1
|
Xu Y, Hu J, Fan W, Liu H, Zhang Y, Guo Z, Huang W, Liu X, Hou S. Genome-wide association analysis reveals 6 copy number variations associated with the number of cervical vertebrae in Pekin ducks. Front Cell Dev Biol 2022; 10:1041088. [PMID: 36438573 PMCID: PMC9685309 DOI: 10.3389/fcell.2022.1041088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2022] [Accepted: 10/07/2022] [Indexed: 02/02/2024] Open
Abstract
As a critical developmental stage in vertebrates, the vertebral column formation process is under strict control; however, we observed variations in the number of cervical vertebrae in duck populations in our previous study. Here, we further explored the variations in the number of vertebrae in two duck populations: 421 Pekin duck × mallard F2 ducks and 850 Pekin ducks. Using resequencing data of 125 Pekin ducks with different numbers of cervical vertebrae and 352 Pekin duck × mallard F2 ducks with different numbers of thoracic vertebrae, we detected whole-genome copy number variations (CNVs) and implemented a genome-wide association study (GWAS) to identify the genetic variants related to the traits. The findings verified the existence of variations in the number of cervical vertebrae in duck populations. The number of cervical vertebrae in most ducks was 15, while that in a small number of the ducks was 14 or 16. The number of cervical vertebrae had a positive influence on the neck production, and one cervical vertebra addition could increase 11 g or 2 cm of duck neck. Genome-wide CNV association analysis identified six CNVs associated with the number of cervical vertebrae, and the associated CNV regions covered 15 genes which included WNT10A and WNT6. These findings improve our understanding of the variations in the number of vertebrae in ducks and lay a foundation for future duck breeding.
Collapse
Affiliation(s)
- Yaxi Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Jian Hu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hehe Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbao Guo
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Huang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Niu N, Liu Q, Hou X, Liu X, Wang L, Zhao F, Gao H, Shi L, Wang L, Zhang L. Genome-wide association study revealed ABCD4 on SSC7 and GREB1L and MIB1 on SSC6 as crucial candidate genes for rib number in Beijing Black pigs. Anim Genet 2022; 53:690-695. [PMID: 35776924 DOI: 10.1111/age.13237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2022] [Revised: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
As one of the few animals with variation in the number of rib pairs (RIB), the pig is a good model to study the mechanism of RIB regulation. Quantitative trait loci (QTL) for porcine RIB are present on Sus scrofa chromosome 7 (SSC7). Although several candidate genes exist in this QTL region on SSC7, the causal gene has yet to be verified. Beijing Black pig with 14-17 RIB is a good population for candidate gene mining and 1104 individuals were genotyped using the Illumina Porcine 50K BeadChip. A total of 14 SNPs from 95.49 to 97.78 Mb on SSC7 showed genome-wide significant association with RIB. On SSC7, a locuszoom plot using pairwise linkage disequilibrium displayed the narrowest linkage region encompassing only two genes, ABCD4 and VRTN. In mice, a transcriptome expression profile was obtained using three embryos at E9.5 (the critical period for rib formation). ABCD4 was highly expressed, but no expression of VRTN was detected. On SSC6, there were four genome-wide significant SNPs from 106.42 to 106.92 Mb associated with RIB. GREB1L and MIB1, in this region, were regarded as novel candidate genes. These results revealed a crucial candidate causal gene on SSC7 and novel genes on SSC6 for rib number and provided interesting new insights into its genetic basis.
Collapse
Affiliation(s)
- Naiqi Niu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ligang Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Fang F, Li J, Guo M, Mei Q, Yu M, Liu H, Legarra A, Xiang T. Genomic evaluation and genome-wide association studies for total number of teats in a combined American and Danish Yorkshire pig populations selected in China. J Anim Sci 2022; 100:6585233. [PMID: 35553682 PMCID: PMC9259599 DOI: 10.1093/jas/skac174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2021] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
Joint genomic evaluation by combining data recordings and genomic information from different pig herds and populations is of interest for pig breeding companies because the efficiency of genomic selection (GS) could be further improved. In this work, an efficient strategy of joint genomic evaluation combining data from multiple pig populations is investigated. Total Teat Number (TTN), a trait that is equally recorded on 13 060 American Yorkshire (AY) populations (~14.68 teats) and 10 060 Danish Yorkshire (DY) pigs (~14.29 teats), was used to explore the feasibility and accuracy of GS combining datasets from different populations. We first estimated the genetic correlation (rg) of TTN between AY and DY pig populations (rg=0.79, se=0.23). Then we employed the genome-wide association study (GWAS) to identify QTL regions that are significantly associated with TTN and investigate the genetic architecture of TTN in different populations. Our results suggested that the genomic regions controlling TTN are slight different in the two Yorkshire populations, where the candidate QTL regions were on SSC 7 and SSC 8 for AY population and on SSC 7 for DY population. Finally, we explored an optimal way of genomic prediction for TTN via three different Genomic Best Linear Unbiased Prediction (GBLUP) models and we concluded that when TTN across populations are regarded as different, but correlated, traits in a multi-trait model, predictive abilities for both Yorkshire populations improve. As a conclusion, joint genomic evaluation for target traits in multiple pig populations is feasible in practice and more accurate, provided a proper model is used.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jieling Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanshun Mei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiming Liu
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele 8830, Denmark
| | - Andres Legarra
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Tao Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Liu Z, Li H, Zhong Z, Jiang S. A Whole Genome Sequencing-Based Genome-Wide Association Study Reveals the Potential Associations of Teat Number in Qingping Pigs. Animals (Basel) 2022; 12:1057. [PMID: 35565484 PMCID: PMC9100799 DOI: 10.3390/ani12091057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Teat number plays an important role in the reproductive performance of sows and the growth of piglets. However, the quantitative trait loci (QTLs) and candidate genes for the teat number-related traits in Qingping pigs remain unknown. In this study, we performed GWAS based on whole-genome single-nucleotide polymorphisms (SNPs) and insertions/deletions (Indels) for the total number of teats and five other related traits in 100 Qingping pigs. SNPs and Indels of all 100 pigs were genotyped using 10× whole genome resequencing. GWAS using General Linear Models (GLM) detected a total of 28 SNPs and 45 Indels as peak markers for these six traits. We also performed GWAS for the absolute difference between left and right teat number (ADIFF) using Fixed and random model Circulating Probability Unification (FarmCPU). The most strongly associated SNP and Indel with a distance of 562,788 bp were significantly associated with ADIFF in both GLM and FarmCPU models. In the 1-Mb regions of the most strongly associated SNP and Indel, there were five annotated genes, including TRIML1, TRIML2, ZFP42, FAT1 and MTNR1A. We also highlighted TBX3 as an interesting candidate gene for SSC14. Enrichment analysis of candidate genes suggested the Wnt signaling pathway may contribute to teat number-related traits. This study expanded significant marker-trait associations for teat number and provided useful molecular markers and candidate genes for teat number improvement in the breeding of sows.
Collapse
Affiliation(s)
- Zezhang Liu
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (Z.Z.)
| | - Hong Li
- Novogene Bioinformatics Institute, Beijing 100083, China;
| | - Zhuxia Zhong
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (Z.Z.)
| | - Siwen Jiang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (Z.Z.)
| |
Collapse
|
5
|
Exploiting single-marker and haplotype-based genome-wide association studies to identify QTL for the number of teats in Italian Duroc pigs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
6
|
Zhang H, Zhuang Z, Yang M, Ding R, Quan J, Zhou S, Gu T, Xu Z, Zheng E, Cai G, Yang J, Wu Z. Genome-Wide Detection of Genetic Loci and Candidate Genes for Body Conformation Traits in Duroc × Landrace × Yorkshire Crossbred Pigs. Front Genet 2021; 12:664343. [PMID: 34707635 PMCID: PMC8542986 DOI: 10.3389/fgene.2021.664343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
The Duroc × (Landrace × Yorkshire) hybrid pigs (DLY) are the most popular commercial pigs, providing consumers with the largest source of pork. In order to gain more insights into the genetic architecture of economically important traits in pigs, we performed a genome-wide association study (GWAS) using the GeneSeek Porcine 50 K SNP Chip to map the genetic markers and genes associated with body conformation traits (BCT) in 311 DLY pigs. The quantitative traits analyzed included body weight (BW), carcass length (CL), body length (BL), body height (BH), and body mass index (BMI). BMI was defined as BMICL, BMIBL, and BMIBH, respectively, based on CL, BL, and BH phenotypic data. We identified 82 SNPs for the seven traits by GEMMA-based and FarmCPU-based GWASs. Both methods detected two quantitative trait loci (QTL) on SSC8 and SSC17 for body conformation traits. Several candidate genes (such as TNFAIP3, KDM4C, HSPG2, BMP2, PLCB4, and GRM5) were found to be associated with body weight and body conformation traits in pigs. Notably, the BMP2 gene had pleiotropic effects on CL, BL, BH, BMICL, and BMIBL and is proposed as a strong candidate gene for body size due to its involvement in growth and bone development. Furthermore, gene set enrichment analysis indicated that most of the pathway terms are associated with regulation of cell growth, negative regulation of cell population proliferation, and chondrocyte differentiation. We anticipate that these results further advance our understanding of the genetic architecture of body conformation traits in the popular commercial DLY pigs and provide new insights into the genetic architecture of BMI in pigs.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangdong, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| |
Collapse
|
7
|
Johnsson M, Jungnickel MK. Evidence for and localization of proposed causative variants in cattle and pig genomes. Genet Sel Evol 2021; 53:67. [PMID: 34461824 PMCID: PMC8404348 DOI: 10.1186/s12711-021-00662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding. RESULTS For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes. We review the evidence for their causality, by aiming to separate the evidence for the locus, the proposed causative gene and the proposed causative variant, and report the bioinformatic searches and tactics needed to localize the sequence variants in the cattle or pig genome. CONCLUSIONS Taken together, there is usually good evidence for the association at the locus level, some evidence for a specific causative gene at eight of the loci, and some experimental evidence for a specific causative variant at six of the loci. We recommend that researchers who report new potential causative variants use referenced coordinate systems, show local sequence context, and submit variants to repositories.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - Melissa K. Jungnickel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
8
|
Bovo S, Ballan M, Schiavo G, Ribani A, Tinarelli S, Utzeri VJ, Dall'Olio S, Gallo M, Fontanesi L. Single-marker and haplotype-based genome-wide association studies for the number of teats in two heavy pig breeds. Anim Genet 2021; 52:440-450. [PMID: 34096632 PMCID: PMC8362157 DOI: 10.1111/age.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
The number of teats is a reproductive‐related trait of great economic relevance as it affects the mothering ability of the sows and thus the number of properly weaned piglets. Moreover, genetic improvement of this trait is fundamental to parallelly help the selection for increased litter size. We present the results of single‐marker and haplotypes‐based genome‐wide association studies for the number of teats in two large cohorts of heavy pig breeds (Italian Large White and Italian Landrace) including 3990 animals genotyped with the 70K GGP Porcine BeadChip and other 1927 animals genotyped with the Illumina PorcineSNP60 BeadChip. In the Italian Large White population, genome scans identified three genome regions (SSC7, SSC10, and SSC12) that confirmed the involvement of the VRTN gene (as we previously reported) and highlighted additional loci known to affect teat counts, including the FRMD4A and HOXB1 gene regions. A different picture emerged in the Italian Landrace population, with a total of 12 genome regions in eight chromosomes (SSC3, SSC6, SSC8, SSC11, SSC13, SSC14, SSC15, and SSC16) mainly detected via the haplotype‐based genome scan. The most relevant QTL was close to the ARL4C gene on SSC15. Markers in the VRTN gene region were not significant in the Italian Landrace breed. The use of both single‐marker and haplotype‐based genome‐wide association analyses can be helpful to exploit and dissect the genome of the pigs of different populations. Overall, the obtained results supported the polygenic nature of the investigated trait and better elucidated its genetic architecture in Italian heavy pigs.
Collapse
Affiliation(s)
- S Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Ballan
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - G Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - S Tinarelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy.,Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, Roma, 00198, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - S Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, Roma, 00198, Italy
| | - L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
9
|
Zhong YJ, Yang Y, Wang XY, Di R, Chu MX, Liu QY. Expression analysis and single-nucleotide polymorphisms of SYNDIG1L and UNC13C genes associated with thoracic vertebral numbers in sheep ( Ovis aries). Arch Anim Breed 2021; 64:131-138. [PMID: 34084911 PMCID: PMC8131962 DOI: 10.5194/aab-64-131-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2020] [Accepted: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
The objective of the current study was to analyze expression levels of synapse differentiation inducing 1-like
(SYNDIG1L) and unc-13 homolog C (UNC13C) genes in different tissues, while single-nucleotide polymorphisms
(SNPs) of two genes were associated with multiple thoracic vertebrae traits
in both Small-tailed Han sheep (STH) and Sunite sheep (SNT). The expression
levels of SYNDIG1L and UNC13C were analyzed in the brain, cerebellum, heart, liver, spleen,
lung, kidney, adrenal gland, uterine horn, longissimus muscle, and abdominal
adipose tissues of two sheep breeds with different thoracic vertebral
number (TVN) sheep (T13 groups and T14 groups) by real-time quantitative
polymerase chain reaction (RT-qPCR). Meanwhile, the polymorphisms of UNC13C gene g.52919279C>T
and SYNDIG1L gene g.82573325C>A in T14 and T13 were
genotyped by the Sequenom MassARRAY® SNP assay, and
association analysis was performed with the TVN. The results demonstrated
that UNC13C gene was extensively expressed in 11 tissues. The expression of
UNC13C gene in longissimus muscle of T14 groups of STH was significantly higher
than that of T13 groups (P<0.05). SYNDIG1L gene was overexpressed in brain
and cerebellum tissues, and the expression level of UNC13C gene in the brain and
cerebellum of T13 groups in SNT was significantly higher than that of T14
groups (P<0.01). Association analysis showed that SNPs found in the
UNC13C gene had no significant effects on TVN for both two genes. The polymorphism
of SYNDIG1L g.82573325C>A was significantly correlated with the TVN in
both STH (P<0.05) and SNT (P<0.01). Taken together, the
SYNDIG1L gene was related to thoracic vertebral development, and this variation may
be potentially used as a molecular marker to select the multiple thoracic
vertebrae in sheep.
Collapse
Affiliation(s)
- Ying-Jie Zhong
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yang Yang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiang-Yu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ming-Xing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Qiu-Yue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
10
|
Zhang X, Li C, Li X, Liu Z, Ni W, Cao Y, Yao Y, Islamov E, Wei J, Hou X, Hu S. Association analysis of polymorphism in the NR6A1 gene with the lumbar vertebrae number traits in sheep. Genes Genomics 2019; 41:1165-1171. [DOI: 10.1007/s13258-019-00843-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2018] [Accepted: 06/20/2019] [Indexed: 11/24/2022]
|
11
|
Kojima M, Nakajima I, Arakawa A, Mikawa S, Matsumoto T, Uenishi H, Nakamura Y, Taniguchi M. Differences in gene expression profiles for subcutaneous adipose, liver, and skeletal muscle tissues between Meishan and Landrace pigs with different backfat thicknesses. PLoS One 2018; 13:e0204135. [PMID: 30240433 PMCID: PMC6150482 DOI: 10.1371/journal.pone.0204135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2018] [Accepted: 09/03/2018] [Indexed: 01/10/2023] Open
Abstract
Backfat thickness is one of the most important traits of commercially raised pigs. Meishan pigs are renowned for having thicker backfat than Landrace pigs. To examine the genetic factors responsible for the differences, we first produced female crossbred pig lines by mating Landrace (L) × Large White (W) × Duroc (D) females (LWD) with Landrace (L) or Meishan (M) boars (i.e., LWD × L = LWDL for Landrace offspring and LWD × M = LWDM for the Meishan offspring). We confirmed that LWDM pigs indeed had a thicker backfat than LWDL pigs. Next, we performed gene expression microarray analysis in both genetic lines to examine differentially expressed genes (DEGs) in energy metabolism-related tissues, subcutaneous adipose (fat), liver, and longissimus dorsi muscle tissues. We analyzed the annotation of DEGs (2-fold cutoff) to functionally categorize them by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The number of DEGs in muscle tissues of both lines was much less than that in fat and liver tissues, indicating that DEGs in muscle tissues may not contribute much to differences in backfat thickness. In contrast, several genes related to muscle (in fat tissue) and lipid metabolism (in liver tissue) were more upregulated in LWDM pigs than LWDL pigs, indicating that those DEGs might be responsible for differences in backfat thickness. The different genome-wide gene expression profiles in the fat, liver, and muscle tissues between genetic lines can provide useful information for pig breeders.
Collapse
Affiliation(s)
- Misaki Kojima
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Ikuyo Nakajima
- Meat Quality Research Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Aisaku Arakawa
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Satoshi Mikawa
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Toshimi Matsumoto
- Animal Bioregulation Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yuki Nakamura
- Insect Genome Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Masaaki Taniguchi
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
12
|
Li WT, Zhang MM, Li QG, Tang H, Zhang LF, Wang KJ, Zhu MZ, Lu YF, Bao HG, Zhang YM, Li QY, Wu KL, Wu CX. Whole-genome resequencing reveals candidate mutations for pig prolificacy. Proc Biol Sci 2018; 284:rspb.2017.2437. [PMID: 29263279 DOI: 10.1098/rspb.2017.2437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2017] [Accepted: 11/24/2017] [Indexed: 01/22/2023] Open
Abstract
Changes in pig fertility have occurred as a result of domestication, but are not understood at the level of genetic variation. To identify variations potentially responsible for prolificacy, we sequenced the genomes of the highly prolific Taihu pig breed and four control breeds. Genes involved in embryogenesis and morphogenesis were targeted in the Taihu pig, consistent with the morphological differences observed between the Taihu pig and others during pregnancy. Additionally, excessive functional non-coding mutations have been specifically fixed or nearly fixed in the Taihu pig. We focused attention on an oestrogen response element (ERE) within the first intron of the bone morphogenetic protein receptor type-1B gene (BMPR1B) that overlaps with a known quantitative trait locus (QTL) for pig fecundity. Using 242 pigs from 30 different breeds, we confirmed that the genotype of the ERE was nearly fixed in the Taihu pig. ERE function was assessed by luciferase assays, examination of histological sections, chromatin immunoprecipitation, quantitative polymerase chain reactions, and western blots. The results suggest that the ERE may control pig prolificacy via the cis-regulation of BMPR1B expression. This study provides new insight into changes in reproductive performance and highlights the role of non-coding mutations in generating phenotypic diversity between breeds.
Collapse
Affiliation(s)
- Wen-Ting Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.,College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Meng-Meng Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qi-Gang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Hui Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Li-Fan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ke-Jun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.,College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Mu-Zhen Zhu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yun-Feng Lu
- School of Life Science and Technology, Nanyang Normal University, No. 1638 Wolong Road, Nanyang Henan 473061, People's Republic of China
| | - Hai-Gang Bao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qiu-Yan Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ke-Liang Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chang-Xin Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
13
|
Huang J, Zhang M, Ye R, Ma Y, Lei C. Effects of increased vertebral number on carcass weight in PIC pigs. Anim Sci J 2017; 88:2057-2062. [PMID: 28776879 DOI: 10.1111/asj.12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
Variation of the vertebral number is associated with carcass traits in pigs. However, results from different populations do not match well with others, especially for carcass weight. Therefore, effects of increased vertebral number on carcass weight were investigated by analyzing the relationship between two loci multi-vertebra causal loci (NR6A1 g.748 C > T and VRTN g.20311_20312ins291) and carcass weight in PIC pigs. Results from the association study between vertebral number and carcass weight showed that increased thoracic number had negative effects on carcass weight, but the results were not statistically significant. Further, VRTN Ins/Ins genotype increased more than one thoracic than that of Wt/Wt genotype on average in this PIC population. Meanwhile, there was a significant negative effect of VRTN Ins on carcass weight (P < 0.05). Thus, our results suggested negative effect of increased thoracic number on carcass weight in PIC pigs.
Collapse
Affiliation(s)
- Jieping Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Science, Xinyang Normal University, Xinyang, Henan, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Mingming Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Science, Xinyang Normal University, Xinyang, Henan, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Runqing Ye
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yun Ma
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Li C, Zhang X, Cao Y, Wei J, You S, Jiang Y, Cai K, Wumaier W, Guo D, Qi J, Chen C, Ni W, Hu S. Multi-vertebrae variation potentially contribute to carcass length and weight of Kazakh sheep. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
|
15
|
Yan G, Qiao R, Zhang F, Xin W, Xiao S, Huang T, Zhang Z, Huang L. Imputation-Based Whole-Genome Sequence Association Study Rediscovered the Missing QTL for Lumbar Number in Sutai Pigs. Sci Rep 2017; 7:615. [PMID: 28377593 PMCID: PMC5429657 DOI: 10.1038/s41598-017-00729-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2016] [Accepted: 03/09/2017] [Indexed: 02/02/2023] Open
Abstract
Resequencing a number of individuals of various breeds as reference population and imputing the whole-genome sequences of individuals that were genotyped with medium-density chips to perform an association study is a very efficient strategy. Previously, we performed a genome-wide association study (GWAS) of lumbar number using 60K SNPs from the porcine Illumina chips in 418 Sutai pigs and did not detect any significant signals. Therefore, we imputed the whole-genome sequences of 418 Sutai individuals from 403 deeply resequenced reference individuals and performed association tests. We identified a quantitative trait locus (QTL) for lumbar number in SSC1 with a P value of 9.01E-18 that was close to the potential causative gene of NR6A1. The result of conditioning on the top SNP association test indicated that only one QTL was responsible for this trait in SSC1. The linkage disequilibrium (LD) drop test result for the condition of the reported potential causative mutation (c.575T > C missense mutation of NR6A1) indicated that this mutation was probably not the underlying mutation that affected lumbar number in our study. As the first trial of imputed whole-genome sequence GWAS in swine, this approach can be also powerful to investigate complex traits in pig like in human and cattle.
Collapse
Affiliation(s)
- Guorong Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, P.R. China
| | - Ruimin Qiao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450002, Zhengzhou, P.R. China
| | - Feng Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, P.R. China
| | - Wenshui Xin
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, P.R. China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, P.R. China
| | - Tao Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, P.R. China
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, P.R. China.
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, 330045, Nanchang, P.R. China
| |
Collapse
|
16
|
Tang J, Zhang Z, Yang B, Guo Y, Ai H, Long Y, Su Y, Cui L, Zhou L, Wang X, Zhang H, Wang C, Ren J, Huang L, Ding N. Identification of loci affecting teat number by genome-wide association studies on three pig populations. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:1-7. [PMID: 27165028 PMCID: PMC5205583 DOI: 10.5713/ajas.15.0980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/30/2015] [Revised: 02/06/2016] [Accepted: 03/25/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Three genome-wide association studies (GWAS) and a meta-analysis of GWAS were conducted to explore the genetic mechanisms underlying variation in pig teat number. METHODS We performed three GWAS and a meta-analysis for teat number on three pig populations, including a White Duroc×Erhualian F2 resource population (n = 1,743), a Chinese Erhualian pig population (n = 320) and a Chinese Sutai pig population (n = 383). RESULTS We detected 24 single nucleotide polymorphisms (SNPs) that surpassed the genome-wide significant level on Sus Scrofa chromosomes (SSC) 1, 7, and 12 in the F2 resource population, corresponding to four loci for pig teat number. We highlighted vertnin (VRTN) and lysine demethylase 6B (KDM6B) as two interesting candidate genes at the loci on SSC7 and SSC12. No significant associated SNPs were identified in the meta-analysis of GWAS. CONCLUSION The results verified the complex genetic architecture of pig teat number. The causative variants for teat number may be different in the three populations.
Collapse
Affiliation(s)
- Jianhong Tang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanmei Guo
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huashui Ai
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Long
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying Su
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Leilei Cui
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liyu Zhou
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaopeng Wang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chengbin Wang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Ren
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nengshui Ding
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
17
|
Russo V, Fontanesi L, Davoli R, Chiofalo L, Liotta L, Zumbo A. Analysis of single nucleotide polymorphisms in major and candidate genes for production traits in Nero Siciliano pig breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2004.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
|
18
|
Fontanesi L, Scotti E, Buttazzoni L, Dall’Olio S, Russo V. Investigation of a Short Interspersed Nuclear Element Polymorphic Site in the PorcineVertninGene: Allele Frequencies and Association Study With Meat Quality, Carcass and Production Traits in Italian Large White pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
19
|
Yang J, Huang L, Yang M, Fan Y, Li L, Fang S, Deng W, Cui L, Zhang Z, Ai H, Wu Z, Gao J, Ren J. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs. Sci Rep 2016; 6:19240. [PMID: 26781738 PMCID: PMC4726066 DOI: 10.1038/srep19240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022] Open
Abstract
Vertnin (VRTN) variants have been associated with the number of thoracic vertebrae in European pigs, but the association has not been evidenced in Chinese indigenous pigs. In this study, we first performed a genome-wide association study in Chinese Erhualian pigs using one VRTN candidate causative mutation and the Illumina Porcine 60K SNP Beadchips. The VRTN mutation is significantly associated with thoracic vertebral number in this population. We further show that the VRTN mutation has pleiotropic and desirable effects on teat number and carcass (body) length across four diverse populations, including Erhualian, White Duroc × Erhualian F2 population, Duroc and Landrace pigs. No association was observed between VRTN genotype and growth and fatness traits in these populations. Therefore, testing for the VRTN mutation in pig breeding schemes would not only increase the number of vertebrae and nipples, but also enlarge body size without undesirable effects on growth and fatness traits, consequently improving pork production. Further, by using whole-genome sequence data, we show that the VRTN mutation was possibly introgressed from Chinese pigs into European pigs. Our results provide another example showing that introgressed Chinese genes greatly contributed to the development and production of modern European pig breeds.
Collapse
Affiliation(s)
- Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.,State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd, Guangdong, P.R. China
| | - Yin Fan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Lin Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Shaoming Fang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Wenjiang Deng
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Leilei Cui
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Zhen Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Huashui Ai
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd, Guangdong, P.R. China
| | - Jun Gao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Jun Ren
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, P.R. China
| |
Collapse
|
20
|
Arakawa A, Okumura N, Taniguchi M, Hayashi T, Hirose K, Fukawa K, Ito T, Matsumoto T, Uenishi H, Mikawa S. Genome-wide association QTL mapping for teat number in a purebred population of Duroc pigs. Anim Genet 2015. [DOI: 10.1111/age.12331] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Affiliation(s)
- A. Arakawa
- Animal Genome Research Unit; National Institute of Agrobiological Sciences; 2 Ikenodai Tsukuba Ibaraki 305-8602 Japan
| | - N. Okumura
- Animal Research Division; Institute of Japan Association for Techno-innovation in Agriculture; Forestry and Fisheries; 446-1 Ippaizuka Kamiyokoba Tsukuba Ibaraki 305-0854 Japan
| | - M. Taniguchi
- Animal Genome Research Unit; National Institute of Agrobiological Sciences; 2 Ikenodai Tsukuba Ibaraki 305-8602 Japan
| | - T. Hayashi
- Agroinformatics Division; National Agriculture and Food Research Organization; Agricultural Research Center; 3-1-1 Kannondai Tsukuba Ibaraki 305-8666 Japan
| | - K. Hirose
- Central Research Institute for Feed and Livestock ZEN-NOH (National Federation of Agricultural Cooperative Associations); Kamishihoro Hokkaido 080-1406 Japan
| | - K. Fukawa
- Central Research Institute for Feed and Livestock ZEN-NOH (National Federation of Agricultural Cooperative Associations); Kamishihoro Hokkaido 080-1406 Japan
| | - T. Ito
- Central Research Institute for Feed and Livestock ZEN-NOH (National Federation of Agricultural Cooperative Associations); Kamishihoro Hokkaido 080-1406 Japan
| | - T. Matsumoto
- Advanced Genomics Laboratory; National Institute of Agrobiological Sciences; 1-2 Owashi Tsukuba Ibaraki 305-8634 Japan
| | - H. Uenishi
- Animal Genome Research Unit; National Institute of Agrobiological Sciences; 2 Ikenodai Tsukuba Ibaraki 305-8602 Japan
- Animal Immune and Cell Biology Research Unit; National Institute of Agrobiological Sciences; 2 Ikenodai Tsukuba Ibaraki 305-8602 Japan
| | - S. Mikawa
- Animal Genome Research Unit; National Institute of Agrobiological Sciences; 2 Ikenodai Tsukuba Ibaraki 305-8602 Japan
| |
Collapse
|
21
|
Qiao R, Gao J, Zhang Z, Li L, Xie X, Fan Y, Cui L, Ma J, Ai H, Ren J, Huang L. Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations. Genet Sel Evol 2015; 47:17. [PMID: 25885760 PMCID: PMC4358731 DOI: 10.1186/s12711-015-0089-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recently, genome-wide association studies (GWAS) have been reported on various pig traits. We performed a GWAS to analyze 22 traits related to growth and fatness on two pig populations: a White Duroc × Erhualian F2 intercross population and a Chinese Sutai half-sib population. RESULTS We identified 14 and 39 loci that displayed significant associations with growth and fatness traits at the genome-wide level and chromosome-wide level, respectively. The strongest association was between a 750 kb region on SSC7 (SSC for Sus scrofa) and backfat thickness at the first rib. This region had pleiotropic effects on both fatness and growth traits in F2 animals and contained a promising candidate gene HMGA1 (high mobility group AT-hook 1). Unexpectedly, population genetic analysis revealed that the allele at this locus that reduces fatness and increases growth is derived from Chinese indigenous pigs and segregates in multiple Chinese breeds. The second strongest association was between the region around 82.85 Mb on SSC4 and average backfat thickness. PLAG1 (pleiomorphic adenoma gene 1), a gene under strong selection in European domestic pigs, is proximal to the top SNP and stands out as a strong candidate gene. On SSC2, a locus that significantly affects fatness traits mapped to the region around the IGF2 (insulin-like growth factor 2) gene but its non-imprinting inheritance excluded IGF2 as a candidate gene. A significant locus was also detected within a recombination cold spot that spans more than 30 Mb on SSCX, which hampered the identification of plausible candidate genes. Notably, no genome-wide significant locus was shared by the two experimental populations; different loci were observed that had both constant and time-specific effects on growth traits at different stages, which illustrates the complex genetic architecture of these traits. CONCLUSIONS We confirm several previously reported QTL and provide a list of novel loci for porcine growth and fatness traits in two experimental populations with Chinese Taihu and Western pigs as common founders. We showed that distinct loci exist for these traits in the two populations and identified HMGA1 and PLAG1 as strong candidate genes on SSC7 and SSC4, respectively.
Collapse
Affiliation(s)
- Ruimin Qiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Jun Gao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Lin Li
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Yin Fan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Leilei Cui
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
22
|
Jiao S, Maltecca C, Gray KA, Cassady JP. Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association. J Anim Sci 2015; 92:2846-60. [PMID: 24962532 DOI: 10.2527/jas.2014-7337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Efficient use of feed resources has become a clear challenge for the U.S. pork industry as feed costs continue to be the largest variable expense. The availability of the Illumina Porcine60K BeadChip has greatly facilitated whole-genome association studies to identify chromosomal regions harboring genes influencing those traits. The current study aimed at identifying genomic regions associated with variation in feed efficiency and several production traits in a Duroc terminal sire population, including ADFI, ADG, feed conversion ratio, residual feed intake (RFI), real-time ultrasound back fat thickness (BF), ultrasound muscle depth, intramuscular fat content (IMF), birth weight (BW at birth), and weaning weight (BW at weaning). Single trait association analyses were performed using Bayes B models with 35,140 SNP on 18 autosomes after quality control. Significance of nonoverlapping 1-Mb length windows (n = 2,380) were tested across 3 QTL inference methods: posterior distribution of windows variances from Monte Carlo Markov Chain, naive Bayes factor, and nonparametric bootstrapping. Genes within the informative QTL regions for the traits were annotated. A region ranging from166 to 140 Mb (4-Mb length) on SSC 1, approximately 8 Mb upstream of the MC4R gene, was significantly associated with ADFI, ADG, and BF, where SOCS6 and DOK6 are proposed as the most likely candidate genes. Another region affecting BW at weaning was identified on SSC 4 (84-85 Mb), harboring genes previously found to influence both human and cattle height: PLAG1, CHCHD7, RDHE2 (or SDR16C5), MOS, RPS20, LYN, and PENK. No QTL were identified for RFI, IMF, and BW at birth. In conclusion, we have identified several genomic regions associated with traits affecting nutrient utilization that could be considered for future genomic prediction to improve feed utilization.
Collapse
Affiliation(s)
- S Jiao
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - C Maltecca
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - K A Gray
- Smithfield Premium Genetics, Rose Hill, NC 28458
| | - J P Cassady
- Department of Animal Science, North Carolina State University, Raleigh 27695
| |
Collapse
|
23
|
Allelic frequencies of NR6A1 and VRTN, two genes that affect vertebrae number in diverse pig breeds: A study of the effects of the VRTN insertion on phenotypic traits of a Duroc×Landrace–Large White cross. Meat Sci 2015; 100:150-5. [DOI: 10.1016/j.meatsci.2014.09.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2014] [Revised: 09/11/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
|
24
|
Nakano H, Sato S, Uemoto Y, Kikuchi T, Shibata T, Kadowaki H, Kobayashi E, Suzuki K. Effect of VRTN gene polymorphisms on Duroc pig production and carcass traits, and their genetic relationships. Anim Sci J 2014; 86:125-31. [PMID: 25187328 DOI: 10.1111/asj.12260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2014] [Accepted: 04/17/2014] [Indexed: 12/01/2022]
Abstract
The thoracic vertebral number is associated with body length and carcass traits, and represents one of the most important traits in the pig industry. Recent studies have shown that vertnin (VRTN) gene is associated with variations in the vertebral number in commercial European pigs. However, the genetic relationships and effect of this VRTN gene in pig production and carcass traits remain uncertain. Therefore, we investigated the genetic relationships among traits such as vertebral numbers, carcass weight and length-related traits, and meat production traits, and the effect of VRTN gene polymorphisms on these traits in a Duroc purebred population selected for its meat production traits. Highly positive genetic correlations were obtained between the thoracic vertebral numbers and length-related traits (0.56 to 0.84), whereas low correlations were obtained with production traits and carcass weight (-0.16 to 0.05). VRTN gene polymorphisms indicated that the number of thoracic vertebrae and length-related traits were significantly associated with the VRTN genotype, but had no significant effect on production traits and carcass weight. The results indicate that VRTN gene may be used as an effective selection marker to obtain pigs with high thoracic vertebral numbers and length-related traits, without adversely affecting meat production traits.
Collapse
Affiliation(s)
- Hikaru Nakano
- Graduate School of Agricultural Science, Tohoku University, Sendai, Ibaraki, Japan; National Livestock Breeding Center, Nishigo, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lopes MS, Bastiaansen JWM, Harlizius B, Knol EF, Bovenhuis H. A genome-wide association study reveals dominance effects on number of teats in pigs. PLoS One 2014; 9:e105867. [PMID: 25158056 PMCID: PMC4144910 DOI: 10.1371/journal.pone.0105867] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Dominance has been suggested as one of the genetic mechanisms explaining heterosis. However, using traditional quantitative genetic methods it is difficult to obtain accurate estimates of dominance effects. With the availability of dense SNP (Single Nucleotide Polymorphism) panels, we now have new opportunities for the detection and use of dominance at individual loci. Thus, the aim of this study was to detect additive and dominance effects on number of teats (NT), specifically to investigate the importance of dominance in a Landrace-based population of pigs. In total, 1,550 animals, genotyped for 32,911 SNPs, were used in single SNP analysis. SNPs with a significant genetic effect were tested for their mode of gene action being additive, dominant or a combination. In total, 21 SNPs were associated with NT, located in three regions with additive (SSC6, 7 and 12) and one region with dominant effects (SSC4). Estimates of additive effects ranged from 0.24 to 0.29 teats. The dominance effect of the QTL located on SSC4 was negative (−0.26 teats). The additive variance of the four QTLs together explained 7.37% of the total phenotypic variance. The dominance variance of the four QTLs together explained 1.82% of the total phenotypic variance, which corresponds to one-fourth of the variance explained by additive effects. The results suggest that dominance effects play a relevant role in the genetic architecture of NT. The QTL region on SSC7 contains the most promising candidate gene: VRTN. This gene has been suggested to be related to the number of vertebrae, a trait correlated with NT.
Collapse
Affiliation(s)
- Marcos S. Lopes
- TOPIGS Research Center IPG B.V., Beuningen, the Netherlands
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands
- * E-mail:
| | | | | | - Egbert F. Knol
- TOPIGS Research Center IPG B.V., Beuningen, the Netherlands
| | - Henk Bovenhuis
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands
| |
Collapse
|
26
|
Verardo LL, Silva FF, Varona L, Resende MDV, Bastiaansen JWM, Lopes PS, Guimarães SEF. Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs. J Appl Genet 2014; 56:123-32. [DOI: 10.1007/s13353-014-0240-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2014] [Revised: 05/27/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
|
27
|
Lee JB, Jung EJ, Park HB, Jin S, Seo DW, Ko MS, Cho IC, Lee JH, Lim HT. Genome-wide association analysis to identify SNP markers affecting teat numbers in an F2 intercross population between Landrace and Korean native pigs. Mol Biol Rep 2014; 41:7167-73. [PMID: 25055975 DOI: 10.1007/s11033-014-3599-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2013] [Accepted: 07/07/2014] [Indexed: 11/28/2022]
Abstract
Most reproductive traits have low heritability and are greatly affected by environmental factors. Teat number and litter size are traits related to the reproduction ability of pigs. To identify quantitative trait loci (QTLs) for teat number traits, a genome-wide association study (GWAS) was conducted using an F2 intercross between Landrace and Korean native pigs. Genotype analysis was performed using the porcine SNP 60 K beadchip. The GWAS was performed using a mixed-effects model and linear regression approach. When a genome-wide threshold was determined using the Bonferroni method (P = 1.61 × 10(-6)), 38 single nucleotide polymorphism (SNP) markers in pig chromosome 7 (SSC7) were significantly associated with three teat number traits (total teat number, left teat number, and right teat number). Among these, SNPs in 5 genes (HDDC3, LOC100156276, LOC100155863, ANPEP, SCAMP2) were selected for further study based primarily on their statistical significance. A significant association was detected in SCAMP2 g.25280 G>A for total teat number (P = 2.0 × 10(-12)), HDDC3 g.1319 G>A SNP for left teat number (P = 2.3 × 10(-7)), and SCAMP2 g.14198 G>A for right teat number (P = 4.7 × 10(-12)). These results provide valuable information about the selective breeding for desirable teat numbers in pigs.
Collapse
Affiliation(s)
- Jae-Bong Lee
- Division of Applied Life Science, Graduate School of Gyeongsang National University, Jinju, 660-701, Korea,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jin S, Lee JB, Kang K, Yoo CK, Kim BM, Park HB, Lim HT, Cho IC, Maharani D, Lee JH. The Possibility of TBC1D21 as a Candidate Gene for Teat Numbers in Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1374-8. [PMID: 25049720 PMCID: PMC4093071 DOI: 10.5713/ajas.2013.13140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/06/2013] [Revised: 06/24/2013] [Accepted: 05/29/2013] [Indexed: 12/02/2022]
Abstract
Based on a quantitative traits locus (QTL) study using a F2 intercross between Landrace and Korean native pigs, a significant QTL affecting teat numbers in SSC7 was identified. The strong positional candidate gene, TBC1D21, was selected due to its biological function for epithelial mesenchymal cell development. Sequence analysis revealed six single nucleotide polymorphisms (SNPs) in the TBC1D21 gene. Among these, two SNP markers, one silent mutation (SNP01) for g.13,050A>G and one missense mutation (SNP04) for c.829A>T (S277C), were genotyped and they showed significant associations with teat number traits (p value = 6.38E-05 for SNP01 and p value = 1.06E-07 for SNP04 with total teat numbers). Further functional validation of these SNPs could give valuable information for understanding the teat number variation in pigs.
Collapse
Affiliation(s)
- S Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - J B Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - K Kang
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - C K Yoo
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - B M Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - H B Park
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - H T Lim
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - I C Cho
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - D Maharani
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| | - J H Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Deajeon 305-764, Korea
| |
Collapse
|
29
|
Lee KT, Lee YM, Alam M, Choi BH, Park MR, Kim KS, Kim TH, Kim JJ. A Whole Genome Association Study on Meat Quality Traits Using High Density SNP Chips in a Cross between Korean Native Pig and Landrace. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1529-39. [PMID: 25049513 PMCID: PMC4093033 DOI: 10.5713/ajas.2012.12474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/04/2012] [Revised: 09/28/2012] [Accepted: 09/27/2012] [Indexed: 11/27/2022]
Abstract
A whole genome association (WGA) study was performed to detect significant polymorphisms for meat quality traits in an F2 cross population (N = 478) that were generated with Korean native pig sires and Landrace dams in National Livestock Research Institute, Songwhan, Korea. The animals were genotyped using Illumina porcine 60k SNP beadchips, in which a set of 46,865 SNPs were available for the WGA analyses on ten carcass quality traits; live weight, crude protein, crude lipids, crude ash, water holding capacity, drip loss, shear force, CIE L, CIE a and CIE b. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model, after adjusting for sex, sire and slaughter stage as fixed effects. With the significant SNPs for each trait (p<0.001), a stepwise regression procedure was applied to determine the best set of SNPs with the additive and/or dominance effects. A total of 106 SNPs, or quantitative trait loci (QTL) were detected, and about 32 to 66% of the total phenotypic variation was explained by the significant SNPs for each trait. The QTL were identified in most porcine chromosomes (SSCs), in which majority of the QTL were detected in SSCs 1, 2, 12, 13, 14 and 16. Several QTL clusters were identified on SSCs 12, 16 and 17, and a cluster of QTL influencing crude protein, crude lipid, drip loss, shear force, CIE a and CIE b were located between 20 and 29 Mb of SSC12. A pleiotropic QTL for drip loss, CIE L and CIE b was also detected on SSC16. These QTL need to be validated in commercial pig populations for genetic improvement in meat quality via marker-assisted selection.
Collapse
Affiliation(s)
- K-T Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - Y-M Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - M Alam
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - B H Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - M R Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - K-S Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - T-H Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - J-J Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| |
Collapse
|
30
|
Duijvesteijn N, Veltmaat JM, Knol EF, Harlizius B. High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development. BMC Genomics 2014; 15:542. [PMID: 24981054 PMCID: PMC4092218 DOI: 10.1186/1471-2164-15-542] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2013] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Selection pressure on the number of teats has been applied to be able to provide enough teats for the increase in litter size in pigs. Although many QTL were reported, they cover large chromosomal regions and the functional mutations and their underlying biological mechanisms have not yet been identified. To gain a better insight in the genetic architecture of the trait number of teats, we performed a genome-wide association study by genotyping 936 Large White pigs using the Illumina PorcineSNP60 Beadchip. The analysis is based on deregressed breeding values to account for the dense family structure and a Bayesian approach for estimation of the SNP effects. RESULTS The genome-wide association study resulted in 212 significant SNPs. In total, 39 QTL regions were defined including 170 SNPs on 13 Sus scrofa chromosomes (SSC) of which 5 regions on SSC7, 9, 10, 12 and 14 were highly significant. All significantly associated regions together explain 9.5% of the genetic variance where a QTL on SSC7 explains the most genetic variance (2.5%). For the five highly significant QTL regions, a search for candidate genes was performed. The most convincing candidate genes were VRTN and Prox2 on SSC7, MPP7, ARMC4, and MKX on SSC10, and vertebrae δ-EF1 on SSC12. All three QTL contain candidate genes which are known to be associated with vertebral development. In the new QTL regions on SSC9 and SSC14, no obvious candidate genes were identified. CONCLUSIONS Five major QTL were found at high resolution on SSC7, 9, 10, 12, and 14 of which the QTL on SSC9 and SSC14 are the first ones to be reported on these chromosomes. The significant SNPs found in this study could be used in selection to increase number of teats in pigs, so that the increasing number of live-born piglets can be nursed by the sow. This study points to common genetic mechanisms regulating number of vertebrae and number of teats.
Collapse
Affiliation(s)
- Naomi Duijvesteijn
- />TOPIGS Research Center IPG, PO Box 43, 6640AA Beuningen, The Netherlands
| | - Jacqueline M Veltmaat
- />Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61, Biopolis Drive, Singapore, Singapore 138673
| | - Egbert F Knol
- />TOPIGS Research Center IPG, PO Box 43, 6640AA Beuningen, The Netherlands
| | - Barbara Harlizius
- />TOPIGS Research Center IPG, PO Box 43, 6640AA Beuningen, The Netherlands
| |
Collapse
|
31
|
Ai H, Xiao S, Zhang Z, Yang B, Li L, Guo Y, Lin G, Ren J, Huang L. Three novel quantitative trait loci for skin thickness in swine identified by linkage and genome-wide association studies. Anim Genet 2014; 45:524-33. [DOI: 10.1111/age.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Lin Li
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Yuanmei Guo
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Guoshan Lin
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China; Jiangxi Agricultural University; 330045 Nanchang China
| |
Collapse
|
32
|
Fan Y, Xing Y, Zhang Z, Ai H, Ouyang Z, Ouyang J, Yang M, Li P, Chen Y, Gao J, Li L, Huang L, Ren J. A further look at porcine chromosome 7 reveals VRTN variants associated with vertebral number in Chinese and Western pigs. PLoS One 2013; 8:e62534. [PMID: 23638110 PMCID: PMC3634791 DOI: 10.1371/journal.pone.0062534] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
The number of vertebrae is an economically important trait that affects carcass length and meat production in pigs. A major quantitative trait locus (QTL) for thoracic vertebral number has been repeatedly identified on pig chromosome (SSC) 7. To dissect the genetic basis of the major locus, we herein genotyped a large sample of animals from 3 experimental populations of Chinese and Western origins using 60K DNA chips. Genome-wide association studies consistently identified the locus across the 3 populations and mapped the locus to a 947-Kb region on SSC7. An identical-by-descent sharing assay refined the locus to a 100-Kb segment that harbors only two genes including VRTN and SYNDIG1L. Of them, VRNT has been proposed as a strong candidate of the major locus in Western modern breeds. Further, we resequenced the VRTN gene using DNA samples of 35 parental animals with known QTL genotypes by progeny testing. Concordance tests revealed 4 candidate causal variants as their genotypes showed the perfect segregation with QTL genotypes of the tested animals. An integrative analysis of evolutional constraints and functional elements supported two VRTN variants in a complete linkage disequilibrium phase as the most likely causal mutations. The promising variants significantly affect the number of thoracic vertebrae (one vertebra) in large scale outbred animals, and are segregating at rather high frequencies in Western pigs and at relatively low frequencies in a number of Chinese breeds. Altogether, we show that VRTN variants are significantly associated with the number of thoracic vertebrae in both Chinese and Western pigs. The finding advances our understanding of the genetic architecture of the vertebral number in pigs. Furthermore, our finding is of economical importance as it provides a robust breeding tool for the improvement of vertebral number and meat production in both Chinese indigenous pigs and Western present-day commercial pigs.
Collapse
Affiliation(s)
- Yin Fan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Yuyun Xing
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Zixuan Ouyang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Jing Ouyang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Ming Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Pinghua Li
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Yijie Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Jun Gao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Lin Li
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| |
Collapse
|
33
|
Hirose K, Mikawa S, Okumura N, Noguchi G, Fukawa K, Kanaya N, Mikawa A, Arakawa A, Ito T, Hayashi Y, Tachibana F, Awata T. Association of swine vertnin (VRTN) gene with production traits in Duroc pigs improved using a closed nucleus breeding system. Anim Sci J 2012; 84:213-21. [DOI: 10.1111/j.1740-0929.2012.01066.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2011] [Accepted: 06/29/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Kensuke Hirose
- Central Research Institute for Feed and Livestock ZEN-NOH (National Federation of Agricultural Cooperative Associations); Kamishihoro; Hokkaido
| | | | | | - Go Noguchi
- Central Research Institute for Feed and Livestock, ZEN-NOH (National Federation of Agricultural Co-operative Associations); Tsukuba; Ibaraki; Japan
| | - Kazuo Fukawa
- Central Research Institute for Feed and Livestock ZEN-NOH (National Federation of Agricultural Cooperative Associations); Kamishihoro; Hokkaido
| | | | | | | | - Tetsuya Ito
- Central Research Institute for Feed and Livestock ZEN-NOH (National Federation of Agricultural Cooperative Associations); Kamishihoro; Hokkaido
| | - Yoichi Hayashi
- Central Research Institute for Feed and Livestock, ZEN-NOH (National Federation of Agricultural Co-operative Associations); Tsukuba; Ibaraki; Japan
| | - Fumio Tachibana
- Central Research Institute for Feed and Livestock, ZEN-NOH (National Federation of Agricultural Co-operative Associations); Tsukuba; Ibaraki; Japan
| | | |
Collapse
|
34
|
Detection of quantitative trait loci for teat number and female reproductive traits in Meishan × Large White F2 pigs. Animal 2012; 2:813-20. [PMID: 22443659 DOI: 10.1017/s1751731108002097] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022] Open
Abstract
A quantitative trait locus (QTL) analysis of female reproductive data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. Six F1 boars and 23 F1 sows, progeny of six LW boars and six MS sows, produced 573 F2 females and 530 F2 males. Six traits, i.e. teat number (TN), age at puberty (AP), ovulation rate (OR), weight at mating (WTM), number of viable embryos (NVE) and embryo survival (ES) at 30 days of gestation were analysed. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross (LC) regression and a half-full sib (HFS) maximum likelihood test. Genome-wide (GW) highly significant (P < 0.001) QTL were detected for WTM on SSC 7 and for AP on SSC 13. They explained, respectively, 14.5% and 8.9% of the trait phenotypic variance. Other GW significant (P < 0.05) QTL were detected for TN on SSC 3, 7, 8, 16 and 17, for OR on SSC 4 and 5, and for ES on SSC 9. Two additional chromosome-wide significant (P < 0.05) QTL were detected for TN, three for WTM, four for AP, three for OR, three for NVE and two for ES. With the exception of the two above-mentioned loci, the QTL explained from 1.2% to 4.6% of trait phenotypic variance. QTL alleles were in most cases not fixed in the grand-parental populations and Meishan alleles were not systematically associated with higher reproductive performance.
Collapse
|
35
|
Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C. The Human Obesity Gene Map: The 2003 Update. ACTA ACUST UNITED AC 2012; 12:369-439. [PMID: 15044658 DOI: 10.1038/oby.2004.47] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome-wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Eric E Snyder
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen K, Hawken R, Flickinger GH, Rodriguez-Zas SL, Rund LA, Wheeler MB, Abrahamsen M, Rutherford MS, Beever JE, Schook LB. Association of the porcine transforming growth factor beta type I receptor (TGFBR1) gene with growth and carcass traits. Anim Biotechnol 2012; 23:43-63. [PMID: 22292700 DOI: 10.1080/10495398.2011.630897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Growth and carcass traits are of great economic importance in livestock production. A large number of quantitative trait loci (QTL) have been identified for growth and carcass traits on porcine chromosome one (SSC1). A key positional candidate for this chromosomal region is TGFBR1 (transforming growth factor beta type I receptor). This gene plays a key role in inherited disorders at cardiovascular, craniofacial, neurocognitive, and skeletal development in mammals. RESULTS In this study, 27 polymorphic SNPs in the porcine TGFBR1 gene were identified on the University of Illinois Yorkshire × Meishan resource population. Three SNPs (SNP3, SNP43, SNP64) representing major polymorphic patterns of the 27 SNPs in F1 and F0 individuals of the Illinois population were selected for analyses of QTL association and genetic diversity. An association analysis for growth and carcass traits was completed using these three representative SNPs in the Illinois population with 298 F2 individuals and a large commercial population of 1008 animals. The results indicate that the TGFBR1 gene polymorphism (SNP64) is significantly associated (p < 0.05) with growth rates including average daily gains between birth and 56 kg (p = 0.049), between 5.5 and 56 kg (p = 0.024), between 35 and 56 kg (p = 0.021). Significant associations (p < 0.05) were also identified between TGFBR1 gene polymorphisms (SNP3/SNP43) and carcass traits including loin-eye-area (p = 0.022) in the Illinois population, and back-fat thickness (p = 0.0009), lean percentage (p = 0.0023) and muscle color (p = 0.021) in the commercial population. These three SNPs were also used to genotype a diverse panel of 130 animals representing 11 pig breeds. Alleles SNP3_T and SNP43_G were fixed in Pietrain and Sinclair pig breeds. SNP64_G allele was uniquely identified in Chinese Meishan pigs. Strong evidence of association (p < 0.01) between both SNP3 and SNP64 alleles and reproductive traits including gestation length and number of corpora lutea were also observed in the Illinois population. CONCLUSION This study gives the first evidence of association between the porcine TGFBR1 gene and traits of economic importance and provides support for using TGFBR1 markers for pig breeding and selection programs. The genetic diversities in different pig breeds would be helpful to understand the genetic background and migration of the porcine TGFBR1 gene.
Collapse
Affiliation(s)
- Kefei Chen
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ren DR, Ren J, Ruan GF, Guo YM, Wu LH, Yang GC, Zhou LH, Li L, Zhang ZY, Huang LS. Mapping and fine mapping of quantitative trait loci for the number of vertebrae in a White Duroc × Chinese Erhualian intercross resource population. Anim Genet 2012; 43:545-51. [PMID: 22497517 DOI: 10.1111/j.1365-2052.2011.02313.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/22/2011] [Indexed: 11/30/2022]
Abstract
The number of vertebrae is associated with body size and meat production in pigs. To identify quantitative trait loci (QTL) for the number of vertebrae, phenotypic values were measured in 1029 individuals from a White Duroc × Chinese Erhualian intercross F(2) population. A whole genome scan was performed with 194 microsatellite markers in the F(2) population. Four genome-wide significant QTL and eight chromosome-wide significant QTL for the number of vertebrae were identified on pig chromosomes (SSC) 1, 2, 6, 7, 10 and 12. The most significant QTL was detected on SSC7 with a confidence interval of 1 cM, explaining 42.32% of the phenotypic variance in the thoracic vertebral number. The significant QTL on SSC1, 2 and 7 confirmed previous reports. A panel of 276 animals representing seven Western and Chinese breeds was genotyped with 34 microsatellite markers in the SSC7 QTL region. No obvious selective sweep effect was observed in the tested breeds, indicating that intensive selection for enlarged body size in Western commercial breeds did not wipe out the genetic variability in the QTL region. The Q alleles for increased vertebral number originated from both Chinese Erhualian and White Duroc founder animals. A haplotype block of approximately 900 kb was found to be shared by all Q-bearing chromosomes of F(1) sires except for one distinct Q chromosome. The critical region harbours the newly reported VRTN gene associated with vertebral number. Further investigations are required to confirm whether VRTN or two other positional candidate genes, PROX2 and FOS, cause the QTL effect.
Collapse
Affiliation(s)
- D R Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsumoto T, Nakajima I, Eguchi-Ogawa T, Nagamura Y, Hamasima N, Uenishi H. Changes in gene expression in a porcine preadipocyte cell line during differentiation. Anim Genet 2012; 43:535-44. [PMID: 22497428 DOI: 10.1111/j.1365-2052.2011.02310.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/18/2011] [Indexed: 12/17/2022]
Abstract
Adipocyte differentiation plays an important role in the formation of fat tissues in pigs and affects meat quality and productivity. Clarification of the nature of the pig genes that participate in adipocyte differentiation will provide a clue to the regulation of fat content and thickness in pig carcases by dietary control; it will also help to find target genes for exploring potentially useful polymorphisms for molecular breeding aimed at fat traits. We constructed a DNA oligomer microarray based on pig transcripts, and we used the array to investigate time-dependent changes in gene expression in the PSPA porcine preadipocyte cell line during differentiation into adipocytes. We selected genes with markedly altered expression (at least fivefold difference in comparison with expression in undifferentiated cells) and classified them into five groups according to gene expression pattern. In the early stage after stimulation of adipocyte differentiation, we observed up-regulation of many genes encoding proteins involved in regulating cell proliferation and transcription. Among the probes corresponding to transcripts that showed marked changes in expression, 27 were located within previously reported QTL regions for traits related to adipose tissues. These results will be valuable resources for finding the genes responsible for fat-related traits that have been identified in previous studies using various pig resource families.
Collapse
Affiliation(s)
- T Matsumoto
- Animal Research Division, Institute of Society for Techno-innovation of Agriculture, Forestry and Fisheries, 446-1 Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Ai H, Ren J, Zhang Z, Ma J, Guo Y, Yang B, Huang L. Detection of quantitative trait loci for growth- and fatness-related traits in a large-scale White Duroc × Erhualian intercross pig population. Anim Genet 2011; 43:383-91. [PMID: 22497573 DOI: 10.1111/j.1365-2052.2011.02282.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Growth and fatness are economically important traits in pigs. In this study, a genome scan was performed to detect quantitative trait loci (QTL) for 14 growth and fatness traits related to body weight, backfat thickness and fat weight in a large-scale White Duroc × Erhualian F(2) intercross. A total of 76 genome-wide significant QTL were mapped to 16 chromosomes. The most significant QTL was found on pig chromosome (SSC) 7 for fatness with unexpectedly small confidence intervals of ∼2 cM, providing an excellent starting point to identify causal variants. Common QTL for both fatness and growth traits were found on SSC4, 5, 7 and 8, and shared QTL for fat deposition were detected on SSC1, 2 and X. Time-series analysis of QTL for body weight at six growth stages revealed the continuously significant effects of the QTL on SSC4 at the fattening period and the temporal-specific expression of the QTL on SSC7 at the foetus and fattening stages. For fatness traits, Chinese Erhualian alleles were associated with increased fat deposition except that at the major QTL on SSC7. For growth traits, most of White Duroc alleles enhanced growth rates except for those at three significant QTL on SSC6, 7 and 9. The results confirmed many previously reported QTL and also detected novel QTL, revealing the complexity of the genetic basis of growth and fatness in pigs.
Collapse
Affiliation(s)
- H Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Wei WH, Skinner TM, Anderson JA, Southwood OI, Plastow G, Archibald AL, Haley CS. Mapping QTL in the porcine MHC region affecting fatness and growth traits in a Meishan/Large White composite population. Anim Genet 2011; 42:83-5. [PMID: 20477798 DOI: 10.1111/j.1365-2052.2010.02062.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
A number of studies have mapped QTL regulating porcine fatness and growth traits to the region of the major histocompatibility complex (MHC) on porcine chromosome 7 using various experimental crosses. The QTL results from crosses using the Chinese Meishan (MS) (slow growing and fat) are particularly interesting because the MS alleles have been found to be associated with increased growth rate and reduced backfat depth. We investigated these QTL further in a composite population derived previously over eight generations by intercrossing Meishan and the European Large White breeds. Genotype information from 32 markers in a 15cM target region was used in linkage and association analyses. A two-step variance component analysis identified QTL for three growth-related traits, explaining 19 ∼ 24% of the phenotypic variance with a confidence interval of 4 cM in the target region. SNP association analyses found that ss181128966 and ss181128924 within the QTL interval were strongly associated with the growth traits. Only weak signals for an effect on backfat depth were found in the association and linkage analyses, possibly because of past directional selection in the composite population.
Collapse
Affiliation(s)
- W H Wei
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian EH25 9PS, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Mikawa S, Sato S, Nii M, Morozumi T, Yoshioka G, Imaeda N, Yamaguchi T, Hayashi T, Awata T. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet 2011; 12:5. [PMID: 21232157 PMCID: PMC3024977 DOI: 10.1186/1471-2156-12-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2010] [Accepted: 01/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background The number of vertebrae in pigs varies and is associated with body size. Wild boars have 19 vertebrae, but European commercial breeds for pork production have 20 to 23 vertebrae. We previously identified two quantitative trait loci (QTLs) for number of vertebrae on Sus scrofa chromosomes (SSC) 1 and 7, and reported that an orphan nuclear receptor, NR6A1, was located at the QTL on SSC1. At the NR6A1 locus, wild boars and Asian local breed pigs had the wild-type allele and European commercial-breed pigs had an allele associated with increased numbers of vertebrae (number-increase allele). Results Here, we performed a map-based study to define the other QTL, on SSC7, for which we detected genetic diversity in European commercial breeds. Haplotype analysis with microsatellite markers revealed a 41-kb conserved region within all the number-increase alleles in the present study. We also developed single nucleotide polymorphisms (SNPs) in the 450-kb region around the QTL and used them for a linkage disequilibrium analysis and an association study in 199 independent animals. Three haplotype blocks were detected, and SNPs in the 41-kb region presented the highest associations with the number of vertebrae. This region encodes an uncharacterized hypothetical protein that is not a member of any other known gene family. Orthologs appear to exist not only in mammals but also birds and fish. This gene, which we have named vertnin (VRTN) is a candidate for the gene associated with variation in vertebral number. In pigs, the number-increase allele was expressed more abundantly than the wild-type allele in embryos. Among candidate polymorphisms, there is an insertion of a SINE element (PRE1) into the intron of the Q allele as well as the SNPs in the promoter region. Conclusions Genetic diversity of VRTN is the suspected cause of the heterogeneity of the number of vertebrae in commercial-breed pigs, so the polymorphism information should be directly useful for assessing the genetic ability of individual animals. The number-increase allele of swine VRTN was suggested to add an additional thoracic segment to the animal. Functional analysis of VRTN may provide novel findings in the areas of developmental biology.
Collapse
Affiliation(s)
- Satoshi Mikawa
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tetzlaff S, Murani E, Schellander K, Ponsuksili S, Wimmers K. Differential expression of growth factors and their receptors indicates their involvement in the inverted teat defect in pigs1. J Anim Sci 2009; 87:3451-7. [DOI: 10.2527/jas.2008-1660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
|
44
|
Chen ZG, Ma ZX, Zuo B, Lei MG, Xiong YZ. Molecular characterization and association with carcass traits of the porcine SLC39A7 gene. J Anim Breed Genet 2009; 126:288-95. [PMID: 19630879 DOI: 10.1111/j.1439-0388.2008.00740.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Abstract
In this study, the molecular characterization and potential association of SLC39A7 gene with carcass traits were investigated in pigs. The sequence of SLC39A7 cDNA was obtained by in silico cloning and RT-polymerase chain reaction (PCR). Two transcripts, variant 1 (2398 bp) and variant 2 (2088 bp), of the SLC39A7 gene were identified. Expression analysis of SLC39A7 in 10 different tissues by RT-PCR showed that variant 1 was ubiquitously expressed in all tissues analysed, but variant 2 was not found in fat tissue. The cDNA regions of variant 1 and 2 were organized in seven and eight exons respectively. A c.205G>A substitution in exon 3, which changes a codon for glycine into a codon for arginine, (p.Gly69Arg) and a c.1138-216T>C substitution in intron 6 were detected by PCR-HpaII-restriction fragment length polymorphisms (RFLP) and PCR-cofI-RFLP respectively. Significant differences were found in the allele frequencies of c.205G>A among six Chinese indigenous pig breeds and two commercial pig breeds. Linkage analysis showed that the c.205G>A polymorphism within the SLC39A7 gene was closely linked to the marker Sw1856 on pig chromosome 7 in a Large White x Meishan F(2) resource population. The QTL and association studies between polymorphisms of the SLC39A7 gene and carcass traits were carried out. Significant associations of the SLC39A7 polymorphisms with backfat thickness at thorax-waist (p < 0.05), average backfat thickness (p < 0.05) and leaf fat weight (p < 0.01) were found. Additional F-drop test or marker assisted association analyses also supported the association of the mutation in SLC39A7 with the above traits. Together, the present study provided the useful information for the characterization of SLC39A7 gene and potential association with carcass traits in pigs.
Collapse
Affiliation(s)
- Z G Chen
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
45
|
Jouffe V, Rowe S, Liaubet L, Buitenhuis B, Hornshøj H, SanCristobal M, Mormède P, de Koning DJ. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs. BMC Proc 2009; 3 Suppl 4:S14. [PMID: 19615114 PMCID: PMC2712744 DOI: 10.1186/1753-6561-3-s4-s14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). RESULTS Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. CONCLUSION This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.
Collapse
Affiliation(s)
- Vincent Jouffe
- Laboratoire PsyNuGen, INRA UMR1286, CNRS UMR5226, Université de Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux, France
| | - Suzanne Rowe
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin EH25 9PS, UK
| | - Laurence Liaubet
- Laboratoire de Génétique Cellulaire, INRA UMR444, F-31326 Castanet-Tolosan, France
| | - Bart Buitenhuis
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - Henrik Hornshøj
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - Magali SanCristobal
- Laboratoire de Génétique Cellulaire, INRA UMR444, F-31326 Castanet-Tolosan, France
| | - Pierre Mormède
- Laboratoire PsyNuGen, INRA UMR1286, CNRS UMR5226, Université de Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux, France
| | - D J de Koning
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin EH25 9PS, UK
| |
Collapse
|
46
|
Lunney JK, Ho CS, Wysocki M, Smith DM. Molecular genetics of the swine major histocompatibility complex, the SLA complex. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:362-374. [PMID: 18760302 DOI: 10.1016/j.dci.2008.07.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/24/2008] [Revised: 07/10/2008] [Accepted: 07/13/2008] [Indexed: 05/26/2023]
Abstract
The swine major histocompatibility complex (MHC) or swine leukocyte antigen (SLA) complex is one of the most gene-dense regions in the swine genome. It consists of three major gene clusters, the SLA class I, class III and class II regions, that span approximately 1.1, 0.7 and 0.5Mb, respectively, making the swine MHC the smallest among mammalian MHC so far examined and the only one known to span the centromere. This review summarizes recent updates to the Immuno Polymorphism Database-MHC (IPD-MHC) website (http://www.ebi.ac.uk/ipd/mhc/sla/) which serves as the repository for maintaining a list of all SLA recognized genes and their allelic sequences. It reviews the expression of SLA proteins on cell subsets and their role in antigen presentation and regulating immune responses. It concludes by discussing the role of SLA genes in swine models of transplantation, xenotransplantation, cancer and allergy and in swine production traits and responses to infectious disease and vaccines.
Collapse
|
47
|
Ding N, Guo Y, Knorr C, Ma J, Mao H, Lan L, Xiao S, Ai H, Haley CS, Brenig B, Huang L. Genome-wide QTL mapping for three traits related to teat number in a White Duroc x Erhualian pig resource population. BMC Genet 2009; 10:6. [PMID: 19226448 PMCID: PMC2672953 DOI: 10.1186/1471-2156-10-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2008] [Accepted: 02/18/2009] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Teat number is an important fertility trait for pig production, reflecting the mothering ability of sows. It is also a discrete and often canalized trait presenting bilateral symmetry with minor differences between the two sides, providing a potential power to evaluate fluctuating asymmetry and developmental instability. The knowledge of its genetic control is still limited. In this study, a genome-wide scan was performed with 183 microsatellites covering the pig genome to identify quantitative trait loci (QTL) for three traits related to teat number including the total teat number (TTN), the teat number at the left (LTN) and right (RTN) sides in a large scale White Duroc x Erhualian resource population. RESULTS A sex-average linkage map with a total length of 2350.3 cM and an average marker interval of 12.84 cM was constructed. Eleven genome-wide significant QTL for TTN were detected on 8 autosomes including pig chromosomes (SSC) 1, 3, 4, 5, 6, 7, 8 and 12. Six suggestive QTL for this trait were detected on SSC6, 9, 13, 14 and 16. Eight chromosomal regions each on SSC1, 3, 4, 5, 6, 7, 8 and 12 showed significant associations with LTN. These regions were also evidenced as significant QTL for RTN except for those on SSC6 and SSC8. The most significant QTL for the 3 traits were all located on SSC7. Erhualian alleles at most of the identified QTL had positive additive effects except for three QTL on SSC1 and SSC7, at which White Duroc alleles increased teat numbers. On SSC1, 6, 9, 13 and 16, significant dominance effects were observed on TTN, and predominant imprinting effect on TTN was only detected on SSC12. CONCLUSION The results not only confirmed the QTL regions from previous experiments, but also identified five new QTL for the total teat number in swine. Minor differences between the QTL regions responsible for LTN and RTN were validated. Further fine mapping should be focused on consistently identified regions with small confidence intervals, such as those on SSC1, SSC7 and SSC12.
Collapse
Affiliation(s)
- Nengshui Ding
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany
| | - Yuanmei Guo
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Christoph Knorr
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany
| | - Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huirong Mao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lütao Lan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chris S Haley
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin BioCentre, Roslin, Midlothian, EH25 9PS, UK
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| |
Collapse
|
48
|
Yang G, Ren J, Zhang Z, Huang L. Genetic evidence for the introgression of Western NR6A1 haplotype into Chinese Licha breed associated with increased vertebral number. Anim Genet 2009; 40:247-50. [PMID: 19220230 DOI: 10.1111/j.1365-2052.2008.01820.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
There is evidence that NR6A1 is a strong candidate for being a causal gene underlying vertebral number in pigs. The Licha Black is one of the leanest Chinese indigenous pig breeds, having an average vertebral number of 21.5. The introgression of Western germplasm into Licha Black, resulting in increased vertebral number, has been assumed but is not confirmed. This study detected allele frequencies of the NR6A1 causative mutation (c.575T>C) in 519 pigs from three Western and seven Chinese breeds including Licha Black, and evaluated the genetic variation in a 650-kb region containing NR6A1 in the 10 breeds. Allele T for increased vertebral number was fixed in Western breeds. In contrast, this allele was very rare in most of the Chinese native breeds. Notably, the T allele was present in the Licha Black at a rather higher frequency (0.585) and in the Laiwu at lower frequency (0.250). As expected, selection pressure has wiped out the genetic variability in the 650 kb region in Western breeds. Conversely, Chinese indigenous breeds showed a high degree of genetic variability in this region. However, the Licha Black displayed dramatically reduced heterozygosity at the loci proximal to the causative mutation. Moreover, a high proportion (45.9%) of Licha Black pigs and a small number (21%) of Laiwu pigs had the Western NR6A1 haplotype, and the two breeds showed closer relationships with Western commercial breeds than other Chinese breeds in the phylogenic tree. When the results are taken together, this study supports the assumption that the Western NR6A1 haplotypes were introduced into Licha Black and possibly Laiwu and are associated with increased vertebral number.
Collapse
Affiliation(s)
- G Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province, Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | | | | | | |
Collapse
|
49
|
Morozumi T, Naito T, Lan PD, Nakajima E, Mitsuhashi T, Mikawa S, Hayashi T, Awata T, Uenishi H, Nagata K, Watanabe T, Hamasima N. Molecular cloning and characterization of porcine Mx2 gene. Mol Immunol 2009; 46:858-65. [DOI: 10.1016/j.molimm.2008.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2006] [Revised: 07/30/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
|
50
|
Shimanuki SI, Mikawa A, Miyake Y, Hamasima N, Mikawa S, Awata T. Structure and polymorphism analysis of transforming growth factor beta receptor 1 (TGFBR1) in pigs. Biochem Genet 2008; 43:491-500. [PMID: 16341765 DOI: 10.1007/s10528-005-8165-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2004] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Many quantitative trait loci (QTL) for growth and reproductive traits have been detected on the porcine chromosome region 1qter (SSC1qter), making it one of the most important genomic regions for pig breeding. SSC1q corresponds to human chromosome 9, on which lies transforming growth factor beta receptor 1 (TGFBR1). We cloned the porcine TGFBR1 cDNA and gene (as a candidate for QTL) and analyzed the gene structure and polymorphism. Porcine TGFBR1 consists of 9 exons and 8 introns. Intron 2 is alternatively spliced at the acceptor site, resulting in two kinds of mRNA, with putative open reading frames of 1500 and 1512 bp in length. The shorter one encodes 499 amino acid residues. The amino acid sequence has 96.2 and 97.2% sequence similarity to those of human and bovine TGFBR1, respectively. The sequence similarity between porcine and murine TGFBR1 is 95.6%. We detected three single-nucleotide substitutions in exons 1, 2, and 7. Those in exons 1 and 7 are nonsynonymous substitutions resulting in Pro8Ser and Ile413Val substitutions, respectively.
Collapse
Affiliation(s)
- Shin-Ichi Shimanuki
- Animal Genome Research Program, Society for Techno-innovation of Agriculture, Forestry and Fisheries, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|