1
|
Chen J, . X, Dou D. Bidirectional Effective Components of Atractylodis Macrocephalae Rhizoma on Gastrointestinal Peristalsis. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.108.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Xu Z, Xu C, Ge H, Li Y, Chu L, Zhang J, Cheng K. Modified dachengqi tang improves decreased gastrointestinal motility in postoperative esophageal cancer patients. J TRADIT CHIN MED 2015; 35:249-54. [PMID: 26237826 DOI: 10.1016/s0254-6272(15)30093-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the clinical effects of modified dachengqi tang (DCQT) on promoting gastrointestinal motility in post-operative esophageal cancer patients. METHODS Sixty postoperative esophageal cancer patients were enrolled and randomly assigned to the modified treatment group or the control group (30 patients in each group). Patients in the treatment group were given DCQT made from decocted herbs and administered via nasojejunal tube at a dosage of 150 mL. Gastrointestinal motility was assessed by recording time for recovery of bowel sounds, flatus, defecation, and the total amount of gastric drainage during the first three postoperative days. Plasma motilin (MTL) and vasoactive intestinal peptide (VIP) were measured one hour before and three days after surgery. RESULTS Compared with the control group, the times to first bowel sound, flatus, and defecation were significantly shorter and there was less gastric drainage in the treatment group (P < 0.01, P < 0.01, P < 0.01, and P < 0.05, respectively). In the treatment group, postoperative plasma MTL was significantly higher (P < 0.01) and VIP was significantly lower than those in the control group (P < 0.05). There was no difference found in either MTL or VIP from before to after operation in the treatment group (P > 0.05). MTL was significantly lower and VIP was higher postoperatively in the control group, compared to before surgery (P < 0.01). CONCLUSION Modified DCQT effectively improved decreased gastrointestinal motility in postoperative esophageal cancer patients by increasing MTL and reducing VIP.
Collapse
|
3
|
López-Moreno JI, Vicente-Serrano SM, Zabalza J, Revuelto J, Gilaberte M, Azorín-Molina C, Morán-Tejeda E, García-Ruiz JM, Tague C. Respuesta hidrológica del Pirineo central al cambio ambiental proyectado para el siglo XXI. PIRINEOS 2014. [DOI: 10.3989/pirineos.2014.169004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Gatta C, Russo F, Russolillo MG, Varricchio E, Paolucci M, Castaldo L, Lucini C, de Girolamo P, Cozzi B, Maruccio L. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus). PLoS One 2014; 9:e105009. [PMID: 25144456 PMCID: PMC4140726 DOI: 10.1371/journal.pone.0105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine) of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.
Collapse
Affiliation(s)
- Claudia Gatta
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Finizia Russo
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
- * E-mail:
| | | | - Ettore Varricchio
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| |
Collapse
|
5
|
Expression and immunohistochemical detection of nesfatin-1 in the gastrointestinal tract of Casertana pig. Acta Histochem 2014; 116:583-7. [PMID: 24360975 DOI: 10.1016/j.acthis.2013.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/23/2022]
Abstract
In this study, we report nesfatin-1 immunoreactivity in the gastrointestinal tract of Casertana breed pig. The newly discovered anorexigenic peptide nesfatin-1 has been shown to possess physiological relevance in regulating food intake and energy homeostasis at a central level, although evidence has been accumulating that it may also play important functions at a more local gastroenteric level. Nesfatin-1 immunoreactive endocrine cells have been detected in the gastric fundus and ileocecal valve. Nesfatin-1 immunopositive neurons and nerve fibers have been observed mainly in the enteric plexuses. Western blot analysis confirmed the immunohistochemical observations, showing immunoreactive bands in all analyzed gastrointestinal tracts with the exception of the rectum. Nesfatin-1 immunodetection in the swine digestive system reinforces the importance of the role played by nesfatin-1 at the gastrointestinal level and sustains the necessity to study the role of this peptide in the regulation of food intake in farm species for which weight gain is essential for optimizing production.
Collapse
|
6
|
Bülbül M, Tan R, Gemici B, Ozdem S, Ustünel I, Acar N, Izgüt-Uysal VN. Endogenous orexin-A modulates gastric motility by peripheral mechanisms in rats. Peptides 2010; 31:1099-108. [PMID: 20307611 DOI: 10.1016/j.peptides.2010.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/05/2010] [Accepted: 03/05/2010] [Indexed: 12/28/2022]
Abstract
Orexin-A (OXA) and orexin receptor type 1 (OX1R) are found in enteric nervous system and smooth muscle cells in the digestive tract. Fasting is a stimulant for OXA synthesis. The aim of the present study was to investigate central and peripheral effects of endogenous OXA on gastric motility. Endogenous OXA synthesis was induced by 36h fasting. Vagotomy was used to evaluate N.vagus-mediated effects of OXA. Gastric emptying and interdigestive gastric motility were measured by spectrophotometric and manometric methods, respectively. Rats were pretreated with OX1R antagonist SB-334867 prior to measurements. Plasma OXA concentration was assayed with radioimmunoassay while preproorexin (PPO) expression was determined with Western blotting in gastric and hypothalamic tissues. OXA immunoreactivity in antrum was determined with immunohistochemistry. Plasma OXA level, PPO protein expression and OXA immunoreactivity were significantly increased in response to 36h fasting. Endogenous OXA facilitated gastric emptying and inhibited gastric interdigestive motility. As these effects were abolished with SB-334867, it is likely that gastrokinetic effects of OXA are mediated via OX1R. Vagotomy did not alter OXA-mediated effects. According to current data, OXA is up-regulated both centrally and peripherally upon fasting. Endogenous OXA accelerates gastric emptying while it inhibits interdigestive motility.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07070 Antalya, Turkey.
| | | | | | | | | | | | | |
Collapse
|
7
|
He ZY, Chen GY. Advances in study of severe acute pancreatitis and gastrointestinal dysmotility. Shijie Huaren Xiaohua Zazhi 2008; 16:1317-1322. [DOI: 10.11569/wcjd.v16.i12.1317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal dysmotility often occurs in patients with sever acute pancreatitis. This article reviews the effect of nerve, hormone, inflammatory factors and ischemia-reperfusion injury on gastrointestinal dysmotility. It elucidates that the gastrointestinal dysmotility is significanly relieved ater treatment of acute pancreatitis.
Collapse
|
8
|
Ferens DM, Chang EC, Bogeski G, Shafton AD, Kitchener PD, Furness JB. Motor patterns and propulsion in the rat intestine in vivo recorded by spatio-temporal maps. Neurogastroenterol Motil 2005; 17:714-20. [PMID: 16185310 DOI: 10.1111/j.1365-2982.2005.00684.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have used spatio-temporal maps derived from video images to investigate propagated contractions of the rat small intestine in vivo. The abdomen, including an exteriorized segment of jejunum, was housed in a humid chamber with a viewing window. Video records were converted to spatio-temporal maps of jejunal diameter changes. Intraluminal pressure and fluid outflow were measured. Contractions occupied 3.8 +/- 0.2 cm of intestine and propagated anally at 3.1 +/- 0.2 mm s(-1) when baseline pressure was 4 mmHg. Contractions at any one point lasted 8.7 +/- 0.6 s. Contractions often occurred in clusters; within cluster frequencies were 2.28 +/- 0.04 min(-1). Pressure waves, with amplitudes greater than about 9 mmHg, expelled fluid when the baseline pressure was 4 mmHg. In the presence of L-NAME, circular muscle contractions occurred at a high frequency, but they were not propagated. We conclude that video recording methods give good spatio-temporal resolution of intestinal movement when applied in vivo. They reveal neurally-mediated propulsive contractions, similar to those previously recorded from intestinal segments in vitro. The propagated contractions had speeds of propagation that were slower and frequencies of occurrence that were less than speeds and frequencies of slow waves in the rat small intestine.
Collapse
Affiliation(s)
- D M Ferens
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Suzuki S, Goncalves CG, Meguid MM. Catabolic outcome from non-gastrointestinal malignancy-related malabsorption leading to malnutrition and weight loss. Curr Opin Clin Nutr Metab Care 2005; 8:419-27. [PMID: 15930968 DOI: 10.1097/01.mco.0000172583.25009.ab] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Malnutrition of cancer patients is a significant cause of mortality and morbidity. RECENT FINDINGS The contributory factors in cancers anatomically involving the gastrointestinal tract are self-evident. However, how non-gastrointestinal malignancies affect gastrointestinal structure and function is not clear. The aim of this paper is to review the relationship between non-gastrointestinal malignancies and malabsorption, which leads to malnutrition, weight loss and increased mortality. In non-gastrointestinal cancer patients, intestinal morphological atrophy occurs, whereas in the jejunum absorption is impaired. Cytokines including IL-1 and TNF-alpha primarily induce delayed gastric emptying and also act directly on intestinal mucosa to induce malabsorption. These cytokines also directly act on several gastrointestinal hormones including cholecystokinin, neuropeptides including corticotropin-releasing factor, and via the vagus to decrease gastrointestinal motility. SUMMARY The combination of small intestine atrophy and delayed gastrointestinal motility are some of the reasons for malabsorption in cancer patients with non-gastrointestinal malignancies that contribute to the catabolic process.
Collapse
Affiliation(s)
- Sususmu Suzuki
- Surgical Metabolism and Nutrition Laboratory, Department of Surgery, University Hospital, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
10
|
Cao SG, Wu WC, Han Z, Wang MY. Effects of psychological stress on small intestinal motility and expression of cholecystokinin and vasoactive intestinal polypeptide in plasma and small intestine in mice. World J Gastroenterol 2005; 11:737-40. [PMID: 15655834 PMCID: PMC4250751 DOI: 10.3748/wjg.v11.i5.737] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of psychological stress on small intestinal motility and expression of cholecystokinin (CCK) and vasoactive intestinal polypeptide (VIP) in plasma and small intestine, and to explore the relationship between small intestinal motor disorders and gastrointestinal hormones under psychological stress.
METHODS: Thirty-six mice were randomly divided into psychological stress group and control group. A mouse model with psychological stress was established by housing the mice with a hungry cat in separate layers of a two-layer cage. A semi-solid colored marker (carbon-ink) was used for monitoring small intestinal transit. CCK and VIP levels in plasma and small intestine in mice were measured by radioimmunoassay (RIA).
RESULTS: Small intestinal transit was inhibited (52.18±19.15% vs 70.19±17.79%, P<0.01) in mice after psychological stress, compared to the controls. Small intestinal CCK levels in psychological stress mice were significantly lower than those in the control group (0.75±0.53 μg/g vs 1.98±1.17 μg/g, P<0.01), whereas plasma CCK concentrations were not different between the groups. VIP levels in small intestine were significantly higher in psychological stress mice than those in the control group (8.45±1.09 μg/g vs 7.03±2.36 μg/g, P<0.01), while there was no significant difference in plasma VIP levels between the two groups.
CONCLUSION: Psychological stress inhibits the small intestinal transit, probably by down-regulating CCK and up-regulating VIP expression in small intestine.
Collapse
Affiliation(s)
- Shu-Guang Cao
- Department of Gastroenterology, Yijishan Hospital, Wuhu 241001, Anhui Province, China
| | | | | | | |
Collapse
|
11
|
Keller J, Mueller-Wolf JC, Ahmadi-Simab K, Fibbe C, Rosien U, Layer P. Do elevated plasma vasoactive intestinal polypeptide (VIP) levels cause small intestinal motor disturbances in humans? Dig Dis Sci 2005; 50:276-82. [PMID: 15745085 DOI: 10.1007/s10620-005-1595-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Increased VIP plasma levels cause severe secretory diarrhea. Moreover, VIP is a major regulator of human intestinal motility. We hypothesized that VIP-mediated intestinal motility disturbances contribute to symptoms in elevated plasma VIP. Ten healthy volunteers were intubated twice with an orojejunal multilumen tube for duodenal manometry, jejunal perfusion of electrolyte and marker solution, and aspiration 10 and 40 cm more distally. All subjects randomly received intravenous infusion of saline and 300 pmol/kg x hr VIP for 5 hr. Results showed that VIP but not saline infusion induced netjejunal sodium secretion, watery diarrhea, and cardiovascular effects (P < 0.04). VIP did not alter intestinal motor activity or the mean duration of the interdigestive motility cycle or of phases I and II but nearly halved the duration of phase III (P = 0.0002). We conclude that increased plasma VIP markedly shortens human phase III activity without influencing other motility parameters. Hence, it is unlikely that VIP-mediated small intestinal motor disturbances cause symptoms in VIPOMA. Yet VIP may contribute to terminate phase III motility.
Collapse
|
12
|
Ehrström M, Näslund E, Ma J, Kirchgessner AL, Hellström PM. Physiological regulation and NO-dependent inhibition of migrating myoelectric complex in the rat small bowel by OXA. Am J Physiol Gastrointest Liver Physiol 2003; 285:G688-95. [PMID: 12816759 DOI: 10.1152/ajpgi.00061.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Orexin A (OXA)-positive neurons are found in the lateral hypothalamic area and the enteric nervous system. The aim of this study was to investigate the mechanism of OXA action on small bowel motility. Electrodes were implanted in the serosa of the rat small intestine for recordings of myoelectric activity during infusion of saline or OXA in naive rats, vagotomized rats, rats pretreated with guanethidine (3 mg/kg) or N(omega)-nitro-L-arginine (L-NNA; 1 mg/kg). Naive rats were given a bolus of the orexin receptor-1 (OX1R) antagonist (SB-334867-A; 10 mg/kg), and the effect of both OXA and SB-334867-A on fasting motility was studied. Double-label immunocytochemistry with primary antibodies against OXA, neuronal nitric oxide synthase (nNOS), and OX1R was performed. OXA induced a dose-dependent prolongation of the cycle length of the migrating myoelectric complex (MMC) and, in the higher doses, replaced the activity fronts with an irregular spiking pattern. Vagotomy or pretreatment with guanethidine failed to prevent the response to OXA. The OXA-induced effect on the MMC cycle length was completely inhibited by pretreatment with L-NNA (P < 0.05), as did SB-334867-A. The OX1R antagonist shortened the MMC cycle length from 14.1 (12.0-23.5) to 11.0 (9.5-14.7) min (P < 0.05) during control and treatment periods, respectively. Colocalization of OXA and nNOS was observed in myenteric neurons of the duodenum and nerve fibers in the circular muscle. Our results indicate that OXA inhibition of the MMC involves the OX1R and that activation of a L-arginine/NO pathway possibly originating from OX1R/nNOS-containing neurons in the myenteric plexus may mediate this effect. Endogenous OXA may have a physiological role in regulating the MMC.
Collapse
Affiliation(s)
- M Ehrström
- Division of Surgery, Danderyd Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Schmidt PT, Bozkurt A, Hellström PM. Tachykinin-stimulated small bowel myoelectric pattern: sensitization by NO inhibition, reversal by neurokinin receptor blockade. REGULATORY PEPTIDES 2002; 105:15-21. [PMID: 11853867 DOI: 10.1016/s0167-0115(01)00369-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
UNLABELLED Tachykinins stimulate motility whereas NO inhibits motility in the gastrointestinal tract. AIM To investigate if inhibition of NO production sensitizes myoelectric activity to subthreshold doses of tachykinins in the small intestine of awake rats. METHODS Rats were supplied with a venous catheter and bipolar electrodes at 5, 15 and 25 cm distal to pylorus for electromyography of small intestine. The motor responses were evaluated using pattern recognition. Substance P and neurokinin A dose-dependently stimulated gut motility, with neurokinin A being more potent than substance P. Therefore, neurokinin A was chosen and administered under baseline conditions and 45-60 min after N(omega)-nitro-L-arginine (L-NNA) 1 mg kg(-1), with or without pretreatment with L-arginine 300 mg kg(-1). In addition, myoelectric activity effects of neurokinin A in conjunction with L-NNA were studied before and after administration of the tachykinin receptor antagonists, SR140333 (NK1), SR48968 (NK2) and SR142801 (NK3), each at 2.5 mg kg(-1). RESULTS Dose-finding studies verified 10 pmol kg(-1) min(-1) to be the threshold dose at which NKA caused phase II-like activity in a low percentage of experiments (12%, n=41). This dose was therefore used in combination with L-NNA for sensitization experiments of gut myoelectric activity. In experiments where NKA-induced no response, pretreatment with L-NNA led to phase II-like activity in 9 of 18 (50%, p<0.05) experiments. Co-administration of SR140333 and SR48968 abolished this effect. CONCLUSION NO counteracts the stimulatory effect of tachykinins on small bowel myoelectric activity in the rat. Inhibition of the L-arginine/NO pathway sensitizes the gut to tachykinin-stimulated motor activity.
Collapse
Affiliation(s)
- Peter Thelin Schmidt
- Gastroenterology Unit, Department of Medicine, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
| | | | | |
Collapse
|
14
|
Näslund E, Ehrström M, Ma J, Hellström PM, Kirchgessner AL. Localization and effects of orexin on fasting motility in the rat duodenum. Am J Physiol Gastrointest Liver Physiol 2002; 282:G470-9. [PMID: 11841997 DOI: 10.1152/ajpgi.00219.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The orexins [orexin A (OXA) and orexin B (OXB)] are novel neuropeptides that increase food intake in rodents. The aim of this study was to determine the distribution of orexin and orexin receptors (OX1R and OX2R) in the rat duodenum and examine the effects of intravenous orexin on fasting gut motility. OXA-like immunoreactivity was found in varicose nerve fibers in myenteric and submucosal ganglia, the circular muscle, the mucosa, submucosal and myenteric neurons, and numerous endocrine cells of the mucosa. OXA neurons displayed choline acetyltransferase immunoreactivity, and a subset contained vasoactive intestinal peptide. OXA-containing endocrine cells were identified as enterochromaffin (EC) cells based on the presence of 5-hydroxytryptamine immunoreactivity. OX1R was expressed by neural elements of the gut, and EC cells expressed OX2R. OXA at 100 and 500 pmol x kg(-1) x min(-1) significantly increased the myoelectric motor complex (MMC) cycle length compared with saline. Similarly, OXB increased the MMC cycle length at 100 pmol x kg(-1) x min(-1), but there was no further effect at 500 pmol x kg(-1) x min(-1). We postulate that orexins may affect the MMC through actions on enteric neurotransmission after being released from EC cells and/or enteric neurons.
Collapse
Affiliation(s)
- E Näslund
- The Division of Surgery, Danderyd Hospital Karolinska Institutet, SE-182 88 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Orexins (hypocretins) are a novel pair of neuropeptides implicated in the regulation of energy balances and arousal. Previous reports have indicated that orexins are produced only in the lateral hypothalamic area, although orexin-containing nerve fibers were observed throughout the neuroaxis. Recent evidence shows that orexins and functional orexin receptors are found in the periphery. Vagal and spinal primary afferent neurons, enteric neurons, and endocrine cells in both the gut and pancreas display orexin- and orexin receptor-like immunoreactivity. Orexins excite secretomotor neurons in the guinea pig gut and modulate gastric and intestinal motility and secretion. In addition, orexins modulate hormone release from pancreatic endocrine cells. Moreover, fasting up-regulates the phosphorylated form of cAMP response element binding protein in orexin-immunoreactive enteric neurons, indicating a functional response to food status in these cells. The purpose of this article is to summarize evidence for the existence of a brain-gut network of orexin-containing cells that appears to play a role in the acute regulation of energy homeostasis.
Collapse
Affiliation(s)
- Annette L Kirchgessner
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203-2098, USA.
| |
Collapse
|
16
|
Kumano K, Fujimura M, Oshima S, Yamamoto H, Hayashi N, Nakamura T, Fujimiya M. Effects of VIP and NO on the motor activity of vascularly perfused rat proximal colon. Peptides 2001; 22:91-8. [PMID: 11179602 DOI: 10.1016/s0196-9781(00)00360-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of vasoactive intestinal polypeptide (VIP) and nitric oxide (NO) on the motor activity of the rat proximal colon were examined in an ex vivo model of vascularly perfused rat proximal colon. VIP reduced motor activity and this inhibitory effect was not altered by either atropine, hexamethonium, tetrodotoxin (TTX) nor TTX plus acetylcholine (ACh), but was completely antagonized by NO synthase inhibitor N(G)-nitro-L-arginine (L-NA) and by VIP receptor antagonist, VIP(10-28). These results suggest that VIP may exert a direct inhibitory effect on the motor activity of the rat proximal colon via a VIP receptor located on the smooth muscle and this effect is mediated by NO but not by cholinergic pathways. Atropine and hexamethonium reduced but ACh stimulated motor activity and the effect of ACh was not changed by TTX, suggesting that the cholinergic pathway may exert a direct stimulatory effect on motor activity. Single injection of TTX, VIP(10-28) or L-NA induced a marked increase in motor activity, suggesting that the motor activity of rat proximal colon is tonically suppressed by VIP and NO generating pathways, and elimination of inhibitory neurotransmission by TTX may induce an abnormal increase of the motor activity. The interaction between VIP and NO in regulation of motor activity was further examined by a measurement of NO release from vascularly perfused rat proximal colon. Results showed that NO release was significantly increased during infusion of VIP and this response was reversed by L-NA. These results suggest that VIP generating neurons may inhibit colonic motility by stimulating endogenous NO production in either smooth muscle cells or nerve terminals.
Collapse
Affiliation(s)
- K Kumano
- Department of 2nd Surgery, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Peptides involved in the endocrine and enteric nervous systems as well as in the central nervous system exert concerted action on gastrointestinal motility. Mechanical and chemical stimuli which induce peptide release from the epithelial endocrine cells are the earliest step in the initiation of peristaltic activities. Gut peptides exert hormonal effects, but peptide-containing stimulatory (Ach/substance P/tachykinin) and inhibitory (VIP/PACAP/NO) neurons are also involved in the induction of ascending contraction and descending relaxation, respectively. The dorsal vagal complex (DVC), located in the medulla of the brainstem, constitutes the basic neural circuitry of vago-vagal reflex control of gastrointestinal motility. Several gut peptides act on the DVC to modify vagal cholinergic reflexes directly (PYY and PP) or indirectly via afferent fibers in the periphery (CCK and GLP-1). The DVC is also a primary site of action of many neuropeptides (such as TRH and NPY) in mediating gastrointestinal motor activities. The identification over the last few years of a number of neuropeptide systems has greatly changed the field of feeding and body weight regulation. By exploring the brain and gut systems that employ recently identified peptidergic molecules, it will be possible to elaborate on the central and peripheral pathways involved in the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- M Fujimiya
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | |
Collapse
|
18
|
Abstract
BACKGROUND & AIMS Nitric oxide (NO) is a major inhibitory neurotransmitter in the gut. This study aimed to identify the effect of chronic deprivation of NO derived from neuronal (nNOS) or endothelial (eNOS) nitric oxide synthase on gastric emptying. METHODS nNOS-deficient (knockout) mice were compared with wild-type mice for gastric size, fluoroscopic appearance after gavage of contrast, and histology of the pyloric sphincter. Wild-type mice treated with the NOS inhibitor N(omega)-nitro L-arginine (L-NA) and eNOS-deficient mice were also compared with wild-type and nNOS-deficient mice for liquid and solid gastric emptying. RESULTS nNOS-deficient mice showed gastric dilation. Fluoroscopy showed delayed gastric emptying of radiologic contrast. There was no marked localized hypertrophy or luminal narrowing at the pyloric sphincter by histology of relaxed wild-type, nNOS-deficient, and eNOS-deficient tissues. Gastric emptying of both solids (28% +/- 27%) and liquids (22% +/- 18%) was significantly delayed in nNOS-deficient mice compared with control wild-type mice (82% +/- 22% for solids; 48% +/- 17% for liquids). eNOS-deficient mice showed no significant difference from wild-type mice (74% +/- 28% for solids; 47% +/- 23% for liquids). Wild-type mice treated acutely with L-NA showed delay in emptying of solids (43% +/- 31%) but not liquids (39% +/- 15%). CONCLUSIONS Chronic depletion of NO from nNOS, but not eNOS, results in delayed gastric emptying of solids and liquids.
Collapse
Affiliation(s)
- H Mashimo
- West Roxbury Veterans Affairs Medical Center, West Roxbury, Massachusetts 02132, USA.
| | | | | |
Collapse
|