1
|
O'Brien LJ, Guillerey C, Radford KJ. Can Dendritic Cell Vaccination Prevent Leukemia Relapse? Cancers (Basel) 2019; 11:cancers11060875. [PMID: 31234526 PMCID: PMC6627518 DOI: 10.3390/cancers11060875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Leukemias are clonal proliferative disorders arising from immature leukocytes in the bone marrow. While the advent of targeted therapies has improved survival in certain subtypes, relapse after initial therapy is a major problem. Dendritic cell (DC) vaccination has the potential to induce tumor-specific T cells providing long-lasting, anti-tumor immunity. This approach has demonstrated safety but limited clinical success until recently, as DC vaccination faces several barriers in both solid and hematological malignancies. Importantly, vaccine-mediated stimulation of protective immune responses is hindered by the aberrant production of immunosuppressive factors by cancer cells which impede both DC and T cell function. Leukemias present the additional challenge of severely disrupted hematopoiesis owing to both cytogenic defects in hematopoietic progenitors and an abnormal hematopoietic stem cell niche in the bone marrow; these factors accentuate systemic immunosuppression and DC malfunction. Despite these obstacles, several recent clinical trials have caused great excitement by extending survival in Acute Myeloid Leukemia (AML) patients through DC vaccination. Here, we review the phenotype and functional capacity of DCs in leukemia and approaches to harness DCs in leukemia patients. We describe the recent clinical successes in AML and detail the multiple new strategies that might enhance prognosis in AML and other leukemias.
Collapse
Affiliation(s)
- Liam J O'Brien
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Camille Guillerey
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
2
|
Zhang J, Jiang Y, Han X, Roy M, Liu W, Zhao X, Liu J. Differential expression profiles and functional analysis of plasma miRNAs associated with chronic myeloid leukemia phases. Future Oncol 2019; 15:763-776. [PMID: 30501399 DOI: 10.2217/fon-2018-0741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: This study was aimed to investigate the expression profiles and biological function of plasma miRNAs at different phases of chronic myeloid leukemia (CML). Materials & methods: Differentially expressed miRNAs were identified by microarray. The candidate miRNAs were validated by quantitative real-time PCR at chronic phase, accelerated phase and blast crisis. The functional analysis of miRNAs was carried out by using DAVID. Results: The putative targets of dysregulated miRNAs were involved in important signaling pathways. Plasma let-7b-5p and miR-451a expression was lower in CML patients, and plasma miR-451a gradually decreased from chronic phase to accelerated phase and blast crisis. Conclusion: Dysregulated plasma miRNAs maybe play regulatory roles in pathogenesis of CML. Let-7b-5p and miR-451a can be used as potential biomarkers for the diagnosis and prognosis of CML.
Collapse
Affiliation(s)
- Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, PR China
| | - Yawen Jiang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Xu Han
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, PR China
| |
Collapse
|
3
|
Inselmann S, Wang Y, Saussele S, Fritz L, Schütz C, Huber M, Liebler S, Ernst T, Cai D, Botschek S, Brendel C, Calogero RA, Pavlinic D, Benes V, Liu ET, Neubauer A, Hochhaus A, Burchert A. Development, Function, and Clinical Significance of Plasmacytoid Dendritic Cells in Chronic Myeloid Leukemia. Cancer Res 2018; 78:6223-6234. [PMID: 30166420 DOI: 10.1158/0008-5472.can-18-1477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/13/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022]
Abstract
Plasmacytoid dendritic cells (pDC) are the main producers of a key T-cell-stimulatory cytokine, IFNα, and critical regulators of antiviral immunity. Chronic myeloid leukemia (CML) is caused by BCR-ABL, which is an oncogenic tyrosine kinase that can be effectively inhibited with ABL-selective tyrosine kinase inhibitors (TKI). BCR-ABL-induced suppression of the transcription factor interferon regulatory factor 8 was previously proposed to block pDC development and compromise immune surveillance in CML. Here, we demonstrate that pDCs in newly diagnosed CML (CML-pDC) develop quantitatively normal and are frequently positive for the costimulatory antigen CD86. They originate from low-level BCR-ABL-expressing precursors. CML-pDCs also retain their competence to maturate and to secrete IFN. RNA sequencing reveals a strong inflammatory gene expression signature in CML-pDCs. Patients with high CML-pDC counts at diagnosis achieve inferior rates of deep molecular remission (MR) under nilotinib, unless nilotinib therapy is combined with IFN, which strongly suppresses circulating pDC counts. Although most pDCs are BCR-ABL-negative in MR, a substantial proportion of BCR-ABL + CML-pDCs persists under TKI treatment. This could be of relevance, because CML-pDCs elicit CD8+ T cells, which protect wild-type mice from CML. Together, pDCs are identified as novel functional DC population in CML, regulating antileukemic immunity and treatment outcome in CML.Significance: CML-pDC originates from low-level BCR-ABL expressing stem cells into a functional immunogenic DC-population regulating antileukemic immunity and treatment outcome in CML. Cancer Res; 78(21); 6223-34. ©2018 AACR.
Collapse
Affiliation(s)
- Sabrina Inselmann
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Ying Wang
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Susanne Saussele
- Department of Hematology/Oncology, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Lea Fritz
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Christin Schütz
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Simone Liebler
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany
| | - Dali Cai
- Department of Hematology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Sarah Botschek
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | | | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Yu L, Hu T, Zou T, Shi Q, Chen G. Chronic Myelocytic Leukemia (CML) Patient-Derived Dendritic Cells Transfected with Autologous Total RNA Induces CML-Specific Cytotoxicity. Indian J Hematol Blood Transfus 2016; 32:397-404. [PMID: 27812247 DOI: 10.1007/s12288-016-0643-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/12/2016] [Indexed: 01/18/2023] Open
Abstract
The oncogenic bcr/abl1 fusion gene is a chronic myelogenous leukemia (CML)-specific antigen which is absent in normal tissues. This makes bcr/abl1 a perfect target for developing CML vaccines that elicit specific immune responses against minimal residual disease while sparing normal tissue. The aim of this study was to use different methods to induce dendritic cells (DCs) derived from patients with CML (CML-DCs) and analyze them for CML-specific tumor cytotoxicity for immune therapy. Bone marrow-derived mononuclear cells from ten CML patients were studied to induce CML-DC differentiation in the presence of recombinant human interleukin-4, rh-granulocyte-macrophage-colony stimulating factor, and tumor necrosis factor-alpha with either a total RNA-lipofectamine complex, total RNA or CML tumor lysate (freeze-thawed). CML-DC maturation, confirmed by expression of CD1α, CD40, CD80, CD83, CD86 and by real-time polymerase chain reaction, validated the CML-origin of these DC cells. CML-DCs stimulated cytotoxic T-cell (CTL) apoptosis, high levels of IL-12 secretion, and had significant inhibitory effect on K562 tumorigenicity in nude mice. CML-DCs pulsed with total RNA by lipofectamine transfection produced the strongest effect in tumor-specific CTL functions. These results indicate that CML-DCs transfected with total RNA by lipofectamine induce the strongest CTL cytotoxicity and have the greatest potential for CML immune therapy. This study holds promise for a DC-based strategy for inducing anti-leukemia responses and establishes a foundation for developing RNA vaccination against CML.
Collapse
Affiliation(s)
- Li Yu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Ting Hu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Tian Zou
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Qingzhi Shi
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Guoan Chen
- Institute of Hematology, The First Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| |
Collapse
|
5
|
Meyerson HJ, Osei E, Schweitzer K, Blidaru G, Edinger A, Schlegelmilch J, Awadallah A, Goyal T. CD1c(+) myeloid dendritic cells in myeloid neoplasia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:337-48. [DOI: 10.1002/cyto.b.21332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/26/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Howard J. Meyerson
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Ebenezer Osei
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Karen Schweitzer
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Georgetta Blidaru
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Alison Edinger
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - June Schlegelmilch
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Amad Awadallah
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Tanu Goyal
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| |
Collapse
|
6
|
Schürch CM, Riether C, Ochsenbein AF. Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 2013; 4:496. [PMID: 24427158 PMCID: PMC3876024 DOI: 10.3389/fimmu.2013.00496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.
Collapse
Affiliation(s)
- Christian M Schürch
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Institute of Pathology, University of Bern , Bern , Switzerland
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Department of Medical Oncology, Inselspital, University Hospital Bern , Bern , Switzerland
| |
Collapse
|
7
|
Watanabe T, Hotta C, Koizumi SI, Miyashita K, Nakabayashi J, Kurotaki D, Sato GR, Yamamoto M, Nakazawa M, Fujita H, Sakai R, Fujisawa S, Nishiyama A, Ikezawa Z, Aihara M, Ishigatsubo Y, Tamura T. The Transcription Factor IRF8 Counteracts BCR-ABL to Rescue Dendritic Cell Development in Chronic Myelogenous Leukemia. Cancer Res 2013; 73:6642-53. [DOI: 10.1158/0008-5472.can-13-0802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Machová Poláková K, Lopotová T, Klamová H, Burda P, Trněný M, Stopka T, Moravcová J. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer 2011; 10:41. [PMID: 21501493 PMCID: PMC3102634 DOI: 10.1186/1476-4598-10-41] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/18/2011] [Indexed: 12/03/2022] Open
Abstract
Background MicroRNAs are important regulators of transcription in hematopoiesis. Their expression deregulations were described in association with pathogenesis of some hematological malignancies. This study provides integrated microRNA expression profiling at different phases of chronic myeloid leukemia (CML) with the aim to identify microRNAs associated with CML pathogenesis. The functions of in silico filtered targets are in this report annotated and discussed in relation to CML pathogenesis. Results Using microarrays we identified differential expression profiles of 49 miRNAs in CML patients at diagnosis, in hematological relapse, therapy failure, blast crisis and major molecular response. The expression deregulation of miR-150, miR-20a, miR-17, miR-19a, miR-103, miR-144, miR-155, miR-181a, miR-221 and miR-222 in CML was confirmed by real-time quantitative PCR. In silico analyses identified targeted genes of these miRNAs encoding proteins that are involved in cell cycle and growth regulation as well as several key signaling pathways such as of mitogen activated kinase-like protein (MAPK), epidermal growth factor receptor (EGFR, ERBB), transforming growth factor beta (TGFB1) and tumor protein p53 that are all related to CML. Decreased levels of miR-150 were detected in patients at diagnosis, in blast crisis and 67% of hematological relapses and showed significant negative correlation with miR-150 proved target MYB and with BCR-ABL transcript level. Conclusions This study uncovers microRNAs that are potentially involved in CML and the annotated functions of in silico filtered targets of selected miRNAs outline mechanisms whereby microRNAs may be involved in CML pathogenesis.
Collapse
|
9
|
Westers TM, van den Ancker W, Bontkes HJ, Janssen JJWM, van de Loosdrecht AA, Ossenkoppele GJ. Chronic myeloid leukemia lysate-loaded dendritic cells induce T-cell responses towards leukemia progenitor cells. Immunotherapy 2011; 3:569-76. [DOI: 10.2217/imt.11.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treatment of chronic myeloid leukemia with tyrosine kinase inhibitors, such as imatinib mesylate, dasatinib and nilotinib, results in high rates of cytogenetic and molecular responses. However, in many patients, minimal residual disease is detected by molecular techniques. Since chronic myeloid leukemia cells are particularly good targets for immune surveillance mechanisms, we explored active specific immunotherapy using leukemia lysate-loaded dendritic cells in vitro. Our data show the potency of dendritic cell-based vaccination strategies for the induction of T cell-mediated responses to eradicate minimal residual disease.
Collapse
Affiliation(s)
| | - Willemijn van den Ancker
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen JWM Janssen
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Cancer Center Amsterdam/VUmc Institute for Cancer & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Jalkanen SE, Vakkila J, Kreutzman A, Nieminen JK, Porkka K, Mustjoki S. Poor cytokine-induced phosphorylation in chronic myeloid leukemia patients at diagnosis is effectively reversed by tyrosine kinase inhibitor therapy. Exp Hematol 2010; 39:102-113.e1. [PMID: 20869423 DOI: 10.1016/j.exphem.2010.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE In chronic myeloid leukemia (CML), uncontrolled tyrosine kinase activity of the BCR-ABL1 oncoprotein results in aberrant signaling pathways and increased cell proliferation. Acquired immune tolerance to leukemic antigens further enables tumor cell expansion. Tyrosine kinase inhibitor (TKI) therapy interferes with the immunoregulatory system by targeting off-target kinases both in malignant and nonmalignant cells. The aim of this study was to analyze the immune cell function by phosphoprotein profiling in CML patients. MATERIALS AND METHODS Blood samples from diagnostic phase and TKI-treated patients were analyzed by multicolor phosphoprotein flow cytometry enabling measurements at the single-cell level. Both unstimulated baseline activation status and cytokine-induced responses were evaluated. RESULTS In diagnostic-phase and imatinib-treated patients, the baseline phosphoprotein activation status was similar to healthy controls. In dasatinib-treated patients, basal phosphoprotein levels were slightly decreased; in particular, the signal transduction and activator of transcription protein 3 pathway was affected in both myeloid and lymphoid cells. The activation responses to various cytokines, granulocyte-macrophage colony-stimulating factor in particular were significantly suppressed in untreated CML patients. During imatinib and dasatinib therapy, the aberrantly suppressed phosphorylation responses were normalized. CONCLUSIONS Cytokine responses are hampered in untreated CML patients, which may have an effect on various immunological processes in vivo. Interestingly, during TKI treatment, phosphorylation responses were normal, suggesting that TKI treatment does not alter the reactivity of healthy immune effector cells. However, dasatinib treatment was associated with diminished basal activation of the immunosuppressive signal transduction and activator of transcription protein 3 signaling pathway, which could have clinical significance in reversing the lymphocyte anergy against tumor cells.
Collapse
Affiliation(s)
- Sari E Jalkanen
- Hematology Research Unit, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
11
|
Eisendle K, Wolf D, Gastl G, Kircher-Eibl B. Dendritic cells from patients with chronic myeloid leukemia: Functional and phenotypic features. Leuk Lymphoma 2009; 46:663-70. [PMID: 16019503 DOI: 10.1080/10428190400029825] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells playing a pivotal role in the induction of humoral and cellular immune responses, and chronic myeloid leukemia-derived DCs (CML-DCs) are possible candidates for inducing anti-leukemic immunity. This review describes phenotypic and functional features of DCs derived from CML patients as compared with DCs from healthy volunteers. In short, distinct deficiencies have been reported for CML-DCs, such as reduced migration, endocytosis, phagocytosis, antigen processing, DC maturation and cytokine production. DC abnormalities of CML patients can be abrogated by proper in vitro stimulation of leukemic DCs. This underscores the importance of proper generation and maturation of CML-DCs when considering clinical vaccination protocols.
Collapse
Affiliation(s)
- Klaus Eisendle
- Laboratory for Tumor and Immunobiology, Division of Hematology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | |
Collapse
|
12
|
Defective homing and impaired induction of cytotoxic T cells by BCR/ABL-expressing dendritic cells. Blood 2009; 113:4681-9. [DOI: 10.1182/blood-2008-05-156471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease arising from a hematopoietic stem cell expressing the BCR/ABL fusion protein. Leukemic and dendritic cells (DCs) develop from the same transformed hematopoietic progenitors. How BCR/ABL interferes with the immunoregulatory function of DCs in vivo is unknown. We analyzed the function of BCR/ABL-expressing DCs in a retroviral-induced murine CML model using the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen. BCR/ABL-expressing DCs were found in bone marrow, thymus, spleen, lymph nodes, and blood of CML mice. They were characterized by a low maturation status and induced only limited expansion of naive and memory cytotoxic T lymphocytes (CTLs). In addition, immunization with in vitro–generated BCR/ABL-expressing DCs induced lower frequencies of specific CTLs than immunization with control DCs. BCR/ABL-expressing DCs preferentially homed to the thymus, whereas only few BCR/ABL-expressing DCs reached the spleen. Our results indicate that BCR/ABL-expressing DCs do not efficiently induce CML-specific T-cell responses resulting from low DC maturation and impaired homing to secondary lymphoid organs. In addition, BCR/ABL-expressing DCs in the thymus may contribute to CML-specific tolerance induction of specific CTLs.
Collapse
|
13
|
Bagheri K, Alimoghadam K, Pourfathollah AA, Hassan ZM, Hajati J, Moazzeni SM. The efficient generation of immunocompetent dendritic cells from leukemic blasts in acute myeloid leukemia: a local experience. Pathol Oncol Res 2008; 15:257-67. [PMID: 18807213 DOI: 10.1007/s12253-008-9105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
Dendritic cells (DCs) are the most important antigen presenting cells with potentially useful applications in cancer immunotherapy. Leukemic cells of patients with acute myeloid leukemia (AML) could be differentiated to DC-like cells possessing the ability of stimulating anti-leukemic immune response. Despite obvious progress in DC-based immunotherapy, some discrepancies were reported in differentiation potential of AML blasts from all patients toward DC like cells. The present study, as a local experience, was set up to generate DCs from AML blasts of various subtypes. Leukemic Blasts from 16 Iranian AML patients were differentiated into functional DCs by culturing in the presence of rhGM-CSF, rhIL-4 and TNF-alpha for 8 days. The morphology, expression of key surface molecules and allostimulatory activity of resultant DCs were compared with primary blasts and cultured but cytokine untreated control groups. The pattern of angiotensin-converting enzyme (ACE) expression was used to approve the leukemic origin of generated DCs. Neo-expression or upregulation of DC-associated markers were occurred during culturing period in cytokine treated cells compared with primary blasts and cultured but cytokine untreated control groups: CD1a (63.22% vs. 3.22% and 11.79%), CD83 (41.27% vs. 0.11% and 0.70%), CD40 (15.17% vs. 0.00% and 0.04%), CD80 (49.96 vs. 0.02% and 0.32%), CD86 (56.49% vs. 0.50% and 5.71%) and HLA-DR (52.52% vs. 14.32% and 2.49%) respectively. The potency of generated DCs to induce allogeneic T cell proliferation increased significantly compared to pre and post culture control groups (27,533.4 +/- 2,548.3, 8,820.4 +/- 1,639.4 and 3,200.35 +/- 976 respectively). The expression pattern of ACE in AML-DCs, blast cells and DCs derived from normal monocytes (7.93%, 1.28% and 74.97% respectively) confirmed the leukemic origin of DCs. Our data confirmed the generation of sufficient AML-derived cells with the properties of DCs in all cases. This potency of AML blasts, offers a useful route for active immunotherapy of AML patients.
Collapse
Affiliation(s)
- Kambiz Bagheri
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
14
|
Ghanekar SA, Bhatia S, Ruitenberg JJ, Rosa CD, Disis ML, Maino VC, Maecker HT, Waters CA. Phenotype and in vitro function of mature MDDC generated from cryopreserved PBMC of cancer patients are equivalent to those from healthy donors. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2007; 5:7. [PMID: 17477875 PMCID: PMC1868730 DOI: 10.1186/1476-8518-5-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 05/03/2007] [Indexed: 11/17/2022]
Abstract
Background Monocyte-derived-dendritic-cells (MDDC) are the major DC type used in vaccine-based clinical studies for a variety of cancers. In order to assess whether in vitro differentiated MDDC from cryopreserved PBMC of cancer patients are functionally distinct from those of healthy donors, we compared these cells for their expression of co-stimulatory and functional markers. In addition, the effect of cryopreservation of PBMC precursors on the quality of MDDC was also evaluated using samples from healthy donors. Methods Using flow cytometry, we compared normal donors and cancer patients MDDC grown in the presence of GM-CSF+IL-4 (immature MDDC), and GM-CSF+IL-4+TNFα+IL-1β+IL-6+PGE-2 (mature MDDC) for (a) surface phenotype such as CD209, CD83 and CD86, (b) intracellular functional markers such as IL-12 and cyclooxygenase-2 (COX-2), (c) ability to secrete IL-8 and IL-12, and (d) ability to stimulate allogeneic and antigen-specific autologous T cells. Results Cryopreservation of precursors did affect MDDC marker expression, however, only two markers, CD86 and COX-2, were significantly affected. Mature MDDC from healthy donors and cancer patients up-regulated the expression of CD83, CD86, frequencies of IL-12+ and COX-2+ cells, and secretion of IL-8; and down-regulated CD209 expression relative to their immature counterparts. Compared to healthy donors, mature MDDC generated from cancer patients were equivalent in the expression of nearly all the markers studied and importantly, were equivalent in their ability to stimulate allogeneic and antigen-specific T cells in vitro. Conclusion Our data show that cryopreservation of DC precursors does not significantly affect the majority of the MDDC markers, although the trends are towards reduced expression of co-stimulatory makers and cytokines. In addition, monocytes from cryopreserved PBMC of cancer patients can be fully differentiated into mature DC with phenotype and function equivalent to those derived from healthy donors.
Collapse
Affiliation(s)
- Smita A Ghanekar
- BD Biosciences Immunocytometry Systems, 2350 Qume Dr., San Jose, CA 95131, USA
| | - Sonny Bhatia
- BD Biosciences Immunocytometry Systems, 2350 Qume Dr., San Jose, CA 95131, USA
| | - Joyce J Ruitenberg
- BD Biosciences Immunocytometry Systems, 2350 Qume Dr., San Jose, CA 95131, USA
| | - Corazon DeLa Rosa
- University of Washington, Division of Oncology, 815 Mercer St., Seattle, WA 98109, USA
| | - Mary L Disis
- University of Washington, Division of Oncology, 815 Mercer St., Seattle, WA 98109, USA
| | - Vernon C Maino
- BD Biosciences Immunocytometry Systems, 2350 Qume Dr., San Jose, CA 95131, USA
| | - Holden T Maecker
- BD Biosciences Immunocytometry Systems, 2350 Qume Dr., San Jose, CA 95131, USA
| | - Cory A Waters
- BD Biosciences Immunocytometry Systems, 2350 Qume Dr., San Jose, CA 95131, USA
| |
Collapse
|
15
|
Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Dendritic cell-based immunotherapy in acute and chronic myeloid leukaemia. Biomed Pharmacother 2007; 61:306-14. [PMID: 17368821 DOI: 10.1016/j.biopha.2007.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/24/2007] [Indexed: 12/22/2022] Open
Abstract
Persistence of residual leukaemia cells in acute and chronic myeloid leukaemia will eventually lead to a relapse of the disease. Dendritic cell-based vaccines might constitute a therapeutic option for leukaemia patients to control or eradicate minimal residual disease. Dendritic cells have the unique property to stimulate naïve T cells. In a majority of the myeloid leukaemia patients these cells can be generated directly from leukaemia cells, although several factors hamper the feasibility of this approach. Other options are being explored to make active specific DC-based immunotherapy in leukaemia more broadly applicable. This review summarises data on active specific DC-based immunotherapy in acute and chronic myeloid leukaemia and discusses current optimisation strategies.
Collapse
Affiliation(s)
- Theresia M Westers
- Department of Haematology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
16
|
Sinai P, Berg RE, Haynie JM, Egorin MJ, Ilaria RL, Forman J. Imatinib Mesylate Inhibits Antigen-Specific Memory CD8 T Cell Responses In Vivo. THE JOURNAL OF IMMUNOLOGY 2007; 178:2028-37. [PMID: 17277106 DOI: 10.4049/jimmunol.178.4.2028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Imatinib mesylate (IM) is effective at inducing complete cytogenetic remission in patients with chronic myelogenous leukemia. Because its influence on CD8 T cell responsiveness in vivo is unknown, we investigated the effects of IM by analyzing the response of OT-1 CD8 T cells to Listeria monocytogenes (LM) that express the cognate epitope OVA(257-264) (LM-OVA). In vitro, IM had no effect on Ag-specific expansion, cell division, cell cycle progression, or IFN-gamma expression in naive or memory OT-1 T cells. However, IM induced apoptosis of naive and memory OT-1 T cells at doses of >5 microM. At 15 microM IM, OT-1 T cells did not survive in in vitro cultures. The primary response of OT-1 T cells in vivo to LM-OVA infection was unaltered. In contrast, continuous IM treatment resulted in a diminished memory OT-1 response. The expression of IL-7Ralpha, a receptor required for memory cell survival, was lower (on OT-1 cells) in animals receiving IM. These results indicate that IM treatment affects the ability of the CD8 memory pool to respond to Ag and has the potential to increase susceptibility to infection.
Collapse
Affiliation(s)
- Parisa Sinai
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
17
|
Shimizu K, Hidaka M, Kadowaki N, Makita N, Konishi N, Fujimoto K, Uchiyama T, Kawano F, Taniguchi M, Fujii SI. Evaluation of the function of human invariant NKT cells from cancer patients using alpha-galactosylceramide-loaded murine dendritic cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3484-92. [PMID: 16920991 DOI: 10.4049/jimmunol.177.5.3484] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells play a role in immunological regulation of certain diseases, and their frequency and/or function may be related to disease prognosis. However, it is often difficult to evaluate NKT cell function in patients with malignancies due to reduced numbers of NKT cells as well as the dysfunction of the APCs used as stimulators. We found that NKT cell function could not be evaluated by conventional ELISPOT assays, confirming the impaired function of APCs in chronic myelogenous leukemia (CML)-chronic phase patients. To overcome this problem, we have established a sensitive assay using murine dendritic cells to evaluate the function of small numbers of human NKT cells independent of autologous APCs. We found that imatinib-treated CML-chronic phase patients showing a complete cytogenetic response had NKT cells capable of producing IFN-gamma, whereas NKT cells from patients who were only partially responsive to imatinib treatment did not produce IFN-gamma. Functional NKT cells found in imatinib-treated, CML-complete cytogenetic response patients may offer the promise of effective immunotherapy with ex vivo-generated alpha-galactosylceramide-pulsed dendritic cells. This new approach should be available for evaluating the functions of NKT cells and APCs in cancer patients.
Collapse
Affiliation(s)
- Kanako Shimizu
- Research Unit for Cellular Immunotherapy, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Westers TM, Houtenbos I, van de Loosdrecht AA, Ossenkoppele GJ. Principles of dendritic cell-based immunotherapy in myeloid leukemia. Immunobiology 2006; 211:663-76. [PMID: 16920505 DOI: 10.1016/j.imbio.2006.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Persistent presence of minimal residual disease in myeloid leukemia carries the risk of a relapse of the disease. In the setting of allogeneic transplants, leukemic cells have been proven to be susceptible to the action of immunocompetent T cells. Thus, an immunotherapeutic approach might hold promise in the attempt to eradicate or control residual leukemia cells. Dendritic cells (DCs) are very potent stimulators of immune responses and these cells have been widely used to target other types of malignancies. This review discusses the function and the applicability of leukemia-derived DCs for active specific immunotherapy in myeloid leukemia including possible pitfalls, and describes options to optimize DC-based vaccines.
Collapse
Affiliation(s)
- Theresia M Westers
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Orsini E, Calabrese E, Maggio R, Pasquale A, Nanni M, Trasarti S, Tafuri A, Guarini A, Foa R. Circulating myeloid dendritic cell directly isolated from patients with chronic myelogenous leukemia are functional and carry the bcr-abl translocation. Leuk Res 2006; 30:785-94. [PMID: 16527350 DOI: 10.1016/j.leukres.2005.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 05/22/2005] [Indexed: 11/21/2022]
Abstract
Leukemic bcr-abl positive dendritic cells (DCs) are likely to be present in vivo in chronic myelogenous leukemia (CML) patients, but no data are available on their functional qualities. We analyzed the circulating BDCA-1+ myeloid DC compartment in 15 chronic phase CML patients. Phenotypic features of CML DCs were comparable with that of normal DCs, except for the CD80 and CD40 antigens, significantly under-represented in CML patients. Nonetheless, no differences were found between normal samples and leukemic DCs in the allostimulatory ability, as well as in the production of cytokines and polarization of T cell responses. CML DCs were analyzed by fluorescence in situ hybridization (FISH) and found positive for the bcr-abl translocation. However, when bcr-abl+ DCs were tested for their ability to stimulate an autologous T-cell response in vitro, we could not detect a specific recognition. We conclude that an apparently normal circulating DC compartment carrying the Ph+ chromosome can be identified in CML patients; however, these cells appear unable to trigger a protective anti-leukemic immune response in autologous T cells.
Collapse
MESH Headings
- Antigens, CD1/drug effects
- Antigens, CD1/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/immunology
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Fusion Proteins, bcr-abl/genetics
- Humans
- Immunophenotyping
- In Situ Hybridization, Fluorescence/methods
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Lipopolysaccharides/pharmacology
- Phenotype
- Sensitivity and Specificity
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Enrica Orsini
- Dipartimento di Biotecnologie Cellulari ed Ematologia, University "La Sapienza", Via Benevento 6, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Litzow MR, Dietz AB, Bulur PA, Butler GW, Gastineau DA, Hoering A, Fink SR, Letendre L, Padley DJ, Paternoster SF, Tefferi A, Vuk-Pavlović S. Testing the safety of clinical-grade mature autologous myeloid DC in a phase I clinical immunotherapy trial of CML. Cytotherapy 2006; 8:290-8. [PMID: 16793737 DOI: 10.1080/14653240600735743] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND We conducted a phase I clinical immunotherapy trial of CML to evaluate the safety of a clinical-grade leukemic DC product standardized for purity and mature phenotype. METHODS We injected autologous DC into patients in late chronic or accelerated phases of CML. The patients received mature CD83+ and bcr-abl+ DC prepared from CD14+ cells. Two cohorts of three patients received four injections each of 3 x 10(6) DC and 15 x 10(6) DC/injection, respectively. The first patient was studied before imatinib mesylate (IM) was available, four patients were treated concurrently with IM therapy and one did not tolerate the IM and was off the drug at the time of DC therapy. IM effects on WBC counts precluded DC preparation in numbers sufficient for further dose escalation. The first patient received DC s.c. and all subsequent patients received DC into a cervical lymph node under ultrasound guidance. RESULTS DC injections were well tolerated. We observed no clinical responses. T cells drawn later in the course of therapy were more sensitive to stimulation by CML DC in vitro. DISCUSSION The increase in T-cell sensitivity to CML-specific stimulation that accompanied active immunization by CML DC justifies further clinical studies, possibly with modifications such as an increased frequency and number of DC injections.
Collapse
MESH Headings
- Aged
- Antigens, CD/analysis
- B7-2 Antigen/analysis
- Bone Marrow Cells/cytology
- Cell Count
- Cell Proliferation
- Coculture Techniques
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Female
- Fusion Proteins, bcr-abl/analysis
- Humans
- Immunoglobulins/analysis
- Immunotherapy, Active/adverse effects
- Immunotherapy, Active/methods
- Interferon-gamma/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukocytes, Mononuclear/cytology
- Lipopolysaccharide Receptors/analysis
- Lymphocyte Activation/immunology
- Male
- Membrane Glycoproteins/analysis
- Middle Aged
- Myeloid Cells/cytology
- Myeloid Cells/immunology
- Myeloid Cells/transplantation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transplantation, Autologous
- Treatment Outcome
- CD83 Antigen
Collapse
Affiliation(s)
- M R Litzow
- Division of Hematology and Department of Internal Medicine, Mayo Clinic Cancer Center, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Terme M, Borg C, Guilhot F, Masurier C, Flament C, Wagner EF, Caillat-Zucman S, Bernheim A, Turhan AG, Caignard A, Zitvogel L. BCR/ABL Promotes Dendritic Cell–Mediated Natural Killer Cell Activation. Cancer Res 2005; 65:6409-17. [PMID: 16024645 DOI: 10.1158/0008-5472.can-04-2675] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
BCR/ABL fusion gene, encoding a paradigmatic tyrosine kinase involved in chronic myelogenous leukemia (CML), can modulate the expression of genes involved in natural killer (NK) cell target recognition. Recent reports outline the role of allogeneic antileukemic NK effectors in the graft-versus-leukemia effect but the regulation of NK cell activation in the setting of graft-versus-leukemia effect remains unknown. Here we show that dendritic cells derived from monocytes of CML patients are selectively endowed with NK cell stimulatory capacity in vitro. We further show, using a gene transfer approach in mouse bone marrow progenitors, that ABL/ABL is necessary to promote dendritic cell–mediated NK cell activation. The dendritic cell/NK cell cross-talk in ABL/ABL-induced CML seems unique because JunB or IFN consensus sequence binding protein loss of functions, associated with other myeloproliferative disorders, do not promote dendritic cell–mediated NK cell activation. NK cell activation by leukemic dendritic cells involves NKG2D activating receptors and is blocked by imatinib mesylate. Indeed, ABL/ABL translocation enhances the expression levels of the NKG2D ligands on dendritic cells, which is counteracted by imatinib mesylate. Altogether, the clonal ABL/ABL dendritic cells display the unique and selective ability to activate NK cells and may participate in the NK cell control of CML. This study also highlights the deleterious role of imatinib mesylate at the dendritic cell level for NK cell activation.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/immunology
- Dendritic Cells/immunology
- Female
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Gene Transfer Techniques
- Humans
- Killer Cells, Natural/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Immunologic/immunology
- Receptors, Natural Killer Cell
- Translocation, Genetic
Collapse
Affiliation(s)
- Magali Terme
- ERM0208 Institut National de la Sante et de la Recherche Medicale, Department of Clinical Biology, Institut Gustave Roussy, Villejuf Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Westers TM, Houtenbos I, Snoijs NCL, van de Loosdrecht AA, Ossenkoppele GJ. Leukemia-derived dendritic cells in acute myeloid leukemia exhibit potent migratory capacity. Leukemia 2005; 19:1270-2. [PMID: 15889155 DOI: 10.1038/sj.leu.2403794] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Copland M, Fraser AR, Harrison SJ, Holyoake TL. Targeting the silent minority: emerging immunotherapeutic strategies for eradication of malignant stem cells in chronic myeloid leukaemia. Cancer Immunol Immunother 2005; 54:297-306. [PMID: 15692843 PMCID: PMC11032986 DOI: 10.1007/s00262-004-0573-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/30/2004] [Indexed: 10/26/2022]
Abstract
Standard allogeneic stem cell transplantation (alloSCT) has provided a cure for chronic myeloid leukaemia (CML) over the last 25 years, but is only an option for a minority of patients. It was hoped that the introduction of imatinib mesylate (IM), a specific tyrosine kinase inhibitor that targets the Bcr-Abl oncogene product, would provide long-term remission or even cure for those patients without a donor, but studies have shown that IM does not eliminate leukaemic stem cells in CML patients. To overcome this problem of molecular persistence, research is underway to combine reduced intensity stem cell transplant or non-donor-dependent immunotherapies with IM with the aim of increasing cure rate, reducing toxicity and improving quality of life. The alternative approach is to combine IM or second-generation agents with other novel drugs that interrupt key signalling pathways activated by Bcr-Abl. This article will focus on the latest immunotherapy and molecularly targeted therapeutic options in CML and how they may be combined to improve the outcome for CML patients in the future.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Benzamides
- Dendritic Cells/immunology
- Fusion Proteins, bcr-abl/genetics
- Hematopoietic Stem Cell Transplantation
- Humans
- Imatinib Mesylate
- Immunotherapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- M. Copland
- ATMU, Section of Experimental Haematology, University Faculty of Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| | - A. R. Fraser
- ATMU, Section of Experimental Haematology, University Faculty of Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| | - S. J. Harrison
- ATMU, Section of Experimental Haematology, University Faculty of Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| | - T. L. Holyoake
- ATMU, Section of Experimental Haematology, University Faculty of Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 2ER UK
| |
Collapse
|
24
|
Kharfan-Dabaja MA, Ayala E, Lindner I, Cejas PJ, Bahlis NJ, Kolonias D, Carlson LM, Lee KP. Differentiation of acute and chronic myeloid leukemic blasts into the dendritic cell lineage: analysis of various differentiation-inducing signals. Cancer Immunol Immunother 2005; 54:25-36. [PMID: 15693136 PMCID: PMC11032788 DOI: 10.1007/s00262-004-0562-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 04/09/2004] [Indexed: 11/26/2022]
Abstract
PURPOSE Ex vivo differentiation of myeloid leukemic blasts into dendritic cells (DCs) holds significant promise for use as cellular vaccines, as they may present a constellation of endogenously expressed known and unknown leukemia antigens to the immune system. Although variety of stimuli can drive leukemia --> DC differentiation in vitro, these blast-derived DCs typically have aberrant characteristics compared with DCs generated from normal progenitors by the same stimuli. It is not clear whether this is due to underlying leukemogenic mechanisms (e.g., specific oncogenes), genetic defects, stage of maturation arrest, defects in cytokine receptor expression or signal transduction pathways, or whether different stimuli themselves induce qualitatively dissimilar DC differentiation. METHODS To assess what factors may contribute to aberrant leukemic blast --> DC differentiation, we have examined how the same leukemic blasts (AML and CML) respond to different DC differentiation signals--including extracellular (the cytokine combination GM-CSF + TNF-alpha + IL-4) and intracellular (the protein kinase C agonist PMA, the calcium ionophore A23187, and the combination of PMA plus A23187) stimuli. RESULTS We have found that the same leukemic blasts will develop qualitatively different sets of DC characteristics in response to differing stimuli, although no stimuli consistently induced all of the characteristic DC features. There were no clear differences in the responses relative to specific oncogene expression or stage of maturation arrest (AML vs CML). Signal transduction agonists that bypassed membrane receptors/proximal signaling (in particular, the combination of PMA and A23187) consistently induced the greatest capability to activate T cells. Interestingly, this ability did not clearly correlate with expression of MHC/costimulatory ligands. CONCLUSIONS Our findings suggest that signal transduction may play an important role in the aberrant DC differentiation of leukemic blasts, and demonstrate that direct activation of PKC together with intracellular calcium signaling may be an effective method for generating immunostimulatory leukemia-derived DCs.
Collapse
MESH Headings
- Antigens, Surface/genetics
- Blast Crisis/genetics
- Blast Crisis/immunology
- Blast Crisis/metabolism
- Cell Differentiation/physiology
- Cell Line
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Proliferation
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Phenotype
- Signal Transduction/genetics
- Signal Transduction/immunology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Mohamed A. Kharfan-Dabaja
- Division of Hematology/Oncology, Department of Medicine, University of Miami, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA
| | - Ernesto Ayala
- Division of Hematology/Oncology, Department of Medicine, University of Miami, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA
| | - Inna Lindner
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136 USA
| | - Pedro J. Cejas
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136 USA
| | - Nizar J. Bahlis
- Division of Hematology/Oncology, Department of Medicine, University of Miami, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA
| | - Despina Kolonias
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136 USA
| | - Louise M. Carlson
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136 USA
| | - Kelvin P. Lee
- Division of Hematology/Oncology, Department of Medicine, University of Miami, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136 USA
- Department of Microbiology and Immunology, University of Miami School of Medicine, Papanicolaou Bldg., Rm. 211, 1550 NW 10th Ave., Miami, FL 33136 USA
| |
Collapse
|
25
|
Jaffe R. Liver involvement in the histiocytic disorders of childhood. Pediatr Dev Pathol 2004; 7:214-25. [PMID: 15022067 DOI: 10.1007/s10024-003-9876-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2003] [Accepted: 06/02/2003] [Indexed: 12/15/2022]
Abstract
The liver can be involved directly, by infiltration, and indirectly--by remote effects--in the histiocytoses of childhood. Langerhans cell disease, the most well recognized of these, infiltrates the liver directly but has a remarkable selectivity for the bile ducts. Early involvement is by Langerhans cell histiocytosis (LCH) infiltration leading to a sclerosing cholangitis and, eventually, biliary cirrhosis. Gamma glutamyl transpeptidase is a sensitive indicator of liver infiltration in a child with LCH. The indirect effects on the liver of LCH elsewhere in the body are mediated through an accompanying macrophage activation syndrome that is most likely responsible for hepatomegaly and hypoalbuminemia but without direct infiltration. These indirect effects are completely reversible. Juvenile xanthogranuloma/xanthoma disseminatum, a related dendritic cell disorder that can have systemic manifestations, has a strikingly different pattern, with a predominantly portal infiltrate spilling over into the adjacent lobule but sparing the biliary tree. The biology of the liver lesions is not clear but regression has been documented. Myeloproliferative disorders and myeloid leukemias can express CD1a and/or S100 protein, mimicking LCH but distinguished by their sinusoidal pattern. The primary macrophage histiocytoses such as the familial hemophagocytic syndromes can lead to severe liver damage. Although a portal lymphohistiocytic infiltrate is most characteristic, it is probably cytokine-mediated hepatocellular damage that can cause substantial functional impairment or even hepatic failure as a presenting feature. Liver involvement in other, more unusual histiocytic disorders, is also illustrated.
Collapse
Affiliation(s)
- Ronald Jaffe
- Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Syme R, Bryan T, Duggan P, Bajwa R, Stewart D, Glück S. Priming with Dendritic Cells Can Generate Strong Cytotoxic T Cell Responses to Chronic Myelogenous Leukemia Cells In Vitro. Stem Cells Dev 2004; 13:211-21. [PMID: 15186738 DOI: 10.1089/154732804323046828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can elicit potent antigen-specific responses. Since the development of techniques to cultivate these cells from peripheral blood, there has been a great deal of interest in their use in immunotherapeutic strategies. Here we show that morphologically, phenotypically, and functionally characteristic DC can be generated in vitro from peripheral blood mononuclear cells (PBMC) isolated from frozen apheresis product (AP) of cancer patients. These DC, when pulsed with whole-tumor lysate, protein, or RNA from a chronic myelogenous leukemia (CML) cell line, can induce anti-CML specific cytotoxicity in vitro by autologous cytotoxic T lymphocytes (CTL). RNA and protein-pulsed DC were more effective than lysate-pulsed DC at inducing cytotoxicity at low effector:target (E:T) ratios. These results were comparable to those obtained when fresh healthy peripheral blood was used as the source of PBMC, indicating that neither the malignant state of the patient nor the storage period detrimentally affected the generation or functionality of DC. CML cells were found to increase their level of MHC class I expression after exposure to CTL and pulsed DC thereby becoming better targets. These investigations lend support for the utilization of DC to generate anti-tumor responses in CML.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Cytotoxicity, Immunologic/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Rachel Syme
- Department of Oncology, Faculty of Medicine, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada T2N 4N2
| | | | | | | | | | | |
Collapse
|