1
|
Zeng DF, Chen F, Wang S, Chen SL, Xu Y, Shen MQ, Du CH, Wang C, Kong PY, Cheng TM, Su YP, Wang JP. Autoantibody against integrin α v β 3 contributes to thrombocytopenia by blocking the migration and adhesion of megakaryocytes. J Thromb Haemost 2018; 16:1843-1856. [PMID: 29953749 DOI: 10.1111/jth.14214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 01/04/2023]
Abstract
Essentials The pathogenesis of immune thrombocytopenia (ITP) has not been fully clarified. We analyzed the role of anti-αvβ3 autoantibody in the pathogenesis of ITP in patients. Anti-αvβ3 autoantibody impeded megakaryocyte migration and adhesion to the vascular niche. Anti-αv β3 autoantibody potentially contributes to the pathogenesis of refractory ITP. SUMMARY Background The pathogenesis of immune thrombocytopenia (ITP) has not been fully clarified. Anti-αvβ3 integrin autoantibody is detected in chronic ITP patients, but its contribution to ITP is still unclear. Objectives To clarify the potential role of anti-αvβ3 integrin autoantibody in chronic ITP and the related mechanism. Methods Relationship between levels of anti-αvβ3 autoantibody and platelets in chronic ITP patients was evaluated. The influence of anti-αvβ3 antibody on megakaryocyte (MK) survival, differentiation, migration and adhesion was assessed, and the associated signal pathways were investigated. Platelet recovery and MKs' distribution were observed in an ITP mouse model pretreated with different antibodies. Result In this study, we showed that the anti-αvβ3 autoantibody usually coexists with anti-αIIbβ3 autoantibody in chronic ITP patients, and patients with both autoantibodies have lower platelets. In in vitro studies, we showed that the anti-αvβ3 antibody had no significant effect on the survival and proliferation of MKs, whereas it decreased formations of proplatelet significantly. Anti-αvβ3 antibody impeded stromal cell derived facor-1 alpha (SDF-1α)- mediated migration and inhibited the phosphorylation of protein kinase B. Anti-αvβ3 antibody significantly inhibited MKs' adhesion to endothelial cells and Fibrogen. The phosphorylation of focal adhesion kinase and proto-oncogene tyrosine-protein kinase Src induced by adhesion was inhibited when MKs were pretreated with anti-αvβ3 antibody. In in vivo studies, we showed that injection with anti-αv antibody delayed platelet recovery in a mouse model of ITP. Conclusions These findings demonstrate that the autoantibody against integrin αv β3 may aggravate thrombocytopenia in ITP patients by impeding MK migration and adhesion to the vascular niche, which provides new insights into the pathogenesis of ITP.
Collapse
Affiliation(s)
- D F Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - F Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - S Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - S L Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Y Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - M Q Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - C H Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - C Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - P Y Kong
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - T M Cheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Y P Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - J P Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
2
|
A novel mode of stimulating platelet formation activity in megakaryocytes with peanut skin extract. J Nat Med 2017; 72:211-219. [PMID: 29019067 DOI: 10.1007/s11418-017-1135-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
We report in this study novel biochemical activities of peanut skin extract (PEXT) on thrombocytopoiesis. Peanut skin, derived from Arachis hypogaea L., is a traditional Chinese medicine that is used to treat chronic hemorrhage. We have shown that oral administration of PEXT increases the peripheral platelet levels in mice. Recently, we reported a liquid culture system that is useful for investigating megakaryocytopoiesis and thrombocytopoiesis from human CD34+ cells. In this liquid culture system, PEXT was shown to enhance the formation of CD41+/DAPI- cells (platelets), but had no effect on the formation of CD41+/DAPI+ cells (megakaryocytes) or on the DNA content. Furthermore, PEXT selectively stimulated proplatelet formation from cultured mature megakaryocytes and phorbol 12-myristate 13 acetate (PMA)-induced formation of platelet-like particles from Meg01 cells. Despite having no influence on the formation of megakaryocyte colony forming units (CFUs), PEXT increased the size of megakaryocytes during their development from CD34+ cells. PEXT showed no effect on the GATA-1 and NF-E2 mRNA levels, which are known to play an important role in thrombocytopoiesis and, based on the results of a pMARE-Luc (pGL3-MARE-luciferase) assay, had no influence on NF-E2 activation in Meg01 cells. These results suggest that PEXT accelerates proplatelet formation from megakaryocytes but does not influence the development of hematopoietic stem cells into megakaryocytes.
Collapse
|
3
|
Kyttälä S, Habermann I, Minami T, Ehninger G, Kiani A. Regulation of Down Syndrome Critical Region 1 expression by Nuclear Factor of Activated T cells in megakaryocytes. Br J Haematol 2008; 144:395-408. [PMID: 19036088 DOI: 10.1111/j.1365-2141.2008.07490.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As precursors of platelets, megakaryocytes must fulfil the complex tasks of protein synthesis and platelet assembly. Megakaryocytic dysfunction can lead to neoplastic disorders, such as acute megakaryoblastic leukaemia, an entity with a 500-fold increased incidence in children with Down syndrome (DS). Down Syndrome Critical Region 1 (DSCR1), a member of the calcipressin family of calcineurin inhibitors, is overexpressed in DS, and destabilization of the calcineurin/Nuclear Factor of Activated T cells (NFAT) pathway by overexpression of DSCR1 has been implicated in some of the pathophysiological features of the disease. The roles of NFAT and DSCR1 in megakaryocyte signalling and gene expression, however, are unknown. In this study, we show that calcineurin and NFAT are components of a calcium-induced signalling cascade in megakaryocytes. NFAT activation in megakaryocytes was induced by fibrillar collagen type I and was completely sensitive to the calcineurin inhibitor cyclosporin A. We established DSCR1 as a calcium-induced NFAT target gene in these cells and show that overexpression of DSCR1 in megakaryocytes strongly inhibits NFAT activation as well as NFAT-dependent expression of the Fas ligand gene (FASLG). These results suggest that DSCR1 acts as an endogenous feedback inhibitor of NFAT signalling in megakaryocytes, and may have implications for megakaryocytic gene expression in DS.
Collapse
Affiliation(s)
- Satu Kyttälä
- Department of Medicine I, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
4
|
Matsunaga T, Tanaka I, Kobune M, Kawano Y, Tanaka M, Kuribayashi K, Iyama S, Sato T, Sato Y, Takimoto R, Takayama T, Kato J, Ninomiya T, Hamada H, Niitsu Y. Ex vivo large-scale generation of human platelets from cord blood CD34+ cells. Stem Cells 2006; 24:2877-87. [PMID: 16960134 DOI: 10.1634/stemcells.2006-0309] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present investigation, we generated platelets (PLTs) from cord blood (CB) CD34(+) cells using a three-phase culture system. We first cultured 500 CB CD34(+) cells on telomerase gene-transduced human stromal cells (hTERT stroma) in serum-free medium supplemented with stem cell factor (SCF), Flt-3/Flk-2 ligand (FL), and thrombopoietin (TPO) for 14 days. We then transferred the cells to hTERT stroma and cultured for another 14 days with fresh medium containing interleukin-11 (IL-11) in addition to the original cytokine cocktail. Subsequently, we cultured the cells in a liquid culture medium containing SCF, FL, TPO, and IL-11 for another 5 days to recover PLT fractions from the supernatant, which were then gel-filtered to purify the PLTs. The calculated yield of PLTs from 1.0 unit of CB (5 x 10(6) CD34(+) cells) was 1.26 x 10(11) - 1.68 x 10(11) PLTs. These numbers of PLTs are equivalent to 2.5-3.4 units of random donor-derived PLTs or 2/5-6/10 of single-apheresis PLTs. The CB-derived PLTs exhibited features quite similar to those from peripheral blood in morphology, as revealed by electron micrographs, and in function, as revealed by fibrinogen/ADP aggregation, with the appearance of P-selectin and activated glycoprotein IIb-IIIa antigens. Thus, this culture system may be applicable for large-scale generation of PLTs for future clinical use.
Collapse
Affiliation(s)
- Takuya Matsunaga
- Fourth Department of Internal Medicine, Sapporo Medical University, School of Medicine, S1W17, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dumon S, Heath VL, Tomlinson MG, Göttgens B, Frampton J. Differentiation of murine committed megakaryocytic progenitors isolated by a novel strategy reveals the complexity of GATA and Ets factor involvement in megakaryocytopoiesis and an unexpected potential role for GATA-6. Exp Hematol 2006; 34:654-63. [PMID: 16647571 DOI: 10.1016/j.exphem.2006.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The differentiation of megakaryocytes is characterized by polyploidization and cytoplasmic maturation leading to platelet production. Studying these processes is hindered by the paucity of bone marrow megakaryocytes and their precursors. We describe a method for the expansion and purification of committed megakaryocyte progenitors and demonstrate their usefulness by studying changes in the expression of Ets and GATA family transcription factors throughout megakaryocytopoiesis. METHODS A two-step serum-free method was developed. Cells isolated using this method were analyzed for surface marker expression by flow cytometry, and for their ability to differentiate using single-cell culture. Purified progenitors were induced to differentiate and analyzed with respect to their ploidy by flow cytometry and expression of specific genes by RT-PCR. RESULTS A population of Lin- c-kit+ CD45+ CD41+ CD31+ CD34low CD9low FcgammaRII/IIIlow Sca-1med/low committed megakaryocyte progenitors was purified. These cells could be differentiated efficiently, achieving ploidy of up to 128N. Analysis of RNA demonstrated the expected increases in expression of key megakaryocyte-associated genes. RT-PCR analysis also revealed that a range of Ets and GATA factors are expressed, their individual levels and patterns of expression varying widely. Surprisingly, we find that GATA-6 is specifically expressed in late differentiated megakaryocytes and has the potential to regulate megakaryocyte-expressed genes in cooperation with Ets factors. CONCLUSION Purified primary megakaryocytic progenitors are able to differentiate as a cohort into fully mature megakaryocytes. The number of cells obtainable, and the synchrony of the differentiation process, facilitates analysis of the dynamics of molecular processes involved in megakaryocytopoiesis. The expression pattern of Ets and GATA family transcription factors reveals the complexity of the involvement of these key megakaryocytic regulators. The finding of GATA-6 expression and demonstration of its functional activity suggests a novel mechanism for the regulation of certain genes late in megakaryocytopoiesis.
Collapse
Affiliation(s)
- Stephanie Dumon
- Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
6
|
De Bruyn C, Delforge A, Martiat P, Bron D. Ex Vivo Expansion of Megakaryocyte Progenitor Cells: Cord Blood Versus Mobilized Peripheral Blood. Stem Cells Dev 2005; 14:415-24. [PMID: 16137231 DOI: 10.1089/scd.2005.14.415] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thrombocytopenia is a problematic and potentially fatal occurrence after transplantation of cord blood stem cells. This problem may be alleviated by infusion of megakaryocyte progenitor cells. Here, we compared the ability of hematopoietic progenitor cells obtained from cord blood and expanded in culture to that of mobilized peripheral blood cells. The CD34(+) cells were plated for 10 days in presence of thrombopoietin (TPO) alone and combined with stem cell factor (SCF), Flt3-ligand (FL), interleukin-3 (IL-3), IL-6, and IL-11. Cells were analyzed for the CD41 and CD42b expression and for their ploidy status. Ex vivo produced platelets were enumerated. We show that (1) TPO alone was able to induce differentiation of CD34(+) cells into CD41(+) cells, with limited total leucocyte expansion; (2) the addition of SCF to TPO decreased significantly CD41(+) cell percentage in CB, but not in MPB; and (3) in CB, the addition of FL, IL-6, and IL-11 to TPO increased the leukocyte expansion with differentiation and terminal maturation into MK lineage. In these conditions, high numbers of immature CD34(+)CD41(+) MK progenitor cells were produced. Our results thereby demonstrate a different sensitivity of CB and MPB cells to SCF, with limited CB MK differentiation. This different sensitivity to SCF (produced constitutively by BM stromal cells) could explain the longer delay of platelet recovery after CB transplant. Nevertheless, in CB, the combination of TPO with FL, IL-6, and IL-11 allows generation of a suitable number of immature MK progenitor cells expressing both CD34 and CD41 antigens, which are supposed to be responsible for the platelet recovery after transplantation.
Collapse
Affiliation(s)
- C De Bruyn
- Experimental Hematology, Jules Bordet Institute, 1000 Brussels, Belgium.
| | | | | | | |
Collapse
|
7
|
Tanaka N, Sato T, Fujita H, Morita I. Constitutive Expression and Involvement of Cyclooxygenase-2 in Human Megakaryocytopoiesis. Arterioscler Thromb Vasc Biol 2004; 24:607-12. [PMID: 14726416 DOI: 10.1161/01.atv.0000117181.68309.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Cyclooxygenase-1 (COX-1), but not COX-2, is expressed in human platelets, and thromboxane A
2
(TXA
2
) produced via COX-1 induces platelet aggregation. The objectives of this study were to investigate the expression of COX-1 and COX-2 during platelet differentiation and to determine whether these enzymes are involved in the differentiation.
Methods and Results—
CD34
+
progenitor cells isolated from human cord blood were cultured with thrombopoietin and c-kit ligand. The cells differentiated into megakaryocytes (CD34
−
/CD41
+
) after 8 days of culture and into platelets (CD41
+
/prodium iodide
−
) after 14 days of culture. The CD34
+
cells expressed a trace of COX-1 gene and no COX-2 gene. On day 5, COX-2 gene expression was observed and continued throughout the remainder of the culture. COX-1 gene expression increased after 8 days of culture. The treatment of this liquid culture with indomethacin, a dual inhibitor of COX-1 and COX-2, and NS-398, a COX-2–specific inhibitor, suppressed megakaryocyte differentiation. In contrast, at a dose of 10
−7
M, mofezolac, which is a highly selective inhibitor of COX-1, did not affect differentiation. NS-398–induced suppression of megakaryocyte differentiation was partly abrogated by stable analogues of TXA
2
.
Conclusions—
We report here that COX-2 and COX-1 are constitutively expressed in megakaryocytes, and TXA
2
produced by COX-2 plays an important role in megakaryocytopoiesis.
Collapse
Affiliation(s)
- Nobuhito Tanaka
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Okada Y, Matsuura E, Nagai R, Sato T, Watanabe A, Morita I, Doi T. PREP1, MEIS1 homolog protein, regulates PF4 gene expression. Biochem Biophys Res Commun 2003; 305:155-9. [PMID: 12732210 DOI: 10.1016/s0006-291x(03)00718-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously demonstrated that homeodomain proteins, MEIS1 and PBXs, transactivate the PF4 gene through the novel regulatory element termed TME. This study focuses on Pbx regulating protein 1 (PREP1), a MEIS1 homolog protein, for its transcriptional activity in the PF4 promoter. PREP1 binds to the TME in HEL cells. PREP1 was expressed in human megakaryocytes that differentiated from CD34(+) cells. EMSA shows that either PREP1 by itself or PREP1/PBX complexes bind to the two TGACAG motifs in the TME and activate the PF4 promoter. Furthermore, PREP1 and PREP1/PBX complexes synergistically activate the PF4 promoter with GATA-1 and ETS-1. These data demonstrate that PREP1 is also an important transcription factor that regulates PF4 gene expression such as MEIS1. Additionally, these data imply functional similarities and differences between PREP1 and MEIS1 in the regulation of PF4 gene expression.
Collapse
Affiliation(s)
- Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|