were generally higher (p < 0.05). These findings suggest that elite trained ice hockey players display elevations only in support of glucose-based aerobic metabolism that occur in the absence of alterations in excitation-contraction processes.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Haase TN, Ringholm S, Leick L, Biensø RS, Kiilerich K, Johansen S, Nielsen MM, Wojtaszewski JFP, Hidalgo J, Pedersen PA, Pilegaard H. Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1501-9. [DOI: 10.1152/ajpregu.00775.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α plays a role in regulation of several metabolic pathways. By use of whole body PGC-1α knockout (KO) mice, we investigated the role of PGC-1α in fasting, acute exercise and exercise training-induced regulation of key proteins in gluconeogenesis and metabolism in the liver. In both wild-type (WT) and PGC-1α KO mice liver, the mRNA content of the gluconeogenic proteins glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was upregulated during fasting. Pyruvate carboxylase (PC) remained unchanged after fasting in WT mice, but it was upregulated in PGC-1α KO mice. In response to a single exercise bout, G6Pase mRNA was upregulated in both genotypes, whereas no significant changes were detected in PEPCK or PC mRNA. While G6Pase and PC protein remained unchanged, liver PEPCK protein content was higher in trained than untrained mice of both genotypes. The mRNA content of the mitochondrial proteins cytochrome c (Cyt c) and cytochrome oxidase (COX) subunit I was unchanged in response to fasting. The mRNA and protein content of Cyt c and COXI increased in the liver in response to a single exercise bout and prolonged exercise training, respectively, in WT mice, but not in PGC-1α KO mice. Neither fasting nor exercise affected the mRNA expression of antioxidant enzymes in the liver, and knockout of PGC-1α had no effect. In conclusion, these results suggest that PGC-1α plays a pivotal role in regulation of Cyt c and COXI expression in the liver in response to a single exercise bout and prolonged exercise training, which implies that exercise training-induced improvements in oxidative capacity of the liver is regulated by PGC-1α.
Collapse
Affiliation(s)
- Tobias Nørresø Haase
- Centre of Inflammation and Metabolism and Copenhagen Muscle Research Centre, Section of Molecular and Integrative Physiology, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Ringholm
- Centre of Inflammation and Metabolism and Copenhagen Muscle Research Centre, Section of Molecular and Integrative Physiology, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Leick
- Centre of Inflammation and Metabolism and Copenhagen Muscle Research Centre, Section of Molecular and Integrative Physiology, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Sjørup Biensø
- Centre of Inflammation and Metabolism and Copenhagen Muscle Research Centre, Section of Molecular and Integrative Physiology, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kiilerich
- Centre of Inflammation and Metabolism and Copenhagen Muscle Research Centre, Section of Molecular and Integrative Physiology, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sune Johansen
- Centre of Inflammation and Metabolism and Copenhagen Muscle Research Centre, Section of Molecular and Integrative Physiology, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Maja Munk Nielsen
- Centre of Inflammation and Metabolism and Copenhagen Muscle Research Centre, Section of Molecular and Integrative Physiology, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen FP Wojtaszewski
- Copenhagen Muscle Research Centre, Molecular Physiology Group, Section of Human Physiology, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain; and
| | - Per Amstrup Pedersen
- Section of Molecular and Integrative Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Centre of Inflammation and Metabolism and Copenhagen Muscle Research Centre, Section of Molecular and Integrative Physiology, Dept. of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Iversen N, Krustrup P, Rasmussen HN, Rasmussen UF, Saltin B, Pilegaard H. Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly. Exp Gerontol 2011; 46:670-8. [PMID: 21504786 DOI: 10.1016/j.exger.2011.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/15/2011] [Accepted: 03/31/2011] [Indexed: 01/07/2023]
Abstract
The aim of this study was to test the hypotheses that 1) skeletal muscles of elderly subjects can adapt to a single endurance exercise bout and 2) endurance trained elderly subjects have higher expression/activity of oxidative and angiogenic proteins in skeletal muscle than untrained elderly people. To investigate this, lifelong endurance trained elderly (ET; n = 8) aged 71.3 ± 3.4 years and untrained elderly subjects (UT; n = 7) aged 71.3 ± 4 years, performed a cycling exercise bout at 75% VO(2max) with vastus lateralis muscle biopsies obtained before (Pre), immediately after exercise (0 h) and at 2 h of recovery. Capillarization was detected histochemically and oxidative enzyme activities were determined on isolated mitochondria. GLUT4, HKII, Cyt c and VEGF protein expression was measured on muscle lysates from Pre-biopsies, phosphorylation of AMPK and P38 on lysates from Pre and 0 h biopsies, while PGC-1α, VEGF, HKII and TFAM mRNA content was determined at all time points. ET had ~40% higher PDH, CS, SDH, α-KG-DH and ATP synthase activities and 27% higher capillarization than UT, reflecting increased skeletal muscle oxidative capacity with lifelong endurance exercise training. In addition, acute exercise increased in UT PGC-1α mRNA 11-fold and VEGF mRNA 4-fold at 2 h of recovery, and AMPK phosphorylation ~5-fold immediately after exercise, relative to Pre, indicating an ability to adapt metabolically and angiogenically to endurance exercise. However, in ET PGC-1α mRNA only increased 5 fold and AMPK phosphorylation ~2-fold, while VEGF mRNA remained unchanged after the acute exercise bout. P38 increased similarly in ET and UT after exercise. In conclusion, the present findings suggest that lifelong endurance exercise training ensures an improved oxidative capacity of skeletal muscle, and that skeletal muscle of elderly subjects maintains the ability to respond to acute endurance exercise.
Collapse
Affiliation(s)
- Ninna Iversen
- Copenhagen Muscle Research Centre, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
25
|
Green HJ, Batada A, Cole B, Burnett ME, Kollias H, McKay S, Roy B, Schertzer J, Smith I, Tupling S. Cellular responses in skeletal muscle to a season of ice hockey. Appl Physiol Nutr Metab 2010; 35:657-70. [PMID: 20962922 DOI: 10.1139/h10-060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We hypothesized that a season of ice hockey would result in extensive remodeling of muscle. Tissue sampled from the vastus lateralis of 15 players (age = 20.6 ± 0.4 years; mean ± SE) prior to (PRE) and following (POST) a season was used to characterize specific adaptations. Measurement of representative metabolic pathway enzymes indicated higher maximal activities in POST than in PRE (p < 0.05) for succinic dehydrogenase (3.26 ± 0.31 vs. 3.91 ± 0.11 mol mg protein(-1) min(-1)), citrate synthase (7.26 ± 0.70 vs. 8.70 ± 0.55 mol mg protein(-1) min(-1)), and phosphofructokinase (12.8 ± 1.3 vs. 14.4 ± 0.96 mol mg protein(-1) min(-1)) only. The season resulted in an increase in Na+-K+-ATPase concentration (253 ± 6.3 vs. 265 ± 6.0 pmol g(-1) wet weight), a decrease (p < 0.05) in maximal activity of the sarcoplasmic reticulum Ca2+-ATPase (107 ± 4.2 micromol g protein(-1) min(-1) vs. 92.0 ± 4.6 micromol g protein(-1) min(-1)), and no change in the distribution (%) of fibre types. A smaller (p < 0.05) cross-sectional area (CSA) for both type I (-11.7%) and type IIA (-18.2%) fibres and a higher (p < 0.05) capillary count/CSA for type I (+17.9%) and type IIA (+17.2%) were also found over the season. No changes were found in peak oxygen consumption (51.4 ± 1.2 mL kg(-1) min(-1) vs. 52.3 ± 1.3 mL kg(-1) min(-1)). The results suggest, based on the alterations in oxidative and perfusion potentials and muscle mass, that the dominant adaptations are in support of oxidative metabolism, which occurs at the expense of fibre CSA and possibly force-generating potential.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ertunc M, Atalay A, Yildirim M, Onur R. Exercise and suspension hypokinesia-induced alterations in mechanical properties of rat fast and slow-twitch skeletal muscles. ACTA PHYSIOLOGICA HUNGARICA 2010; 97:316-25. [PMID: 20843770 DOI: 10.1556/aphysiol.97.2010.3.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Physical activity has a modulatory role on regulatory steps of excitation-contraction coupling (ECC) determining skeletal muscle contractility. We evaluated and compared the contractile responsiveness and caffeine-induced contractures of fast (extensor digitorum longus; EDL) and slow-twitch (soleus; SOL) muscles in suspension hypokinesia (SH) and exercised rats. After SH or low intensity exercise, EDL and SOL were isolated, twitch and tetanic contractions and caffeine (10 mM) contractures were recorded. Twitch and tetanic contractions of EDL increased by 60% in exercised rats (p <0.05) while no alteration was observed after SH. Exercise did not alter twitch and tetanic contractions of SOL, while SH depressed contractions (p <0.05). Caffeine contractures were diminished in exercised rat EDL (P <0.05). In SH-rat EDL, contractures increased in amplitude (p <0.01) with a rapid time course (p <0.05). Contractures did not change in SOL after exercise or SH. We concluded that SH and exercise exerted diverse modulatory effects on skeletal muscle contractility. Contractile improvement due to exercise was prominent in EDL. Our results suggest that the muscle-type specific adaptations are related to a change in ECC due to the differences in the regulatory steps, particularly in the intracellular Ca(2+) handling mechanisms.
Collapse
Affiliation(s)
- M Ertunc
- Hacettepe University, Department of Pharmacology, Faculty of Medicine, Sihhiye 06100 Ankara, Turkey.
| | | | | | | |
Collapse
|
27
|
Roberts MD, Kerksick CM, Dalbo VJ, Hassell SE, Tucker PS, Brown R. Molecular attributes of human skeletal muscle at rest and after unaccustomed exercise: an age comparison. J Strength Cond Res 2010; 24:1161-8. [PMID: 20440120 DOI: 10.1519/jsc.0b013e3181da786f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The current study examined muscle DNA and protein concentrations ([ ]) and the [RNA] (assumed to represent translational capacity), [RNA]:[DNA] (assumed to represent transcriptional efficiency) and [protein]:[RNA] (assumed to represent translational efficiency) in younger vs. older participants during a resting state. Further, changes in muscle [DNA], translational capacity, and transcriptional efficiency were analyzed 24 hours after an unaccustomed resistance exercise bout. Younger (20.9 +/- 0.5 years, 84.0 +/- 5.2 kg, 26.6 +/- 1.8 kg x m(-2); n = 13) and older men (67.6 +/- 1.3 years, 88.7 +/- 4.8 kg, 28.6 +/- 1.4 kg x m(-2); n = 13) reported to the laboratory and completed an unaccustomed bout of lower-body resistance training (i.e., 3 sets of 10 repetitions at 80% 1 repetition maximum for Smith squat, leg press, and leg extensions). Muscle biopsies from the vastus lateralis were obtained before and 24 hours after exercise. Baseline [RNA], [DNA], [protein], and [RNA]:[DNA] were not different between age groups (p > 0.05). Baseline [protein]:[RNA] was greater in younger vs. older men (p = 0.045), whereas 24-hour postexercise [RNA]:[DNA] tended to be greater in older men (p = 0.087). These findings suggest that a decrease in the efficiency of translational processes occurs in older human skeletal muscle, whereas global transcriptional processes appear to be unaltered when compared with those in younger men. In lieu of these data, it remains apparent that muscle-protein synthesis is impaired in aging skeletal muscle and effective countermeasures such as resistance exercise and nutritional adequacy must be undertaken by older populations to offset this phenomenon.
Collapse
Affiliation(s)
- Michael D Roberts
- Applied Biochemistry and Molecular Physiology Laboratory, Health and Exercise Science Department, University of Oklahoma, Norman, Oklahama, USA
| | | | | | | | | | | |
Collapse
|
28
|
Leick L, Plomgaard P, Grønlykke L, Al-Abaiji F, Wojtaszewski JFP, Pilegaard H. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery. Scand J Med Sci Sports 2010; 20:593-9. [DOI: 10.1111/j.1600-0838.2009.00988.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Flueck M. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude. Exp Physiol 2010; 95:451-62. [DOI: 10.1113/expphysiol.2009.047605] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
McGivney BA, Eivers SS, MacHugh DE, MacLeod JN, O'Gorman GM, Park SDE, Katz LM, Hill EW. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genomics 2009; 10:638. [PMID: 20042072 PMCID: PMC2812474 DOI: 10.1186/1471-2164-10-638] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 12/30/2009] [Indexed: 12/23/2022] Open
Abstract
Background Selection for exercise-adapted phenotypes in the Thoroughbred racehorse has provided a valuable model system to understand molecular responses to exercise in skeletal muscle. Exercise stimulates immediate early molecular responses as well as delayed responses during recovery, resulting in a return to homeostasis and enabling long term adaptation. Global mRNA expression during the immediate-response period has not previously been reported in skeletal muscle following exercise in any species. Also, global gene expression changes in equine skeletal muscle following exercise have not been reported. Therefore, to identify novel genes and key regulatory pathways responsible for exercise adaptation we have used equine-specific cDNA microarrays to examine global mRNA expression in skeletal muscle from a cohort of Thoroughbred horses (n = 8) at three time points (before exercise, immediately post-exercise, and four hours post-exercise) following a single bout of treadmill exercise. Results Skeletal muscle biopsies were taken from the gluteus medius before (T0), immediately after (T1) and four hours after (T2) exercise. Statistically significant differences in mRNA abundance between time points (T0 vs T1 and T0 vs T2) were determined using the empirical Bayes moderated t-test in the Bioconductor package Linear Models for Microarray Data (LIMMA) and the expression of a select panel of genes was validated using real time quantitative reverse transcription PCR (qRT-PCR). While only two genes had increased expression at T1 (P < 0.05), by T2 932 genes had increased (P < 0.05) and 562 genes had decreased expression (P < 0.05). Functional analysis of genes differentially expressed during the recovery phase (T2) revealed an over-representation of genes localized to the actin cytoskeleton and with functions in the MAPK signalling, focal adhesion, insulin signalling, mTOR signaling, p53 signaling and Type II diabetes mellitus pathways. At T1, using a less stringent statistical approach, we observed an over-representation of genes involved in the stress response, metabolism and intracellular signaling. These findings suggest that protein synthesis, mechanosensation and muscle remodeling contribute to skeletal muscle adaptation towards improved integrity and hypertrophy. Conclusions This is the first study to characterize global mRNA expression profiles in equine skeletal muscle using an equine-specific microarray platform. Here we reveal novel genes and mechanisms that are temporally expressed following exercise providing new knowledge about the early and late molecular responses to exercise in the equine skeletal muscle transcriptome.
Collapse
Affiliation(s)
- Beatrice A McGivney
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, UCD College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Leick L, Hellsten Y, Fentz J, Lyngby SS, Wojtaszewski JFP, Hidalgo J, Pilegaard H. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol Endocrinol Metab 2009; 297:E92-103. [PMID: 19401459 DOI: 10.1152/ajpendo.00076.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased skeletal muscle VEGF protein expression approximately 50% in WT mice but with no effect in PGC-1alpha KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1alpha KO muscles. In addition, repeated AICAR treatments increased skeletal muscle VEGF protein expression approximately 15% in WT but not in PGC-1alpha KO mice. This study shows that PGC-1alpha is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein content. Furthermore, the findings suggest an AMPK-mediated regulation of VEGF expression through PGC-1alpha.
Collapse
Affiliation(s)
- Lotte Leick
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
32
|
Durieux AC, D'Antona G, Desplanches D, Freyssenet D, Klossner S, Bottinelli R, Flück M. Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype. J Physiol 2009; 587:3703-17. [PMID: 19470782 DOI: 10.1113/jphysiol.2009.171355] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Striated muscle exhibits a pronounced structural-functional plasticity in response to chronic alterations in loading. We assessed the implication of focal adhesion kinase (FAK) signalling in mechano-regulated differentiation of slow-oxidative muscle. Load-dependent consequences of FAK signal modulation were identified using a multi-level approach after electrotransfer of rat soleus muscle with FAK-expression plasmid vs. empty plasmid-transfected contralateral controls. Muscle fibre-targeted over-expression of FAK in anti-gravitational muscle for 9 days up-regulated transcript levels of gene ontologies underpinning mitochondrial metabolism and contraction in the transfected belly portion. Concomitantly, mRNA expression of the major fast-type myosin heavy chain (MHC) isoform, MHC2A, was reduced. The promotion of the slow-oxidative expression programme by FAK was abolished after co-expression of the FAK inhibitor FAK-related non-kinase (FRNK). Elevated protein content of MHC1 (+9%) and proteins of mitochondrial respiration (+165-610%) with FAK overexpression demonstrated the translation of transcript differentiation in targeted muscle fibres towards a slow-oxidative muscle phenotype. Coincidentally MHC2A protein was reduced by 50% due to protection of muscle from de-differentiation with electrotransfer. Fibre cross section in FAK-transfected muscle was elevated by 6%. The FAK-modulated muscle transcriptome was load-dependent and regulated in correspondence to tyrosine 397 phosphorylation of FAK. In the context of overload, the FAK-induced gene expression became manifest at the level of contraction by a slow transformation and the re-establishment of normal muscle force from the lowered levels with transfection. These results highlight the analytic power of a systematic somatic transgene approach by mapping a role of FAK in the dominant mechano-regulation of muscular motor performance via control of gene expression.
Collapse
|
33
|
Adaptation of Equine Locomotor Muscle Fiber Types to Endurance and Intensive High Speed Training. J Equine Vet Sci 2008. [DOI: 10.1016/j.jevs.2008.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Abstract
Satellite cells are small, mononuclear cells found in close association with striated skeletal muscles cells (myofibers). These cells appear to function as reserve myoblasts. A critical role for these cells in the process of muscle regeneration following injury has been clearly established. In that role, satellite cells have been shown to proliferate extensively. Some of the progeny of these cells then fuse with each other to form replacement myofibers, whereas others return to quiescence, thereby maintaining this reserve population. In response to injury, activated satellite cells can also fuse with damaged but viable myofibers to promote repair and regeneration. It has also been observed that satellite cells are activated during periods of significantly increased muscle loading and that some of these cells fuse with apparently undamaged myofibers as part of the hypertrophy process. The observation that the inactivation of satellite cell proliferation prevents most of the hypertrophy response to chronic increases in loading has lead to the hypothesis that a limitation to the expansion of myofiber size is imposed by the number of myonuclei present. Recent evidence suggests that a potential limitation to muscle hypertrophy, in the absence of a reserve supply of myonuclei, may be the inability to sustain increases in ribosomes, thereby limiting translational capacity.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, Medical Science I D335, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Kim SJ, Roy RR, Zhong H, Suzuki H, Ambartsumyan L, Haddad F, Baldwin KM, Edgerton VR. Electromechanical stimulation ameliorates inactivity-induced adaptations in the medial gastrocnemius of adult rats. J Appl Physiol (1985) 2007; 103:195-205. [PMID: 17431083 DOI: 10.1152/japplphysiol.01427.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The efficacy of high-load, short-duration isometric contractions, delivered as one vs. two sessions per day, on blunting inactivity-induced adaptations in the medial gastrocnemius (MG) were compared. Adult rats were assigned to a control (Con) or spinal cord-isolated (SI) group where one limb was stimulated (SI-Stim) while the other served as a SI control (SI-C). One bout of stimulation (BION microstimulator) consisted of a 100-Hz, 1-s stimulus, delivered every 30 s for 5 min with a 5-min rest period. This bout was repeated six times consecutively (SI-Stim1) or with a 9-h rest interval after the third bout (SI-Stim2) for 30 consecutive days. MG weights (relative to body weight) were 63, 72, and 79% of Con in SI-C, SI-Stim1, and SI-Stim2, respectively. Mean fiber size was 56% smaller in SI-C than in Con, and it was 19 and 31% larger in SI-Stim1 and SI-Stim2, respectively, compared with SI-C. Maximum tetanic tension was 42, 60, and 73% of Con in SI-C, SI-Stim1, and SI-Stim2, respectively. Specific tension was 77% of Con in SI-C, and at Con levels in both SI-Stim groups. SI increased the percent IIb myosin heavy chain composition (from 49 to 77%) and IIb+ fibers (from 63 to 79%): these adaptations were prevented by both Stim paradigms. These results demonstrate that 1) brief periods of high-load isometric contractions are effective in reducing inactivity-induced atrophy, functional deficits, and phenotypic adaptations in a fast hindlimb extensor, and 2) the same amount of stimulation distributed in two compared with one session per day is more effective in ameliorating inactivity-related adaptations.
Collapse
Affiliation(s)
- Soo J Kim
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kayser B, Mauron A, Miah A. Current anti-doping policy: a critical appraisal. BMC Med Ethics 2007; 8:2. [PMID: 17394662 PMCID: PMC1851967 DOI: 10.1186/1472-6939-8-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 03/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA), anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. DISCUSSION We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport) exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a framework of medical supervision. SUMMARY Current anti-doping strategy is aimed at eradication of doping in elite sports by means of all-out repression, buttressed by a war-like ideology similar to the public discourse sustaining international efforts against illicit drugs. Rather than striving for eradication of doping in sports, which appears to be an unattainable goal, a more pragmatic approach aimed at controlled use and harm reduction may be a viable alternative to cope with doping and doping-like behaviour.
Collapse
Affiliation(s)
- Bengt Kayser
- Professor, Institute of movement sciences and sports medicine, Faculty of medicine, University of Geneva, Switzerland
| | - Alexandre Mauron
- Professor, Institute of biomedical ethics, Faculty of medicine, University of Geneva, Switzerland
| | - Andy Miah
- Reader, University of Paisley, Scotland, UK
| |
Collapse
|
37
|
Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura-Clapier R, Vogt M, Hoppeler H, Richard R, Flück M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol (1985) 2007; 100:1258-66. [PMID: 16540710 DOI: 10.1152/japplphysiol.00359.2005] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.
Collapse
Affiliation(s)
- Joffrey Zoll
- Department of Anatomy, University of Bern, Bühlstrasse 26, 3000 Bern 9, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Boonyarom O, Inui K. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol (Oxf) 2006; 188:77-89. [PMID: 16948795 DOI: 10.1111/j.1748-1716.2006.01613.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review summarizes current information on structural and functional changes that occur during muscle atrophy and hypertrophy. Most published studies consider an increase in total mass of a muscle as hypertrophy, whereas a decrease in total mass of a muscle is referred to as atrophy. In hypertrophy, the rate of synthesis is much higher than the rate of degradation of muscle contractile proteins, leading to an increase in the size or volume of an organ due to enlargement of existing cells. When a muscle remains in disuse for a long period, the rate of degradation of contractile proteins becomes greater than the rate of replacement, resulting in muscle atrophy. This defect may occur as a result of lack of nutrition, loss of nerve supply, micro-gravity, ageing, systemic disease, prolonged immobilization or disuse. An understanding of the specific modifications that occur during muscle atrophy and hypertrophy may facilitate the development of novel techniques, as well as new therapies for affected muscles.
Collapse
Affiliation(s)
- O Boonyarom
- Department of Physical Therapy, Naresuan University, Phitsanulok, Thailand.
| | | |
Collapse
|
39
|
Yang Y, Jemiolo B, Trappe S. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol (1985) 2006; 101:1442-50. [PMID: 16840578 DOI: 10.1152/japplphysiol.00438.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to characterize changes in mRNA expression of select proteolytic markers in human slow-twitch [myosin heavy chain (MHC) I] and fast-twitch (MHC IIa) single skeletal muscle fibers following a bout of resistance exercise (RE). Muscle biopsies were obtained from the vastus lateralis of eight young healthy sedentary men [23 +/- 2 yr (mean +/- SD), 93 +/- 17 kg, 183 +/- 6 cm] before and 4 and 24 h after 3 x 10 repetitions of bilateral knee extensions at 65% of one repetition maximum. The mRNA levels of TNF-alpha, calpains 1 and 2, muscle RING (really interesting novel gene) finger-1 (MuRF-1), atrogin-1, caspase-3, B-cell leukemia/lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) were quantified using real-time RT-PCR. Generally, MHC I fibers had higher (1.6- to 5.0-fold, P < 0.05) mRNA expression pre- and post-RE. One exception was a higher (1.6- to 3.9-fold, P < 0.05) Bax-to-Bcl-2 mRNA ratio in MHC IIa fibers pre- and post-RE. RE increased (1.4- to 4.8-fold, P < 0.05) MuRF-1 and caspase-3 mRNA levels 4-24 h post-RE in both fiber types, whereas Bax-to-Bcl-2 mRNA ratio increased 2.2-fold (P < 0.05) at 4 h post-RE only in MHC I fibers. These results suggest that MHC I fibers have a greater proteolytic mRNA expression pre- and post-RE compared with MHC IIa fibers. The greatest mRNA induction following RE was in MuRF-1 and caspase-3 in both fiber types. This altered and specific proteolytic mRNA expression among slow- and fast-twitch muscle fibers indicates that the ubiquitin/proteasomal and caspase pathways may play an important role in muscle remodeling with RE.
Collapse
Affiliation(s)
- Yifan Yang
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | |
Collapse
|
40
|
Flück M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 2006; 209:2239-48. [PMID: 16731801 DOI: 10.1242/jeb.02149] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue.
Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup.
A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.
Collapse
Affiliation(s)
- Martin Flück
- Unit for Functional Anatomy, Department of Anatomy, University of Berne, Baltzerstrasse 2, Switzerland.
| |
Collapse
|
41
|
Yano S, Komine M, Fujimoto M, Okochi H, Tamaki K. Activation of Akt by mechanical stretching in human epidermal keratinocytes. Exp Dermatol 2006; 15:356-61. [PMID: 16630075 DOI: 10.1111/j.0906-6705.2006.00425.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanical stretching represents an important part of the signaling in skin. We have previously demonstrated that mechanical stretching induced proliferative phenotypes in human keratinocytes, as shown in increased 5-bromo-2'-deoxyuridine (BrdU) incorporation, ERK1/2 activation, and keratin K6 induction. Here we have further investigated the antiapoptotic signals in human keratinocytes provoked by mechanical stretching in vitro. Keratinocytes were plated on flexible silicone supports to transmit mechanical stretching to keratinocytes, involving continuous stretching by +20%. Stretching of these cells for 15-30 min caused the phosphorylation and activation of Akt. Inhibition of mitogen and extracellular signal-regulated kinase (MEK1/2) with U0126 and phosphoinositide 3-OH kinase (PI 3-K) with Wortmannin attenuated Akt activation. The epidermal growth factor (EGF) receptor kinase inhibitor, AG1478, and calcium channel inhibitor, gadolinium (Gd3+), also inhibited Akt activation. In summary, our results demonstrate the activation of the Akt signaling pathway by mechanical stretching, generating not only proliferative but also antiapoptotic signals in human keratinocytes.
Collapse
Affiliation(s)
- Shoichiro Yano
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Blomstrand E, Eliasson J, Karlsson HKR, Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 2006; 136:269S-73S. [PMID: 16365096 DOI: 10.1093/jn/136.1.269s] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BCAAs (leucine, isoleucine, and valine), particularly leucine, have anabolic effects on protein metabolism by increasing the rate of protein synthesis and decreasing the rate of protein degradation in resting human muscle. Also, during recovery from endurance exercise, BCAAs were found to have anabolic effects in human muscle. These effects are likely to be mediated through changes in signaling pathways controlling protein synthesis. This involves phosphorylation of the mammalian target of rapamycin (mTOR) and sequential activation of 70-kD S6 protein kinase (p70 S6 kinase) and the eukaryotic initiation factor 4E-binding protein 1. Activation of p70 S6 kinase, and subsequent phopsphorylation of the ribosomal protein S6, is associated with enhanced translation of specific mRNAs. When BCAAs were supplied to subjects during and after one session of quadriceps muscle resistance exercise, an increase in mTOR, p70 S6 kinase, and S6 phosphorylation was found in the recovery period after the exercise with no effect of BCAAs on Akt or glycogen synthase kinase 3 (GSK-3) phosphorylation. Exercise without BCAA intake led to a partial phosphorylation of p70 S6 kinase without activating the enzyme, a decrease in Akt phosphorylation, and no change in GSK-3. It has previously been shown that leucine infusion increases p70 S6 kinase phosphorylation in an Akt-independent manner in resting subjects; however, a relation between mTOR and p70 S6 kinase has not been reported previously. The results suggest that BCAAs activate mTOR and p70 S6 kinase in human muscle in the recovery period after exercise and that GSK-3 is not involved in the anabolic action of BCAAs on human muscle.
Collapse
Affiliation(s)
- Eva Blomstrand
- Department of Surgical Science, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
43
|
Zoll J, Steiner R, Meyer K, Vogt M, Hoppeler H, Flück M. Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training. Eur J Appl Physiol 2005; 96:413-22. [PMID: 16311763 DOI: 10.1007/s00421-005-0082-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Collapse
Affiliation(s)
- J Zoll
- Department of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Vissing K, Andersen JL, Harridge SDR, Sandri C, Hartkopp A, Kjaer M, Schjerling P. Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics. J Appl Physiol (1985) 2005; 99:164-72. [PMID: 15746295 DOI: 10.1152/japplphysiol.01172.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transcription factors myogenin and MyoD have been suggested to be involved in maintaining slow and fast muscle-fiber phenotypes, respectively, in rodents. Whether this is also the case in human muscle is unknown. To test this, 4 wk of chronic, low-frequency electrical stimulation training of the tibialis anterior muscle of paraplegic subjects were used to evoke a fast-to-slow transformation in muscle phenotype. It was hypothesized that this would result from an upregulation of myogenin and a downregulation of MyoD. The training evoked the expected mRNA increase for slow fiber-specific markers myosin heavy chain I and 3-hydroxyacyl-CoA dehydrogenase A, whereas an mRNA decrease was seen for fast fiber-specific markers myosin heavy chain IIx and glycerol phosphate dehydrogenase. Although the slow fiber-specific markers citrate synthase and muscle fatty acid binding protein did not display a significant increase in mRNA, they did tend to increase. As hypothesized, myogenin mRNA was upregulated. However, contrary to the hypothesis, MyoD mRNA also increased, although later than myogenin. The mRNA levels of the other myogenic regulatory factor family members, myogenic factor 5 and myogenic regulatory factor 4, and the myocyte enhancer factor (MEF) family members, MEF-2A and MEF-2C, did not change. The results indicate that myogenin is indeed involved in the regulation of the slow oxidative phenotype in human skeletal muscle fibers, whereas MyoD appears to have a more complex regulatory function.
Collapse
Affiliation(s)
- Kristian Vissing
- Dept. of Molecular Muscle Biology, Copenhagen Muscle Research Centre, Righospitalet, Univ. of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Newsam CJ, Baker LL. Effect of an electric stimulation facilitation program on quadriceps motor unit recruitment after stroke. Arch Phys Med Rehabil 2005; 85:2040-5. [PMID: 15605345 DOI: 10.1016/j.apmr.2004.02.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To compare maximum voluntary isometric torque (MVIT) and motor unit recruitment of the quadriceps after an electric stimulation facilitation program in persons affected by cerebrovascular accident (CVA). DESIGN Three-week, randomized controlled trial with an electric stimulation facilitation program added to standard care. SETTING Inpatient rehabilitation center. PARTICIPANTS Twenty patients receiving rehabilitation for first-time CVA (51.8+/-15.2 y; days post-CVA, 38.4+/-40.0 d). Patients were randomly assigned to study and control groups. INTERVENTIONS All patients received standard physical therapy (PT) care. In addition, the study group received an electric stimulation facilitation program during weight-bearing and ambulatory activities of the PT program. MAIN OUTCOME MEASURES MVIT and motor unit recruitment measured by interpolated twitch testing. A 2 x 4 repeated-measures analysis of variance was performed on measurements at 4 intervals: pretest, 1 week, 2 weeks, and 3 weeks. RESULTS MVIT increased by 77% in patients receiving electric stimulation, compared with a 31% increase for the control group. There was a significant effect for assessment time only. Motor unit recruitment increased from 35% to 53% for the study group, whereas the control group recorded no change in recruitment ability. A significant interaction was recorded, indicating improved motor unit recruitment for the study group. CONCLUSIONS A brief and dynamic electric stimulation facilitation program significantly improved motor unit recruitment in persons after CVA.
Collapse
Affiliation(s)
- Craig J Newsam
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downy, CA, USA
| | | |
Collapse
|
47
|
Transcriptional reprogramming and ultrastructure during atrophy and recovery of mouse soleus muscle. Physiol Genomics 2004; 20:97-107. [PMID: 15479860 DOI: 10.1152/physiolgenomics.00100.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study investigated the use of the hindlimb suspension (HS) and reloading model of mice for the mapping of ultrastructural and gene expressional alterations underlying load-dependent muscular adaptations. Mice were hindlimb suspended for 7 days or kept as controls (n = 12). Soleus muscles were harvested after HS (HS7, n = 23) or after resuming ambulatory cage activity (reloading) for either 1 day (R1, n = 13) or 7 days (R7, n = 9). Using electron microscopy, a reduction in mean fiber area (-37%) and in capillary-to-fiber ratio (from 1.83 to 1.42) was found for HS7. Subsequent reloading caused an increase in interstitial cells (+96%) and in total capillary length (+57%), whereas mean fiber area and capillary-to-fiber ratio did not significantly change compared with HS. Total RNA in the soleus muscle was altered with both HS (-63%) and reloading (+108% in R7 compared with control). This is seen as an important adaptive mechanism. Gene expression alterations were assessed by a muscle-specific low-density cDNA microarray. The transcriptional adjustments indicate an early increase of myogenic factors during reloading together with an overshoot of contractile (MyHC I and IIa) and metabolic (glycolytic and oxidative) mRNA amounts and suggest mechano-sensitivity of factors keeping the sarcomeres in register (desmin, titin, integrin-beta1). Important differences to published data from former rat studies were found with the mouse HS model for contractile and glycolytic enzyme expression. These species-specific differences need to be considered when transgenic mice are used for the elucidation of monogenetic factors in mechano-dependent muscle plasticity.
Collapse
|
48
|
|
49
|
Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol (1985) 2004; 98:482-8. [PMID: 15465884 DOI: 10.1152/japplphysiol.00895.2004] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance exercise (RE) training, designed to induce hypertrophy, strives for optimal activation of anabolic and myogenic mechanisms to increase myofiber size. Clearly, activation of these mechanisms must precede skeletal muscle growth. Most mechanistic studies of RE have involved analysis of outcome variables after many training sessions. This study measured molecular level responses to RE on a scale of hours to establish a time course for the activation of myogenic mechanisms. Muscle biopsy samples were collected from nine subjects before and after acute bouts of RE. The response to a single bout was assessed at 12 and 24 h postexercise. Further samples were obtained 24 and 72 h after a second exercise bout. RE was induced by neuromuscular electrical stimulation to generate maximal isometric contractions in the muscle of interest. A single RE bout resulted in increased levels of mRNA for IGF binding protein-4 (84%), MyoD (83%), myogenin (approximately 3-fold), cyclin D1 (50%), and p21-Waf1 (16-fold), and a transient decrease in IGF-I mRNA (46%). A temporally conserved, significant correlation between myogenin and p21 mRNA was observed (r = 0.70, P < or = 0.02). The mRNAs for mechano-growth factor, IGF binding protein-5, and the IGF-I receptor were unchanged by RE. Total skeletal muscle RNA was increased 72 h after the second serial bout of RE. These results indicate that molecular adaptations of skeletal muscle to loading respond in a very short time. This approach should provide insights on the mechanisms that modulate adaptation to RE and may be useful in evaluating RE training protocol variables with high temporal resolution.
Collapse
Affiliation(s)
- C Scott Bickel
- Department of Physical Therapy, Louisiana State University, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kadi F, Schjerling P, Andersen LL, Charifi N, Madsen JL, Christensen LR, Andersen JL. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol 2004; 558:1005-12. [PMID: 15218062 PMCID: PMC1665027 DOI: 10.1113/jphysiol.2004.065904] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to investigate the modulation of satellite cell content and myonuclear number following 30 and 90 days of resistance training and 3, 10, 30, 60 and 90 days of detraining. Muscle biopsies were obtained from the vastus lateralis of 15 young men (mean age: 24 years; range: 20-32 years). Satellite cells and myonuclei were studied on muscle cross-sections stained with a monoclonal antibody against CD56 and counterstained with Mayer's haematoxylin. Cell cycle markers CyclinD1 and p21 mRNA levels were determined by Northern blotting. Satellite cell content increased by 19% (P= 0.02) at 30 days and by 31% (P= 0.0003) at 90 days of training. Compared to pre-training values, the number of satellite cells remained significantly elevated at 3, 10 and 60 days but not at 90 days of detraining. The two cell cycle markers CyclinD1 and p21 mRNA significantly increased at 30 days of training. At 90 days of training, p21 was still elevated whereas CyclinD1 returned to pre-training values. In the detraining period, p21 and CyclinD1 levels were similar to the pre-training values. There were no significant alterations in the number of myonuclei following the training and the detraining periods. The fibre area controlled by each myonucleus gradually increased throughout the training period and returned to pre-training values during detraining. In conclusion, these results demonstrate the high plasticity of satellite cells in response to training and detraining stimuli and clearly show that moderate changes in the size of skeletal muscle fibres can be achieved without the addition of new myonuclei.
Collapse
Affiliation(s)
- Fawzi Kadi
- Department of Physical Education and Health, Orebro University, Orebro, Sweden.
| | | | | | | | | | | | | |
Collapse
|