1
|
Wang Y, Liu T, Jia C, Xiao L, Wang W, Zhang Y, Xiang Y, Huang L, Yu J. A novel variant in the SPTB gene underlying hereditary spherocytosis and a literature review of previous variants. BMC Med Genomics 2024; 17:206. [PMID: 39135028 PMCID: PMC11318180 DOI: 10.1186/s12920-024-01973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Hereditary spherocytosis (HS, MIM#612641) is one of the most common hereditary hemolytic disorders. This study aimed to confirm a novel variant's pathogenicity and reveal a patient's genetic etiology. METHODS The clinical data of a patient with HS who underwent genetic sequencing at the Children's Hospital of Chongqing Medical University were reviewed retrospectively. In silico prediction and in vitro minigene splicing reporter system were then conducted on the detected variant to analyze its intramolecular impact. A summary of the literature related to HS due to SPTB gene variants was also presented. RESULTS A novel variant (c.301-2 A > G) in the SPTB gene (NM_001024858.4) was identified in the proband. Using Sanger sequencing, we conclusively confirmed that the inheritance of the variant could not be traced to the biological parents. The in vitro minigene assay revealed three different transcripts derived from the c.301-2 A > G variant: r.301_474del, r.301_306delCCAAAG, and r.301-1_301-57ins. Through a literature review, patients with HS who had been genotypically validated were summarized and the SPTB gene variant profile was mapped. CONCLUSION We identified a splicing variant of the SPTB gene, thus confirming its aberrant translation. The novel variant was the probable genetic etiology of the proband with HS. Our findings expanded the variant spectrum of the SPTB gene, thus improving the understanding of the associated hereditary hemolytic disorders from a clinical and molecular perspective and contributing to the foundation of genetic counseling and diagnosis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolismand Inflammatory Diseases, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yu Zhong district, Chongqing, 400014, China
| | - Tao Liu
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolismand Inflammatory Diseases, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yu Zhong district, Chongqing, 400014, China
| | - Chenxi Jia
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Li Xiao
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolismand Inflammatory Diseases, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yu Zhong district, Chongqing, 400014, China
| | - Wen Wang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yongjie Zhang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolismand Inflammatory Diseases, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yu Zhong district, Chongqing, 400014, China
| | - Yan Xiang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolismand Inflammatory Diseases, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yu Zhong district, Chongqing, 400014, China
| | - Lan Huang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolismand Inflammatory Diseases, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yu Zhong district, Chongqing, 400014, China
| | - Jie Yu
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolismand Inflammatory Diseases, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yu Zhong district, Chongqing, 400014, China.
| |
Collapse
|
2
|
Wang X, Shen N, Huang M, Lu Y, Hu Q. Novel hereditary spherocytosis-associated splice site mutation in the ANK1 gene caused by parental gonosomal mosaicism. Haematologica 2018; 103:e219-e222. [PMID: 29449435 DOI: 10.3324/haematol.2017.186551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Park J, Jeong DC, Yoo J, Jang W, Chae H, Kim J, Kwon A, Choi H, Lee JW, Chung NG, Kim M, Kim Y. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin Genet 2016; 90:69-78. [PMID: 26830532 DOI: 10.1111/cge.12749] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/04/2016] [Accepted: 01/25/2016] [Indexed: 12/18/2022]
Abstract
The aim of this study was to describe the mutational characteristics in Korean hereditary spherocytosis (HS) patients. Relevant literatures including genetically confirmed cases with well-documented clinical summaries and relevant information were also reviewed to investigate the mutational gene- or domain-specific laboratory and clinical association. Twenty-five HS patients carried one heterozygous mutation of ANK1 (n = 13) or SPTB (n = 12) but not in SPTA1, SLC4A1, or EPB42. Deleterious mutations including frameshift, nonsense, and splice site mutations were identified in 91% (21/23), and non-hotspot mutations were dispersed across multiple exons. Genotype-phenotype correlation was clarified after combined analysis of the cases and the literature review; anemia was most severe in HS patients with mutations on the ANK1 spectrin-binding domain (p < 0.05), and SPTB mutations in HS patients spared the tetramerization domain in which mutations of hereditary elliptocytosis and pyropoikilocytosis are located. Splenectomy (17/75) was more frequent in ANK1 mutant HS (32%) than in HS with SPTB mutation (10%) (p = 0.028). Aplastic crisis occurred in 32.0% of the patients (8/25; 3 ANK1 and 5 SPTB), and parvovirus B19 was detected in 88%. The study clarifies ANK1 or SPTB mutational characteristics in HS Korean patients. The genetic association of laboratory and clinical aspects suggests comprehensive considerations for genetic-based management of HS.
Collapse
Affiliation(s)
- J Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - D-C Jeong
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - J Yoo
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - W Jang
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Laboratory Medicine, Samkwang Medical Laboratories, Seoul, Republic of Korea
| | - H Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - J Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - A Kwon
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - H Choi
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - J W Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - N-G Chung
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - M Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Y Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Eber S, Lux SE. Hereditary spherocytosis—defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol 2004; 41:118-41. [PMID: 15071790 DOI: 10.1053/j.seminhematol.2004.01.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The molecular causes of hereditary spherocytosis (HS) have been unraveled in the past decade. No frequent defect is found, and nearly every family has a unique mutation. In dominant HS, nonsense and frameshift mutations of ankyrin, band 3, and beta-spectrin predominate. Recessive HS is most often due to compound heterozygosity of defects in ankyrin, alpha-spectrin, or protein 4.2. Common combinations include a defect in the promoter or 5'-untranslated region of ankyrin paired with a missense mutation, a low expression allele of alpha-spectrin plus a missense mutation, and various mutations in the gene for protein 4.2. In most patients' red cells, no abnormal protein is present. Only rare missense mutations, like ankyrin Walsrode (V463I) or beta-spectrin Kissimmee (W202R), have given any insight into the functional domains of the respective proteins. Although the eminent role of the spleen in the premature hemolysis of red cells in HS is unquestioned, the molecular events that cause splenic conditioning of spherocytes are unclear. Electron micrographs show that small membrane vesicles are shed during the formation of spherocytes. Animal models give further insight into the pathogenetic consequences of membrane protein defects as well as the causes of the variability of disease severity.
Collapse
Affiliation(s)
- Stefan Eber
- Division of Hematology/Oncology, Children's Hospital-Boston, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
7
|
Bassères DS, Tavares AC, Costa FF, Saad STO. beta-Spectrin São PauloII, a novel frameshift mutation of the beta-spectrin gene associated with hereditary spherocytosis and instability of the mutant mRNA. Braz J Med Biol Res 2002; 35:921-5. [PMID: 12185384 DOI: 10.1590/s0100-879x2002000800009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hereditary spherocytosis (HS) is a common inherited anemia characterized by the presence of spherocytic red cells. Defects in several membrane protein genes have been involved in the pathogenesis of HS. beta-Spectrin-related HS seems to be common. We report here a new mutation in the beta-spectrin gene coding region in a patient with hereditary spherocytosis. The patient presented acanthocytosis and spectrin deficiency and, at the DNA level, a novel frameshift mutation leading to HS, i.e., a C deletion at codon 1392 (beta-spectrin São PauloII), exon 20. The mRNA encoding beta-spectrin São PauloII was very unstable and the mutant protein was not detected in the membrane or in other cellular compartments. It is interesting to note that frameshift mutations of the beta-spectrin gene at the 3' end allow the insertion of the mutant protein in the red cell membrane, leading to a defect in the auto-association of the spectrin dimers and consequent elliptocytosis. On the other hand, beta-spectrin São PauloII protein was absent in the red cell membrane, leading to spectrin deficiency, HS and the presence of acanthocytes.
Collapse
Affiliation(s)
- D S Bassères
- Hemocentro, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | |
Collapse
|