1
|
Manca R, Glomski C, Pica A. Hematopoietic stem cells debut in embryonic lymphomyeloid tissues of elasmobranchs. Eur J Histochem 2019; 63:3060. [PMID: 31577110 PMCID: PMC6778817 DOI: 10.4081/ejh.2019.3060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
The evolutionary initiation of the appearance in lymphomyeloid tissue of the hemopoietic stem cell in the earliest (most primitive) vertebrate model, i.e. the elasmobranch (chondroichthyan) Torpedo marmorata Risso, has been studied. The three consecutive developmental stages of torpedo embryos were obtained by cesarean section from a total of six pregnant torpedoes. Lymphomyeloid tissue was identified in the Leydig organ and epigonal tissue. The sections were treated with monoclonal anti-CD34 and anti-CD38 antibodies to detect hematopoietic stem cells. At stage I (2-cm-long embryos with external gills) and at stage II (3-4 cm-long embryos with a discoidal shape and internal gills), some lymphoid-like cells that do not demonstrate any immunolabeling for these antibodies are present. Neither CD34+ nor CD38+ cells are identifiable in lymphomyeloid tissue of stage I and stage II embryos, while a CD34+CD38- cell was identified in the external yolk sac of stage II embryo. The stage III (10-11-cm-long embryos), the lymphomyeloid tissue contained four cell populations, respectively CD34+CD38-, CD34+CD38+, CD34-CD38+, and CD34-CD38- cells. The spleen and lymphomyeloid tissue are the principal sites for the development of hematopoietic progenitors in embryonic Torpedo marmorata Risso. The results demonstrated that the CD34 expression on hematopoietic progenitor cells and its extraembryonic origin is conserved throughout the vertebrate evolutionary scale.
Collapse
Affiliation(s)
- Rosa Manca
- Department of Biology, University of Naples Federico II.
| | | | | |
Collapse
|
2
|
Kordon AO, Abdelhamed H, Ahmed H, Baumgartner W, Karsi A, Pinchuk LM. Assessment of the Live Attenuated and Wild-Type Edwardsiella ictaluri-Induced Immune Gene Expression and Langerhans-Like Cell Profiles in the Immune-Related Organs of Catfish. Front Immunol 2019; 10:392. [PMID: 30894864 PMCID: PMC6414466 DOI: 10.3389/fimmu.2019.00392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/14/2019] [Indexed: 01/18/2023] Open
Abstract
Edwardsiella ictaluri is a Gram-negative intracellular pathogen that causes enteric septicemia of catfish (ESC). Successful vaccination against intracellular pathogens requires T cell priming by antigen presenting cells (APCs) that bridge innate and adaptive immunity. However, the evidence on immunological mechanisms that underscore E. ictaluri pathogenesis and the protective role of live attenuated vaccines (LAVs) is scarce. We assessed the expression of immune genes related to antigen presentation by real-time PCR and the distribution patterns of Langerhans-like (L/CD207+) cells by immunohistochemistry in the immune-related tissues of channel catfish challenged with two novel E. ictaluri LAVs, EiΔevpB, and ESC-NDKL1 and wild type (WT) strain. Our results indicated significantly elevated expression of IFN-γ gene in the anterior kidney (AK) and spleen of vaccinated catfish at the early stages of exposure, which correlated with increased numbers of L/CD207+ cells. In general, the ESC-NDKL1-induced IFN-γ gene expression patterns in the AK resembled that of the patterns induced by EiΔevpB. However the MHCII gene expression patterns differed between the strains with significant increases at 6 h post-challenge (pc) with the EiΔevpB and at 7 d pc with the ESC-NDKL1 strains, respectively. Significant increases in activity of T helper type polarization genes such as IFN-γ and T cell co-receptors after exposure to ESC-NDKL1, in combination with elevated numbers of L/CD207+ cells at 7 d pc with both LAVs compared to uninfected and the WT-exposed counterparts, were documented in the spleen. The dominant pro-inflammatory environment with dramatically overexpressed inflammatory genes in the AK and 7 d pc in the spleen in response to E. ictaluri was found in exposed catfish. In general, the pro-inflammatory gene expression profiles in the ESC-NDKL1 pc showed more similarities to the WT strain-induced gene profiles compared to the EiΔevpB counterpart. In addition, E. ictaluri WT significantly decreased the numbers of Langerhans-like L/CD207+ cells in the AK and spleen at 3 and 7 days pc. In conclusion, we report the differential framework of initiation of innate and adaptive immune responses between E. ictaluri strains with both LAVs having a potential of satisfying the stringent requirements for successful vaccines.
Collapse
Affiliation(s)
- Adef O Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hamada Ahmed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States.,Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Wes Baumgartner
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
3
|
Quynh LM, Dung CT, Mai BT, Huy HV, Loc NQ, Hoa NQ, Thach PT, Anh BV, Thao CT, Nam NH, Nhung HTM, Long NN, Vu LV. Development of Fe 3O 4/Ag core/shell-based multifunctional immunomagnetic nanoparticles for isolation and detection of CD34+ stem cells. J Immunoassay Immunochem 2018; 39:308-322. [PMID: 29995570 DOI: 10.1080/15321819.2018.1488725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fe3O4/Ag core/shell nanoparticles functionalized with the free amino (NH2) functional groups (Fe3O4/Ag-NH2) were conjugated with fluorescent electron coupled dye (ECD)-antiCD34 antibody using the 1-ethyl-3-(3'-dimethyl-aminopropyl) carbodiimide (EDC) catalyst (ECD - Electron Coupled Dye or R Phycoerythrin-Texas Red is a fluorescent organic dye attached to the antibody). The characteristic fluorescence of ECD in the antibody was investigated and was used as a good indicator for estimating the percentage of the antibodies that were successfully conjugated with the nanoparticles. The conjugation efficiency was found to increase depending on the VNP:VAB ratio, where VNP and VAB are the volumes of the nanoparticle solution (concentration of 50 ppm) and the as-purchased antibody solution, respectively. The conjugation efficiency rapidly increased from approximately 18% to approximately 70% when VNP:VAB was increased from 2:1 to 100:1, and it gradually reached the saturated state at an efficiency of 95%, as the VNP:VAB was equal to 300:1. The bioactivity of the abovementioned conjugation product (denoted by Fe3O4/Ag-antiCD34) was evaluated in an experiment for the collection of stem cells from bone marrow samples.
Collapse
Affiliation(s)
- Luu Manh Quynh
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| | - Chu Tien Dung
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam.,b Department of Physics , University of Transport and Communications , Hanoi , Vietnam
| | - Bach Thi Mai
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| | - Hoang Van Huy
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| | - Nguyen Quang Loc
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| | - Nguyen Quang Hoa
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| | - Pham Tuan Thach
- c Faculty of Biology , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| | - Bui Viet Anh
- d VINMEC Research Institute of Stem cell and Gene Technology , Hanoi , Vietnam
| | - Chu Thi Thao
- d VINMEC Research Institute of Stem cell and Gene Technology , Hanoi , Vietnam
| | - Nguyen Hoang Nam
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam.,e NanoTechnology Program , Vietnam Japan University , Hanoi , Vietnam
| | - Hoang Thi My Nhung
- c Faculty of Biology , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| | - Nguyen Ngoc Long
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| | - Le Van Vu
- a Faculty of Physics , Hanoi University of Science, Vietnam National University , Hanoi , Vietnam
| |
Collapse
|
4
|
Jung G, Wunder E, Dieterlen A, Hénon P, Jacquey S. Three-dimensional distribution patterns of CD34 antigen on nonactivated cord blood cells. Cytometry A 2007; 73:16-21. [DOI: 10.1002/cyto.a.20490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Abstract
Fetal stem cells can be isolated from fetal blood and bone marrow as well as from other fetal tissues, including liver and kidney. Fetal blood is a rich source of haemopoietic stem cells (HSC), which proliferate more rapidly than those in cord blood or adult bone marrow. First trimester fetal blood also contains a population of non-haemopoietic mesenchymal stem cells (MSC), which support haemopoiesis and can differentiate along multiple lineages. In terms of eventual downstream application, both fetal HSC and MSC have advantages over their adult counterparts, including better intrinsic homing and engraftment, greater multipotentiality and lower immunogenicity. Fetal stem cells are less ethically contentious than embryonic stem cells and their differentiation potential appears greater than adult stem cells. Fetal stem cells represent powerful tools for exploring many aspects of cell biology and hold considerable promise as therapeutic tools for cell transplantation and ex vivo gene therapy.
Collapse
Affiliation(s)
- Keelin O'Donoghue
- Experimental Fetal Medicine Group, Institute of Reproductive and Developmental Biology, Imperial College London, Queen Charlotte's and Chelsea Hospital, London W12 0NN, UK.
| | | |
Collapse
|
6
|
Suter SE, Gouthro TA, McSweeney PA, Nash RA, Haskins ME, Felsburg PJ, Henthorn PS. Isolation and characterization of pediatric canine bone marrow CD34+ cells. Vet Immunol Immunopathol 2004; 101:31-47. [PMID: 15261691 DOI: 10.1016/j.vetimm.2004.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 02/05/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
Historically, the dog has been a valuable model for bone marrow transplantation studies, with many of the advances achieved in the dog being directly transferable to human clinical bone marrow transplantation protocols. In addition, dogs are also a source of many well-characterized homologues of human genetic diseases, making them an ideal large animal model in which to evaluate gene therapy protocols. It is generally accepted that progenitor cells for many human hematopoietic cell lineages reside in the CD34+ fraction of cells from bone marrow, cord blood, or peripheral blood. In addition, CD34+ cells are the current targets for human gene therapy of diseases involving the hematopoietic system. In this study, we have isolated and characterized highly enriched populations of canine CD34+ cells isolated from dogs 1 week to 3 months of age. Bone marrow isolated from 2- to 3-week-old dogs contained up to 18% CD34+ cells and this high percentage dropped sharply with age. In in vitro 6-day liquid suspension cultures, CD34+ cells harvested from 3-week-old dogs expanded almost two times more than those from 3-month-old dogs and the cells from younger dogs were also more responsive to human Flt-3 ligand (Flt3L). In culture, the percent and number of CD34+ cells from both ages of dogs dropped sharply between 2 and 4 days, although the number of CD34+ cells at day 6 of culture was higher for cells harvested from the younger dogs. CD34+ cells harvested from both ages of dogs had similar enrichment and depletion values in CFU-GM methylcellulose assays. Canine CD34+/Rho123lo cells expressed c-kit mRNA while the CD34+/Rhohi cells did not. When transplanted to a sub-lethally irradiated recipient, CD34+ cells from 1- to 3-week-old dogs gave rise to both myeloid and lymphoid lineages in the periphery. This study demonstrates that canine CD34+ bone marrow cells have similar in vitro and in vivo characteristics as human CD34+ cells. In addition, ontogeny-related functional differences reported for human CD34+ cells appear to exist in the dog as well, suggesting pediatric CD34+ cells may be better targets for gene transfer than adult bone marrow. The demonstration of similarities between canine and human CD34+ cells enhances the dog as a large, preclinical model to evaluate strategies for improving bone marrow transplantation protocols, for gene therapy protocols that target CD34+ cells, and to study the engraftment potential of various cell populations that may contain hematopoietic progenitor cell activity.
Collapse
Affiliation(s)
- Steven E Suter
- Section of Medical Genetics, Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, 3900 Delancey St., Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|