1
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Huppertz B. Placental physioxia is based on spatial and temporal variations of placental oxygenation throughout pregnancy. J Reprod Immunol 2023; 158:103985. [PMID: 37406413 DOI: 10.1016/j.jri.2023.103985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
For obvious reasons, in vivo measurements of placental oxygenation are extremely rare and hence, scientists need to focus on the few studies that revealed at least some data on the topic. The scarcity of real in vivo data resulted in the development of hypotheses on placental oxygenation that blocked an objective view on the topic for decades. Only now, new hypotheses are emerging adding new views and ideas on the topic. Especially in the field of preeclampsia, hypotheses on placental oxygenation have mislead a whole generation of scientists. This review article displays the available in vivo placental oxygen data from 8 to 40 weeks of gestation. It also compares these physiological oxygen concentrations, called physioxia, with the situation in pre-placental hypoxia, i.e. pregnancies at high altitude. Finally, it summarizes what we know today about oxygen measurements in cases with preeclampsia. In early-onset preeclampsia cases, all in vivo data available today point to increased oxygen values in the intervillous space of the placenta. This is due to a reduced oxygen transfer of the placental barrier from maternal to fetal blood, resulting in hypoxia of fetal blood and the fetus.
Collapse
Affiliation(s)
- Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
3
|
Hepatic Positron Emission Tomography: Applications in Metabolism, Haemodynamics and Cancer. Metabolites 2022; 12:metabo12040321. [PMID: 35448508 PMCID: PMC9026326 DOI: 10.3390/metabo12040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Evaluating in vivo the metabolic rates of the human liver has been a challenge due to its unique perfusion system. Positron emission tomography (PET) represents the current gold standard for assessing non-invasively tissue metabolic rates in vivo. Here, we review the existing literature on the assessment of hepatic metabolism, haemodynamics and cancer with PET. The tracer mainly used in metabolic studies has been [18F]2-fluoro-2-deoxy-D-glucose (18F-FDG). Its application not only enables the evaluation of hepatic glucose uptake in a variety of metabolic conditions and interventions, but based on the kinetics of 18F-FDG, endogenous glucose production can also be assessed. 14(R,S)-[18F]fluoro-6-thia-Heptadecanoic acid (18F-FTHA), 11C-Palmitate and 11C-Acetate have also been applied for the assessment of hepatic fatty acid uptake rates (18F-FTHA and 11C-Palmitate) and blood flow and oxidation (11C-Acetate). Oxygen-15 labelled water (15O-H2O) has been used for the quantification of hepatic perfusion. 18F-FDG is also the most common tracer used for hepatic cancer diagnostics, whereas 11C-Acetate has also shown some promising applications in imaging liver malignancies. The modelling approaches used to analyse PET data and also the challenges in utilizing PET in the assessment of hepatic metabolism are presented.
Collapse
|
4
|
Chapelin F, Gedaly R, Sweeney Z, Gossett LJ. Prognostic Value of Fluorine-19 MRI Oximetry Monitoring in cancer. Mol Imaging Biol 2022; 24:208-219. [PMID: 34708396 DOI: 10.1007/s11307-021-01648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Hypoxia is a key prognostic indicator in most solid tumors, as it is correlated to tumor angiogenesis, metastasis, recurrence, and response to therapy. Accurate measurement and mapping of tumor oxygenation profile and changes upon intervention could facilitate disease progression assessment and assist in treatment planning. Currently, no gold standard exists for non-invasive spatiotemporal measurement of hypoxia. Magnetic resonance imaging (MRI) represents an attractive option as it is a clinically available and non-ionizing imaging modality. Specifically, perfluorocarbon (PFC) beacons can be externally introduced into the tumor tissue and the linear dependence of their spin-lattice relaxation rate (R1) on the local partial pressure of oxygen (pO2) exploited for real-time tissue oxygenation monitoring in vivo. In this review, we will focus on early studies and recent developments of fluorine-19 MRI and spectroscopy (MRS) for evaluation of tumor oximetry and response to therapy.
Collapse
Affiliation(s)
- Fanny Chapelin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514F RMB, 143 Graham Avenue, Lexington, KY, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Roberto Gedaly
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, Transplant Division, University of Kentucky, Lexington, KY, USA
| | - Zachary Sweeney
- College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Liza J Gossett
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514F RMB, 143 Graham Avenue, Lexington, KY, USA
| |
Collapse
|
5
|
Li X, Wu Y, Zhang R, Bai W, Ye T, Wang S. Oxygen-Based Nanocarriers to Modulate Tumor Hypoxia for Ameliorated Anti-Tumor Therapy: Fabrications, Properties, and Future Directions. Front Mol Biosci 2021; 8:683519. [PMID: 34277702 PMCID: PMC8281198 DOI: 10.3389/fmolb.2021.683519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past five years, oxygen-based nanocarriers (NCs) to boost anti-tumor therapy attracted tremendous attention from basic research and clinical practice. Indeed, tumor hypoxia, caused by elevated proliferative activity and dysfunctional vasculature, is directly responsible for the less effectiveness or ineffective of many conventional therapeutic modalities. Undeniably, oxygen-generating NCs and oxygen-carrying NCs can increase oxygen concentration in the hypoxic area of tumors and have also been shown to have the ability to decrease the expression of drug efflux pumps (e.g., P-gp); to increase uptake by tumor cells; to facilitate the generation of cytotoxic reactive oxide species (ROS); and to evoke systematic anti-tumor immune responses. However, there are still many challenges and limitations that need to be further improved. In this review, we first discussed the mechanisms of tumor hypoxia and how it severely restricts the therapeutic efficacy of clinical treatments. Then an up-to-date account of recent progress in the fabrications of oxygen-generating NCs and oxygen-carrying NCs are systematically introduced. The improved physicochemical and surface properties of hypoxia alleviating NCs for increasing the targeting ability to hypoxic cells are also elaborated with special attention to the latest nano-technologies. Finally, the future directions of these NCs, especially towards clinical translation, are proposed. Therefore, we expect to provide some valued enlightenments and proposals in engineering more effective oxygen-based NCs in this promising field in this comprehensive overview.
Collapse
Affiliation(s)
- Xianqiang Li
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Wu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Bai
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tiantian Ye
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
van Vliet T, Varela-Eirin M, Wang B, Borghesan M, Brandenburg SM, Franzin R, Evangelou K, Seelen M, Gorgoulis V, Demaria M. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol Cell 2021; 81:2041-2052.e6. [PMID: 33823141 DOI: 10.1016/j.molcel.2021.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-κB signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.
Collapse
Affiliation(s)
- Thijmen van Vliet
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Marta Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Simone M Brandenburg
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Rossana Franzin
- Experimental Nephrology Department, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, the Netherlands
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Marc Seelen
- Experimental Nephrology Department, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, the Netherlands
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9NQ, UK; Biomedical Research Foundation, Academy of Athens, Athens 115 27, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands.
| |
Collapse
|
7
|
Davis CI, Gu X, Kiefer RM, Ralle M, Gade TP, Brady DC. Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. Metallomics 2020; 12:1995-2008. [PMID: 33146201 PMCID: PMC8315290 DOI: 10.1039/d0mt00156b] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, of which ∼800 000 new cases will be diagnosed worldwide this year, portends a five-year survival rate of merely 17% in patients with unresectable disease. This dismal prognosis is due, at least in part, from the late stage of diagnosis and the limited efficacy of systemic therapies. As a result, there is an urgent need to identify risk factors that contribute to HCC initiation and provide targetable vulnerabilities to improve patient survival. While myriad risk factors are known, elevated copper (Cu) levels in HCC patients and the incidence of hepatobiliary malignancies in Wilson disease patients, which exhibit hereditary liver Cu overload, suggests the possibility that metal accumulation promotes malignant transformation. Here we found that expression of the Cu transporter genes ATP7A, ATP7B, SLC31A1, and SLC31A2 was significantly altered in liver cancer samples and were associated with elevated Cu levels in liver cancer tissue and cells. Further analysis of genomic copy number data revealed that alterations in Cu transporter gene loci correlate with poorer survival in HCC patients. Genetic loss of the Cu importer SLC31A1 (CTR1) or pharmacologic suppression of Cu decreased the viability, clonogenic survival, and anchorage-independent growth of human HCC cell lines. Mechanistically, CTR1 knockdown or Cu chelation decreased glycolytic gene expression and downstream metabolite utilization and as a result forestalled tumor cell survival after exposure to hypoxia, which mimics oxygen deprivation elicited by transarterial embolization, a standard-of-care therapy used for patients with unresectable HCC. Taken together, these findings established an association between altered Cu homeostasis and HCC and suggest that limiting Cu bioavailability may provide a new treatment strategy for HCC by restricting the metabolic reprogramming necessary for cancer cell survival.
Collapse
Affiliation(s)
- Caroline I. Davis
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xingxing Gu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryan M. Kiefer
- Medical Degree Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Terence P. Gade
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Abstract
The oxygen levels organ and tissue microenvironments vary depending on the distance of their vasculature from the left ventricle of the heart. For instance, the oxygen levels of lymph nodes and the spleen are significantly lower than that in atmospheric air. Cellular detection of oxygen and their response to low oxygen levels can exert a significant impact on virus infection. Generally, viruses that naturally infect well-oxygenated organs are less able to infect cells under hypoxic conditions. Conversely, viruses that infect organs under lower oxygen tensions thrive under hypoxic conditions. This suggests that in vitro experiments performed exclusively under atmospheric conditions ignores oxygen-induced modifications in both host and viral responses. Here, we review the mechanisms of how cells adapt to low oxygen tensions and its impact on viral infections. With growing evidence supporting the role of oxygen microenvironments in viral infections, this review highlights the importance of factoring oxygen concentrations into in vitro assay conditions. Bridging the gap between in vitro and in vivo oxygen tensions would allow for more physiologically representative insights into viral pathogenesis.
Collapse
Affiliation(s)
- Esther Shuyi Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Machine Perfusion of Liver Grafts With Implantable Oxygen Biosensors: Proof of Concept Study in a Rodent Model. Transplant Direct 2019; 5:e463. [PMID: 31334337 PMCID: PMC6616145 DOI: 10.1097/txd.0000000000000905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 11/01/2022] Open
Abstract
Background Normothermic machine perfusion (NMP) is emerging as a novel preservation strategy in liver transplantation, but the optimal methods for assessing liver grafts during this period have not been determined. The aim of this study was to investigate whether implantable oxygen biosensors can be used to monitor tissue oxygen tension in liver grafts undergoing NMP. Methods Implantable phosphorescence-based oxygen sensors were tested in 3 different experimental groups: (1) in vivo during laparotomy, (2) during NMP of liver grafts with an acellular perfusate (NMP-acellular), and (3) during NMP with perfusate containing red blood cells (NMP-RBC). During in vivo experiments, intrahepatic oxygen tension was measured before and after occlusion of the portal vein (PV). In NMP experiments, intrahepatic oxygen tension was measured as a function of different PV pressure settings (3 vs 5 vs 8 mm Hg) and inflow oxygen concentration (95% O2 vs 6% O2). Results In vivo, intrahepatic oxygen tension decreased significantly within 2 minutes of clamping the PV (P < 0.05). In NMP experiments, intrahepatic oxygen tension correlated directly with PV pressure when high inflow oxygen concentration (95%) was used. Intrahepatic oxygen tension was significantly higher in the NMP-RBC group compared with the NMP-acellular group for all conditions tested (P < 0.05). Conclusions Implantable oxygen biosensors have potential utility as a tool for real-time monitoring of intrahepatic oxygen tension during NMP of liver grafts. Further investigation is required to determine how intrahepatic oxygen tension during NMP correlates with posttransplant graft function.
Collapse
|
10
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
11
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
12
|
Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev 2017; 109:45-62. [PMID: 27771366 DOI: 10.1016/j.addr.2016.10.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/02/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Hypoxia (low O2) is an essential microenvironmental driver of phenotypic diversity in human solid cancers. Hypoxic cancer cells hijack evolutionarily conserved, O2- sensitive pathways eliciting molecular adaptations that impact responses to radiotherapy, tumor recurrence and patient survival. In this review, we summarize the radiobiological, genetic, epigenetic and metabolic mechanisms orchestrating oncogenic responses to hypoxia. In addition, we outline emerging hypoxia- targeting strategies that hold promise for individualized cancer therapy in the context of radiotherapy and drug delivery.
Collapse
|
13
|
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HYPOXIA (AUCKLAND, N.Z.) 2016. [PMID: 27774485 DOI: 10.2147/hp.s93413.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vascularization and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. This review provides background knowledge on the role of tumor hypoxia and the role of the HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and hypoxic microenvironment.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| |
Collapse
|
14
|
Jagannathan L, Cuddapah S, Costa M. Oxidative stress under ambient and physiological oxygen tension in tissue culture. ACTA ACUST UNITED AC 2016; 2:64-72. [PMID: 27034917 DOI: 10.1007/s40495-016-0050-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxygen (O2) levels range from 2-9% in vivo. However, cell culture experiments are performed at atmospheric O2 levels (21%). Oxidative stress due to generation of reactive oxygen species (ROS) in cells cultured at higher than physiological levels is implicated in multitude of deleterious effects including DNA damage, genomic instability and senescence. In addition, oxidative stress activates redox sensitive transcription factors related to inflammatory signaling and apoptotic signaling. Furthermore, several chromatin-modifying enzymes are affected by ROS, potentially impacting epigenetic regulation of gene expression. While primary cells are cultured at lower O2 levels due to their inability to grow at higher O2, the immortalized cells, which display no such apparent growth difficulties, are typically cultured at 21% O2. This review will provide an overview of issues associated with increased oxygen levels in in vitro cell culture and point out the benefits of using lower levels of oxygen tension even for immortalized cells.
Collapse
Affiliation(s)
- Lakshmanan Jagannathan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| |
Collapse
|
15
|
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HYPOXIA 2015; 3:83-92. [PMID: 27774485 PMCID: PMC5045092 DOI: 10.2147/hp.s93413] [Citation(s) in RCA: 1250] [Impact Index Per Article: 138.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vascularization and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. This review provides background knowledge on the role of tumor hypoxia and the role of the HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and hypoxic microenvironment.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| |
Collapse
|
16
|
De Santis V, Singer M. Tissue oxygen tension monitoring of organ perfusion: rationale, methodologies, and literature review. Br J Anaesth 2015. [PMID: 26198717 DOI: 10.1093/bja/aev162] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tissue oxygen tension is the partial pressure of oxygen within the interstitial space of an organ bed. As it represents the balance between local oxygen delivery and consumption at any given time, it offers a ready monitoring capability to assess the adequacy of tissue perfusion relative to local demands. This review covers the various methodologies used to measure tissue oxygen tension, describes the underlying physiological and pathophysiological principles, and summarizes human and laboratory data published to date.
Collapse
Affiliation(s)
- V De Santis
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| | - M Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
17
|
Hong SH, Park CS, Jung HS, Choi H, Lee SR, Lee J, Choi JH. A comparison of intra-operative blood loss and acid-base balance between vasopressor and inotrope strategy during living donor liver transplantation: a randomised, controlled study. Anaesthesia 2012; 67:1091-100. [PMID: 22950390 DOI: 10.1111/j.1365-2044.2012.07198.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Administration of vasopressors or inotropes during liver transplant surgery is almost universal, as this procedure is often accompanied by massive haemorrhage, acid-base imbalance, and cardiovascular instability. However, the actual agents that should be used and the choice between a vasopressor and an inotrope strategy are not clear from existing published evidence. In this prospective, randomised, controlled and single-blinded study, we compared the effects of a vasopressor strategy on intra-operative blood loss and acid-base status with those of an inotrope strategy during living donor liver transplantation. Seventy-six adult liver recipients with decompensated cirrhosis were randomly assigned to receive a continuous infusion of either phenylephrine at a dose of 0.3-0.4 μg.kg(-1).min(-1) or dopamine and/or dobutamine at 2-8 μg.kg(-1).min(-1) during surgery. Vascular resistance was higher over time in the phenylephrine group than in the dopamine/dobutamine group. Estimated blood loss was significantly lower in the phenylephrine group than in the dopamine/dobutamine group (mean (SD) 4.5 (1.8) l vs 6.1 (3.4) l, respectively, p=0.011). Patients in the phenylephrine group had lower lactate levels in the late pre-anhepatic and the early anhepatic phase and needed less bicarbonate administration than those in the dopamine/dobutamine group (median (IQR [range]) 40 (0-100 [0-160]) mEq vs 70 (40-163 [0-260]) mEq, respectively, p=0.018). Postoperative clinical outcomes and laboratory-measured hepatic and renal function did not differ between the groups. Increased vascular resistance and reduction of portal blood flow by intra-operative phenylephrine infusion is assumed to decrease the amount of intra-operative bleeding and thereby ameliorate the progression of lactic acidosis during liver transplant surgery.
Collapse
Affiliation(s)
- S H Hong
- Department of Anaesthesiology and Pain Medicine, Seoul St. Mary's Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 2011; 15:1239-53. [PMID: 21251211 PMCID: PMC4373326 DOI: 10.1111/j.1582-4934.2011.01258.x] [Citation(s) in RCA: 823] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading.
Collapse
Affiliation(s)
- Aude Carreau
- Centre de Biophysique Moléculaire, CNRS UPR, Orléans, France
| | | | | | | | | |
Collapse
|
19
|
Sullivan JP, Palmer AF. Targeted Oxygen Delivery within Hepatic Hollow Fiber Bioreactors via Supplementation of Hemoglobin-Based Oxygen Carriers. Biotechnol Prog 2008; 22:1374-87. [PMID: 17022677 DOI: 10.1021/bp0600684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hepatic hollow fiber bioreactors are considered a promising class of bioartificial liver assist device (BLAD). Unfortunately, limited oxygen (O(2)) transport to hepatocytes within this device hinders further development. Hepatocytes in vivo (in the liver sinusoid) experience a wide range of oxygen tensions (pO(2) = 25-70 mmHg), which is important for development of proper differentiated function (zonation). Previously, we observed that bovine red blood cell (bRBC) supplementation of the circulating media stream enhanced oxygenation of cultured C3A hepatoma cells compared to a culture with no O(2) carrier (Gordon, J.; Palmer, A. F. Artif. Cells, BloodSubstitutes, Biotechnol. 2006, 33 (3), 297-306). Despite this success, the cells were not exposed to the desired in vivo O(2) spectrum (Sullivan, J.; Gordon, J.; Palmer, A. Biotechnol. Bioeng. 2006, 93 (2) 306-317). We hypothesize that altering the kinetics of O(2) binding/release to/from hemoglobin-based O(2) carriers (HBOCs) could potentially target O(2) delivery to cell cultures. High P(50) (low O(2) affinity) HBOCs preferentially targeted O(2) delivery at high inlet pO(2) values. Conversely, low P(50) (high O(2) affinity) HBOCs targeted O(2) delivery at low inlet pO(2) values. Additionally, inlet pO(2), flow rate, and HBOC concentration were varied to find optimal bioreactor operating conditions. Our results demonstrate that HBOCs can enhance O(2) delivery to cultured hepatocytes, while exposing them to in vivo-like O(2) tensions, which is critical to create a fully functional BLAD.
Collapse
Affiliation(s)
- Jesse P Sullivan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
20
|
Sullivan JP, Gordon JE, Bou-Akl T, Matthew HWT, Palmer AF. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers. ACTA ACUST UNITED AC 2008; 35:585-606. [PMID: 18097786 DOI: 10.1080/10731190701586269] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The production of a fully functional bioartificial liver assist device (BLAD) would greatly enhance available treatment options for patients suffering from acute liver failure. Currently, inadequate oxygen provision to hepatocytes seeded within hollow fiber bioreactors hampers development of a viable hollow fiber-based BLAD. Experimentally, oxygen provision to primary rat hepatocytes cultured within hollow fiber bioreactors was measured, it was observed that supplementation with an oxygen carrier (bovine red blood cells at approximately 2% human hematocrit) did not significantly improve oxygenation compared to the absence of an oxygen carrier. Therefore, an oxygen transport model of an individual hollow fiber within the bioreactor was developed and simulated (up to approximately 10% human hematocrit) to more fully examine the effect of oxygen carrier supplementation on oxygenation within the bioreactor. The modeling analysis, supported via the experimental results, was utilized to predict optimal bioreactor operating conditions for the delivery of in vivo-like oxygen gradients to cultured hepatocytes in clinically relevant settings.
Collapse
Affiliation(s)
- Jesse P Sullivan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | |
Collapse
|
21
|
Brooks AJ, Eastwood J, Beckingham IJ, Girling KJ. Liver tissue partial pressure of oxygen and carbon dioxide during partial hepatectomy. Br J Anaesth 2004; 92:735-7. [PMID: 15033887 DOI: 10.1093/bja/aeh112] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Data on tissue oxygen partial pressure (PtO2) and carbon dioxide partial pressure (PtCO2) in human liver tissue are limited. We set out to measure changes in liver PtO2 and PtCO2 during changes in ventilation and a 10 min period of ischaemia in patients undergoing liver resection using a multiple sensor (Paratrend Diametrics Medical Ltd, High Wycombe, UK). METHODS Liver tissue oxygenation was measured in anaesthetized patients undergoing liver resection using a sensor inserted under the liver capsule. PtO2 and PtCO2 were recorded with FIO2 values of 0.3 and 1.0, at end-tidal carbon dioxide partial pressures of 3.5 and 4.5 kPa and 10 min after the onset of liver ischaemia (Pringle manoeuvre). RESULTS Data are expressed as median (interquartile range). Increasing the FIO2 from 0.3 to 1.0 resulted in the PtO2 changing from 4.1 (2.6-5.4) to 4.6 (3.8-5.2) kPa, but this was not significant. During the 10 min period of ischaemia PtCO2 increased significantly (P<0.05) from 6.7 (5.8-7.0) to 11.5 (9.7-15.3) kPa and PtO2 decreased, but not significantly, from 4.3 (3.5-12.0) to 3.3 (0.9-4.1) kPa. CONCLUSION PtO2 and PtCO2 were measured directly using a Paratrend sensor in human liver tissue. During anaesthesia, changes in ventilation and liver blood flow caused predictable changes in PtCO2.
Collapse
Affiliation(s)
- A J Brooks
- Department of Surgery, Queen's Medical Centre, University Hospital NHS Trust, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|