1
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
2
|
Intramuscular Boosting with hIFN-Alpha 2b Enhances BCGphipps-Induced Protection in a Murine Model of Leprosy. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Host immunity to Mycobacterium leprae encompasses a spectrum of mechanisms that range from cellular immunity-driven protection to damage associated with humoral immunity as in type-2 leprosy reactions. Although type I interferons (IFNs) participate in eliminating intracellular pathogens, their contribution to the production of antibodies and CD3+ FOXP3+ regulatory T cells (Tregs) in BCG vaccine-mediated protection in leprosy is unknown. BCGphipps (BCGph) priming followed by intramuscular hIFN-α 2b boost significantly reduced lesion size and Mycobacterium lepraemurium growth in the skin. T follicular regulatory cells (TFR), a subset of Tregs induced by immunization or infection, reside in the germinal centers (GCs) and modulate antibody production. We found impaired Treg induction and improved GCs in draining lymph nodes of BCGph primed and hIFN-α 2b boosted mice. Moreover, these mice elicited significant amounts of IL-4 and IL-10 in serum. Thus, our results support the adjuvant properties of hIFN-α 2b in the context of BCGph priming to enhance protective immunity against skin leprosy.
Collapse
|
3
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Steinberg RL, Thomas LJ, Mott SL, O’Donnell MA. Multi-Perspective Tolerance Evaluation of Bacillus Calmette-Guerin with Interferon in the Treatment of Non-Muscle Invasive Bladder Cancer. Bladder Cancer 2019. [DOI: 10.3233/blc-180203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ryan L. Steinberg
- Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| | | | - Sarah L. Mott
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Michael A. O’Donnell
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, IA, USA
- Department of Urology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Liu W, Xu Y, Shen H, Yan J, Yang E, Wang H. Recombinant Bacille Calmette-Guérin coexpressing Ag85B-IFN-γ enhances the cell-mediated immunity in C57BL/6 mice. Exp Ther Med 2017; 13:2339-2347. [PMID: 28565847 PMCID: PMC5443280 DOI: 10.3892/etm.2017.4273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
The only available vaccine against pulmonary tuberculosis is Bacille Calmette-Guérin (BCG). As the efficacy reported of the vaccine is not up to the mark, there is an urgent need to develop improved anti-tuberculosis vaccines. Antigen 85B (Ag85B) is a very promising vaccine candidate molecule of Mycobacterium tuberculosis and interferon (IFN)-γ and has been considered the most attractive correlate of protective immunity. The aim of this study was to construct a novel recombinant BCG (rBCG) to secrete Ag85B and mouse IFN-γ under control of the Mycobacterial heat shock protein 60 (hsp60) promoter and the antigen signal sequence. Second aim of the present study is to evaluate the immune response in C57BL/6 elicted by the new rBCG. Expression of the fusion protein was readily detectable by western blotting and IFN-γ bioactivity was detected indirectly by enzyme-linked immunosorbent assay (ELISA). Compared with BCG, rBCG::Ag85B-IFN-γ was substantially more active in inducing the production of IFN-γ and tumor necrosis factor (TNF)-α from mouse splenocytes. ELISA analysis for IgG, IgG1 and IgG2c showed that rBCG::Ag85B-IFN-γ induced higher titer of Ag85B and facilitated Th1 type immune response. rBCG::Ag85B-IFN-γ also improved nitric oxide production levels and enhanced antigen-specific splenocyte proliferation. Moreover, rBCG::Ag85B-IFN-γ induced human monocytes such as THP-1 cells to enhance expression of CD80, CD86, CD40 and HLA-DR. Flow cytometry analysis confirmed that rBCG::Ag85B-IFN-γ significantly activated CD4+ T cells. Assessing combinations of IFN-γ, TNF-α and interleukin-2 at the single-cell level by multiparameter flow cytometry, we found that rBCG::Ag85B-IFN-γ improved the multifunctional T cells level in comparison to BCG. In conclusion, the present study indicates that rBCG::Ag85B-IFN-γ increases cell mediated immune response and is a potential candidate vaccine for immunotherapeutic protocols against pulmonary tuberculosis.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Hongbo Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jingran Yan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Enzhuo Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
6
|
Abstract
Intravesical Bacillus Calmette-Guérin (BCG) has long been the gold standard treatment of nonmuscle invasive bladder cancer. Recently, there has been an emergence of novel immunotherapeutic agents, which have shown promise in the treatment of urothelial cell carcinoma. These agents aim to augment, modify, or enhance the immune response. Such strategies include recombinant BCG, monoclonal antibodies, vaccines, gene therapy, and adoptive T-cell therapy. Here, we review the emerging immunotherapeutics in the treatment of nonmuscle invasive bladder cancer.
Collapse
Affiliation(s)
- Mahir Maruf
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sam J Brancato
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Muthigi A, George AK, Brancato SJ, Agarwal PK. Novel immunotherapeutic approaches to the treatment of urothelial carcinoma. Ther Adv Urol 2016; 8:203-14. [PMID: 27247630 DOI: 10.1177/1756287216628784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has long played a role in urothelial cancers with the use of bacille Calmette Guérin (BCG) being a mainstay in the treatment of nonmuscle invasive bladder cancer. Novel therapeutic approaches have not significantly impacted mortality in this population and so a renaissance in immunotherapy has resulted. This includes recombinant BCG, oncolytic viruses, monoclonal antibodies, vaccines, and adoptive T-cell therapy. Herein, we provide a review of the current state of the art and future therapies regarding immunotherapeutic strategies for urothelial carcinoma.
Collapse
Affiliation(s)
- Akhil Muthigi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arvin K George
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sam J Brancato
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10- Hatfield CRC, Room 2-5952, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Singh VK, Srivastava R, Srivastava BS. Manipulation of BCG vaccine: a double-edged sword. Eur J Clin Microbiol Infect Dis 2016; 35:535-43. [PMID: 26810060 DOI: 10.1007/s10096-016-2579-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG), an attenuated vaccine derived from M. bovis, is the only licensed vaccine against tuberculosis (TB). Despite its protection against TB in children, the protective efficacy in pulmonary TB is variable in adolescents and adults. In spite of the current knowledge of molecular biology, immunology and cell biology, infectious diseases such as TB and HIV/AIDS are still challenges for the scientific community. Genetic manipulation facilitates the construction of recombinant BCG (rBCG) vaccine that can be used as a highly immunogenic vaccine against TB with an improved safety profile, but, still, the manipulation of BCG vaccine to improve efficacy should be carefully considered, as it can bring in both favourable and unfavourable effects. The purpose of this review is not to comprehensively review the interaction between microorganisms and host cells in order to use rBCG expressing M. tuberculosis (Mtb) immunodominant antigens that are available in the public domain, but, rather, to also discuss the limitations of rBCG vaccine, expressing heterologous antigens, during manipulation that pave the way for a promising new vaccine approach.
Collapse
Affiliation(s)
- V K Singh
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 22184, Lund, Sweden.
| | - R Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - B S Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
9
|
Brancato SJ, Lewi K, Agarwal PK. Evolving immunotherapy strategies in urothelial cancer. Am Soc Clin Oncol Educ Book 2015:e284-90. [PMID: 25993187 DOI: 10.14694/edbook_am.2015.35.e284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The treatment of nonmuscle-invasive urothelial carcinoma with bacillus Calmette-Guérin (BCG) represents the importance of immunotherapy in the treatment of cancer. Despite its clinical efficacy, up to 30% of patients will ultimately experience progression to muscle-invasive disease. This, along with an improved understanding of the biologic pathways involved, has led to efforts to improve, enhance, or alter the immune response in the treatment of urothelial carcinoma. A number of novel therapeutic approaches currently are being pursued, including recombinant BCG to induce T helper type 1 (Th1) immune responses, nonlive Mycobacterium agents, targeted agents toward cancer-associated antigens, immune-modulating vaccines, and adoptive T-cell therapies. Here, we review the current and future immunotherapy treatment options for patients with urothelial cancer.
Collapse
Affiliation(s)
- Sam J Brancato
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| | - Keidren Lewi
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| | - Piyush K Agarwal
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Begnini KR, Buss JH, Collares T, Seixas FK. Recombinant Mycobacterium bovis BCG for immunotherapy in nonmuscle invasive bladder cancer. Appl Microbiol Biotechnol 2015; 99:3741-54. [DOI: 10.1007/s00253-015-6495-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
|
11
|
Ardelt PU, Ebbing J, Adams F, Reiss C, Arap W, Pasqualini R, Bachmann A, Wetterauer U, Riedmiller H, Kneitz B. An anti-ubiquitin antibody response in transitional cell carcinoma of the urinary bladder. PLoS One 2015; 10:e0118646. [PMID: 25742283 PMCID: PMC4351094 DOI: 10.1371/journal.pone.0118646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Background To use combinatorial epitope mapping (“fingerprinting”) of the antibody response to identify targets of the humoral immune response in patients with transitional cell carcinoma (TCC) of the bladder. Methods A combinatorial random peptide library was screened on the circulating pool of immunoglobulins purified from an index patient with a high risk TCC (pTa high grade plus carcinoma in situ) to identify corresponding target antigens. A patient cohort was investigated for antibody titers against ubiquitin. Results We selected, isolated, and validated an immunogenic peptide motif from ubiquitin as a dominant epitope of the humoral response. Patients with TCC had significantly higher antibody titers against ubiquitin than healthy donors (p<0.007), prostate cancer patients (p<0.0007), and all patients without TCC taken together (p<0.0001). Titers from superficial tumors were not significantly different from muscle invasive tumors (p = 0.0929). For antibody response against ubiquitin, sensitivity for detection of TCC was 0.44, specificity 0.96, positive predictive value 0.96 and negative predictive value 0.41. No significant titer changes were observed during the standard BCG induction immunotherapy. Conclusions This is the first report to demonstrate an anti-ubiquitin antibody response in patients with TCC. Although sensitivity of antibody production was low, a high specificity and positive predictive value make ubiquitin an interesting candidate for further diagnostic and possibly immune modulating studies.
Collapse
Affiliation(s)
- Peter U. Ardelt
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Urology and Pediatric Urology, Medical School, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Department of Urology, Bavarian Julius Maximilians-University Medical School, Würzburg, Germany
- * E-mail:
| | - Jan Ebbing
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Fabian Adams
- Department of Urology and Pediatric Urology, Medical School, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Cora Reiss
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Wadih Arap
- Division of Hematology/Oncology and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Renata Pasqualini
- Division of Hematology/Oncology and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | | | - Ulrich Wetterauer
- Department of Urology and Pediatric Urology, Medical School, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hubertus Riedmiller
- Department of Urology, Bavarian Julius Maximilians-University Medical School, Würzburg, Germany
| | - Burkhard Kneitz
- Department of Urology, Bavarian Julius Maximilians-University Medical School, Würzburg, Germany
| |
Collapse
|
12
|
Wang Y, Yang M, Yu Q, Yu L, Shao S, Wang X. Recombinant bacillus Calmette-Guérin in urothelial bladder cancer immunotherapy: current strategies. Expert Rev Anticancer Ther 2014; 15:85-93. [PMID: 25231670 DOI: 10.1586/14737140.2015.961430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus Calmette-Guérin (BCG) has been used in the intravesical treatment of urothelial bladder cancer (UBC) for three decades. Despite its efficacy, intravesical BCG therapy is associated with some limitations such as side effects and BCG failure, which have inspired multiple ways to improve it. Recent advances have focused on recombinant BCG (rBCG) which provides a novel tactic for modification of BCG. To date, a number of rBCG strains have been developed and demonstrated to encourage efficacy and safety in preclinical and clinical studies. This review summarizes current rBCG strategies, concerns and future directions in UBC immunotherapy with an intention to encourage further research and eventually to inform clinical decisions.
Collapse
Affiliation(s)
- Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | | | | | | | | | | |
Collapse
|
13
|
Ingersoll MA, Albert ML. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol 2013; 6:1041-53. [PMID: 24064671 DOI: 10.1038/mi.2013.72] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
The pathogenesis of urinary tract infection and mechanisms of the protective effect of Bacillus Calmette-Guerin (BCG) therapy for bladder cancer highlight the importance of studying the bladder as a unique mucosal surface. Innate responses to bacteria are reviewed, and although our collective knowledge remains incomplete, we discuss how adaptive immunity may be generated following bacterial challenge in the bladder microenvironment. Interestingly, the widely held belief that the bladder is sterile has been challenged recently, indicating the need for further study of the impact of commensal microorganisms on the immune response to uropathogen infection or intentional instillation of BCG. This review addresses the aspects of bladder biology that have been well explored and defines what still must be discovered about the immunobiology of this understudied organ.
Collapse
Affiliation(s)
- M A Ingersoll
- 1] Unité d'Immunobiologie des Cellules Dendritiques, Department of Immunology, Institut Pasteur, Paris, France [2] INSERM U818, Department of Immunology, Institut Pasteur, Paris, France [3] Université Paris Descartes, Paris, France
| | | |
Collapse
|
14
|
Ding GQ, Yu YL, Shen ZJ, Zhou XL, Chen SW, Liao GD, Zhang Y. Antitumor effects of human interferon-alpha 2b secreted by recombinant bacillus Calmette-Guérin vaccine on bladder cancer cells. J Zhejiang Univ Sci B 2012; 13:335-41. [PMID: 22556170 DOI: 10.1631/jzus.b1100366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Our objective was to construct a recombinant bacillus Calmette-Guérin vaccine (rBCG) that secretes human interferon-alpha 2b (IFNα-2b) and to study its immunogenicity and in vitro antitumor activity against human bladder cancer cell lines T24 and T5637. METHODS The signal sequence BCG Ag85B and the gene IFNα-2b were amplified from the genome of BCG and human peripheral blood, respectively, by polymerase chain reaction (PCR). The two genes were cloned in Escherichia coli-BCG shuttle-vector pMV261 to obtain a new recombinant plasmid pMV261-Ag85B-IFNα-2b. BCG was transformed with the recombinant plasmid by electroporation and designated rBCG-IFNα-2b. Mononuclear cells were isolated from human peripheral blood (PBMCs) and stimulated with rBCG-IFNα-2b or wild type BCG for 3 d, and then cultured with human bladder cancer cell lines T24 and T5637. Their cytotoxicities were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS BCG was successfully transformed with the recombinant plasmid pMV261-Ag85B-IFNα-2b by electroporation and the recombinant BCG (rBCG-IFNα-2b) was capable of synthesizing and secreting cytokine IFNα-2b. PBMC proliferation was enhanced significantly by rBCG-IFNα-2b, and the cytotoxicity of PBMCs stimulated by rBCG-IFNα-2b to T24 and T5627 was significantly stronger in comparison to wild type BCG. CONCLUSIONS A recombinant BCG, secreting human IFNα-2b (rBCG-IFNα-2b), was constructed successfully and was superior to control wild type BCG in inducing immune responses and enhancing cytotoxicity to human bladder cancer cell lines T24 and T5637. This suggests that rBCG-IFNα-2b could be a promising agent for bladder cancer patients in terms of possible reductions in both clinical dosage and side effects of BCG immunotherapy.
Collapse
Affiliation(s)
- Guo-qing Ding
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Bladder Cancer Immunotherapy: BCG and Beyond. Adv Urol 2012; 2012:181987. [PMID: 22778725 PMCID: PMC3388311 DOI: 10.1155/2012/181987] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/11/2012] [Indexed: 12/04/2022] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) has become the predominant conservative treatment for nonmuscle invasive bladder cancer. Its mechanism of action continues to be defined but has been shown to involve a T helper type 1 (Th1) immunomodulatory response. While BCG treatment is the current standard of care, a significant proportion of patients fails or do not tolerate treatment. Therefore, many efforts have been made to identify other intravesical and immunomodulating therapeutics to use alone or in conjunction with BCG. This paper reviews the progress of basic science and clinical experience with several immunotherapeutic agents including IFN-α, IL-2, IL-12, and IL-10.
Collapse
|
16
|
Fishman AI, Johnson B, Alexander B, Won J, Choudhury M, Konno S. Additively enhanced antiproliferative effect of interferon combined with proanthocyanidin on bladder cancer cells. J Cancer 2012; 3:107-12. [PMID: 22393334 PMCID: PMC3293172 DOI: 10.7150/jca.4107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/29/2012] [Indexed: 11/23/2022] Open
Abstract
Although interferon (IFN) has been often used as immunotherapy for bladder cancer, its efficacy is rather unsatisfactory, demanding further improvement. Combination therapy is one of viable options, and grape seed proanthocyanidin (GSP) could be such an agent to be used with IFN because it has been shown to have anticancer activity. We thus investigated whether combination of IFN and GSP might enhance the overall antiproliferative effect on bladder cancer cells in vitro. Human bladder cancer T24 cells were employed and treated with the varying concentrations of recombinant IFN-α2b (0-100,000 IU/ml), GSP (0-100 μg/ml), or their combinations. IFN-α2b alone led to a ~50% growth reduction at 20,000 (20K) IU/ml, which further declined to ~67% at ≥50K IU/ml. Similarly, GSP alone induced a ~35% and ~100% growth reduction at 25 and ≥50 μg/ml, respectively. When IFN-α2b and GSP were then combined, combination of 50K IU/ml IFN-α2b and 25 μg/ml GSP resulted in a drastic >95% growth reduction. Cell cycle analysis indicated that such an enhanced growth inhibition was accompanied by a G1 cell cycle arrest. This was further confirmed by Western blot analysis revealing that expressions of G1-specific cell cycle regulators (CDK2, CDK4, cyclin E and p27/Kip1) were distinctly modulated with such IFN-α2b/GSP treatment. Therefore, these findings support the notion that combination of IFN-α2b and GSP is capable of additively enhancing antiproliferative effect on T24 cells with a G1 cell cycle arrest, implying an adjuvant therapeutic modality for superficial bladder cancer.
Collapse
Affiliation(s)
- Andrew I Fishman
- Department of Urology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | |
Collapse
|
17
|
Th1 cytokine-secreting recombinant Mycobacterium bovis bacillus Calmette-Guérin and prospective use in immunotherapy of bladder cancer. Clin Dev Immunol 2011; 2011:728930. [PMID: 21941579 PMCID: PMC3173967 DOI: 10.1155/2011/728930] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/17/2011] [Indexed: 12/03/2022]
Abstract
Intravesical instillation of Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been used for treating bladder cancer for 3 decades. However, BCG therapy is ineffective in approximately 30–40% of cases. Since evidence supports the T helper type 1 (Th1) response to be essential in BCG-induced tumor destruction, studies have focused on enhancing BCG induction of Th1 immune responses. Although BCG in combination with Th1 cytokines (e.g., interferon-α) has demonstrated improved efficacy, combination therapy requires multiple applications and a large quantity of cytokines. On the other hand, genetic manipulation of BCG to secrete Th1 cytokines continues to be pursued with considerable interest. To date, a number of recombinant BCG (rBCG) strains capable of secreting functional Th1 cytokines have been developed and demonstrated to be superior to BCG. This paper discusses current rBCG research, concerns, and future directions with an intention to inspire the development of this very promising immunotherapeutic modality for bladder cancer.
Collapse
|
18
|
[From genetics to genomics in the rational design of new Mycobacterium tuberculosis vaccines]. Enferm Infecc Microbiol Clin 2011; 29:609-14. [PMID: 21684635 DOI: 10.1016/j.eimc.2011.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease affecting people from all ages all over the world. It is estimated that one third of the world population lives infected with the causal agent: Mycobacterium tuberculosis. Despite availability and systematic administration of BCG vaccine in endemic areas, TB transmission remains elusive to control, partly because BGC efficacy has been shown to have wide variability (0-80%). Such variability in protection is attributed to factors including: the BCG strain used for immunization, pre-existing exposure to environmental saprophytic Mycobacterium species, and host genetic factors. In this context, efforts regarding to re-engineering BCG vaccines with the ability to prevent latent TB reactivation, providing long lasting protection, and devoid from collateral effects in immunosuppressed people are urgent. In this work we review the actual molecular «gene-by-gene» strategies aimed at generating BCG alternatives, and discuss the urgent necessity of high throughput technology methods for a rational design for a new TB vaccine.
Collapse
|
19
|
Yuan S, Shi C, Liu L, Han W. MUC1-based recombinant Bacillus Calmette-Guerin vaccines as candidates for breast cancer immunotherapy. Expert Opin Biol Ther 2010; 10:1037-48. [PMID: 20420512 DOI: 10.1517/14712598.2010.485185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD The challenge in breast cancer vaccine development is to find the best combination of antigen, adjuvant and delivery system to produce a strong and long-lasting immune response. Mucin 1 (MUC1) is a potential candidate target for breast cancer immunotherapy. Bacillus Calmette-Guerin (BCG) is used widely in human vaccines. Furthermore, it can potentially offer unique advantages for developing a safe and effective multi-vaccine vehicle. Due to these properties, the development of MUC1 based recombinant BCG (rBCG) vaccines for breast cancer immunotherapy has gained great momentum in recent years. AREAS COVERED IN THIS REVIEW Our aim is to discuss the recent progress in MUC1-based breast cancer immunotherapy and to highlight the advantages of MUC1-based rBCG vaccines as the new breast cancer vaccines. WHAT THE READER WILL GAIN Several promising MUC1-based rBCG vaccines have been shown to induce MUC1-specific antitumor immune responses in pre-clinical studies. This review updates and evaluates this very important and rapidly developing field, and provides a critical perspective and information source for its potential clinical applications. TAKE HOME MESSAGE MUC1-based rBCG vaccines have been shown to elicit an effective anti-tumor immune response in vivo demonstrating its potential utility in breast cancer treatment.
Collapse
Affiliation(s)
- Shifang Yuan
- Fourth Military Medical University, Xijing Hospital, Department of Vascular and Endocrine Surgery, Xi'an, 710032, People's Republic of China.
| | | | | | | |
Collapse
|
20
|
Louie B, Rajamahanty S, Won J, Choudhury M, Konno S. Synergistic potentiation of interferon activity with maitake mushroom d-fraction on bladder cancer cells. BJU Int 2010; 105:1011-5. [DOI: 10.1111/j.1464-410x.2009.08870.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Triccas JA. Recombinant BCG as a vaccine vehicle to protect against tuberculosis. Bioeng Bugs 2010; 1:110-5. [PMID: 21326936 PMCID: PMC3026451 DOI: 10.4161/bbug.1.2.10483] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 11/01/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium bovis Bacille Calmette Guérin (BCG) was first administered to humans in 1921 and has subsequently been delivered to an estimated 3 billion individuals, with a low incidence of serious complications. The vaccine is immunogenic and is stable and cheap to produce. Additionally, the vaccine can be engineered to express foreign molecules in a functional form, and this has driven the development of BCG as a recombinant vector to protect against infectious diseases and malignancies such as cancer. However, it is now clear that the existing BCG vaccine has proved insufficient to control the spread of tuberculosis, and a major focus of tuberculosis vaccine development programs is the construction and testing of modified forms of BCG. This review summarizes the strategies employed to develop recombinant forms of BCG and describes the potential of these vaccines to stimulate protective immunity and protect against Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- James A Triccas
- Discipline of Infectious Diseases and Immunology, Blackburn Building, University of Sydney, NSW Australia.
| |
Collapse
|
22
|
Liu W, O’Donnell MA, Chen X, Han R, Luo Y. Recombinant bacillus Calmette-Guérin (BCG) expressing interferon-alpha 2B enhances human mononuclear cell cytotoxicity against bladder cancer cell lines in vitro. Cancer Immunol Immunother 2009; 58:1647-55. [PMID: 19214503 PMCID: PMC11030713 DOI: 10.1007/s00262-009-0673-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 01/26/2009] [Indexed: 11/29/2022]
Abstract
PURPOSE The proper induction of cellular immunity is required for effective bacillus Calmette-Guérin (BCG) immunotherapy of bladder cancer. It has been known that BCG stimulation of human peripheral blood mononuclear cells (PBMC) leads to the generation of effector cells cytotoxic to bladder cancer cells in vitro. To improve BCG therapy, we previously developed human interferon (IFN)-alpha 2B secreting recombinant (r) BCG (rBCG-IFN-alpha). We demonstrated that rBCG-IFN-alpha augmented T helper type 1 (Th1) cytokine IFN-gamma production by PBMC. In this study, we further investigated whether rBCG-IFN-alpha could also enhance PBMC cytotoxicity toward bladder cancer cells. MATERIALS AND METHODS PBMC were prepared from healthy individuals, left alone or stimulated with rBCG-IFN-alpha or control MV261 BCG, and used as effector cells in (51)Cr-release assays. Human bladder cancer cell lines T24, J82, 5637, TCCSUP, and UMUC-3 were used as target cells. To determine the role of secreted rIFN-alpha as well as endogenously expressed IFN-gamma and IL-2 in inducing the cytotoxicity, PBMC were stimulated with rBCG-IFN-alpha in the presence of neutralizing antibodies to IFN-alpha, IFN-gamma or IL-2. To determine the role of natural killer (NK) and CD8(+) T cells in inducing the cytotoxicity, both cell types were isolated after BCG stimulation of PBMC and used as effector cells in (51)Cr-release assays. RESULTS Non-stimulated PBMC showed basal levels of cytotoxicity against all target cell lines tested. MV261 BCG increased the PBMC cytotoxicity by 1.8- to 4.2-fold. rBCG-IFN-alpha further increased the PBMC cytotoxicity by up to 2-fold. Elevated production of IFN-gamma and IL-2 by PBMC was observed after rBCG-IFN-alpha stimulation. Blockage of IFN-alpha, IFN-gamma or IL-2 by neutralizing antibodies during rBCG-IFN-alpha stimulation reduced or abolished the induction of PBMC cytotoxicity. Both NK and CD8(+) T cells were found to be responsible for the enhanced PBMC cytotoxicity induced by rBCG-IFN-alpha with the former cell type being more predominant. CONCLUSIONS rBCG-IFN-alpha is an improved BCG agent that induces enhanced PBMC cytotoxicity against bladder cancer cells in vitro. This rBCG strain may serve as an alternative to BCG for the treatment of superficial bladder cancer.
Collapse
Affiliation(s)
- Wujiang Liu
- Department of Urology, University of Iowa, 3202 MERF, 375 Newton Road, Iowa, IA 52242 USA
| | - Michael A. O’Donnell
- Department of Urology, University of Iowa, 3202 MERF, 375 Newton Road, Iowa, IA 52242 USA
| | - Xiaohong Chen
- Department of Urology, University of Iowa, 3202 MERF, 375 Newton Road, Iowa, IA 52242 USA
| | - Ruifa Han
- Tainjin Institute of Urology, Tainjin, China
| | - Yi Luo
- Department of Urology, University of Iowa, 3202 MERF, 375 Newton Road, Iowa, IA 52242 USA
| |
Collapse
|
23
|
Xu Y, Zhu B, Wang Q, Chen J, Qie Y, Wang J, Wang H, Wang B, Wang H. Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-γ confers effective protection againstMycobacterium tuberculosisin C57BL/6 mice. ACTA ACUST UNITED AC 2007; 51:480-7. [DOI: 10.1111/j.1574-695x.2007.00322.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Chen X, O'DONNELL MA, Luo Y. Dose-dependent synergy of Th1-stimulating cytokines on bacille Calmette-Guérin-induced interferon-gamma production by human mononuclear cells. Clin Exp Immunol 2007; 149:178-85. [PMID: 17517055 PMCID: PMC1942034 DOI: 10.1111/j.1365-2249.2007.03413.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Successful bacille Calmette-Guérin (BCG) immunotherapy of bladder cancer depends on the proper induction of a T helper-type 1 (Th1) immune response. In this study we investigated the possible involvement of Th1-stimulating cytokines in BCG-induced interferon (IFN)-gamma production as well as their potential roles in enhancing BCG-induced IFN-gamma from human peripheral blood mononuclear cells (PBMCs). BCG efficiently induced IFN-gamma production by PBMCs in a dose-dependent manner. Neutralization of endogenous cytokines interleukin (IL)-2, IL-12 and IFN-alpha reduced BCG-induced IFN-gamma by 38%, 67% and 49%, respectively. Although single recombinant (r) IL-2, rIL-12 and rIFN-alpha induced no or a marginal amount of IFN-gamma, a combination of any two or three cytokines increased IFN-gamma production. When BCG (a subsaturated dose) was combined with mono, dual or triple cytokines, a synergy on IFN-gamma production was observed. Such a synergy was readily achievable even when minimal or low doses of cytokines were used. No saturation of IFN-gamma production was observed even when a subsaturated BCG dose was combined with very high doses of cytokines. A robust IFN-gamma production was also observed when a minimal BCG dose was combined with minimal doses of triple cytokines. In addition, we demonstrated that IL-2- and IFN-alpha-expressing rBCGs were superior to wild-type BCG for PBMC IFN-gamma induction and that combination of both rBCGs showed a synergy in IFN-gamma production. Taken together, these results suggest that combination of BCG with certain exogenous or endogenous (expressed by rBCGs) Th1-stimulating cytokines is a rational candidate for further study in bladder cancer treatment.
Collapse
Affiliation(s)
- X Chen
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
25
|
Sable SB, Kalra M, Verma I, Khuller GK. Tuberculosis subunit vaccine design: the conflict of antigenicity and immunogenicity. Clin Immunol 2007; 122:239-51. [PMID: 17208519 DOI: 10.1016/j.clim.2006.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 10/12/2006] [Accepted: 10/20/2006] [Indexed: 01/02/2023]
Abstract
The attempts to find an effective antituberculous subunit vaccine are based on the assumption that it must drive a Th1 response. In the absence of effective correlates of protection, a vast array of mycobacterial components are being evaluated worldwide either on the basis of their ability to be recognized by T lymphocytes in in vitro assays during early stage of animal or human infection (antigenicity) or their capacity to induce T cell response following immunization in animal models (immunogenicity). The putative vaccine candidates selected using either of these strategies are then subjected to challenge studies in different animal models to evaluate the protective efficacy. Here we review the outcome of this current scheme of selection of vaccine candidates using an 'antigenicity' or 'immunogenicity' criterion on the actual protective efficacy observed in experimental animal models. The possible implications for the success of some of the leading vaccine candidates in clinical trials will also be discussed.
Collapse
Affiliation(s)
- Suraj B Sable
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh-160 012, India.
| | | | | | | |
Collapse
|
26
|
Böhle A, Suttmann H, Brandau S. Wirkmechanismen der intravesikalen BCG-Immuntherapie des oberflächlichen Harnblasenkarzinoms. Urologe A 2006; 45:629-33, 635-6. [PMID: 16710680 DOI: 10.1007/s00120-006-1059-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunotherapy for treatment of solid cancer mostly is an experimental treatment. In contrast, intravesical immunotherapy of superficial bladder cancer with bacille Calmette-Guérin (BCG) is clinically well established and accepted worldwide because of better results compared to topical chemotherapy. BCG is currently regarded as the most successful immunotherapy of cancer. Unfortunately the mechanism of action has not yet been fully clarified. This article gives an overview on the complex research on the mechanisms of actionhighly successful therapy.
Collapse
Affiliation(s)
- A Böhle
- Urologische Abteilung, HELIOS Agnes-Karll-Krankenhaus, Am Hochkamp 21, 23611, Bad Schwartau.
| | | | | |
Collapse
|
27
|
Connor RJ, Anderson JM, Machemer T, Maneval DC, Engler H. Sustained intravesical interferon protein exposure is achieved using an adenoviral-mediated gene delivery system: a study in rats evaluating dosing regimens. Urology 2005; 66:224-9. [PMID: 15992886 DOI: 10.1016/j.urology.2005.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/25/2005] [Accepted: 02/16/2005] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To evaluate whether a recombinant replication-deficient adenovirus containing the secreted human interferon alpha-2b gene (rAd-IFN) could improve the tissue and urine levels of IFN protein by transducing the urothelium with the secreted human IFN-alpha gene. We also assessed whether varying the interval between rAd-IFN/Syn3 treatments would improve the duration and levels of gene expression. METHODS The rats received intravesical administration of rAd-IFN at varying concentrations in a formulation containing Syn3, an agent identified that facilitates passage of the adenovirus through the protective barrier of the bladder. Urine was collected daily for 7 days, and human IFN was measured in the urine by enzyme-linked immunosorbent assay. For the redosing studies, the animals received a second dose at varying intervals ranging from 1 to 7 days after the first dose or at longer intervals (30, 60, or 90 days). RESULTS Rats that received intravesical administration of rAd-IFN in a Syn3 formulation expressed levels of human IFN protein in their urine at peak concentrations of 50,000 to 100,000 pg/mL, but were undetectable by 7 days. Expression was localized to the bladder with only minimal systemic exposure to IFN. Short-term redosing marginally improved the IFN urine concentrations, with maximal levels achieved when a second dose was administered 3 days after a first dose. Although gene expression was attenuated when a second dose was given 5 to 7 days after the first treatment, the levels and duration of IFN expression recovered when the interval was increased to 90 days. CONCLUSIONS Intravesical treatment with rAd-IFN facilitates high levels of IFN transgene exposure and may be a new approach to treating superficial bladder cancer.
Collapse
|
28
|
Nasser Eddine A, Kaufmann SHE. Improved protection by recombinant BCG. Microbes Infect 2005; 7:939-46. [PMID: 15890553 DOI: 10.1016/j.micinf.2005.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 03/03/2005] [Indexed: 11/21/2022]
Abstract
Mycobacterium bovis bacille Calmette Guérin (BCG) is one of the most widely used live vaccines. Technologic advancement in genome manipulation enables the construction of recombinant BCG (rBCG) strains, which can be employed as highly immunogenic vaccines against tuberculosis with improved safety profile.
Collapse
Affiliation(s)
- Ali Nasser Eddine
- Department of Immunology, Max-Planck Institute for Infection Biology, Schumannstr. 21/22, 10117 Berlin, Germany
| | | |
Collapse
|
29
|
Kaufmann SHE, McMichael AJ. Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nat Med 2005; 11:S33-44. [PMID: 15812488 PMCID: PMC7095892 DOI: 10.1038/nm1221] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis annually cause 3 million and 2 million deaths, respectively. Last year, 600,000 individuals, doubly infected with HIV and M. tuberculosis, died. Since World War I, approximately 150 million people have succumbed to these two infections--more total deaths than in all wars in the last 2,000 years. Although the perceived threats of new infections such as SARS, new variant Creutzfeldt-Jakob disease and anthrax are real, these outbreaks have caused less than 1,000 deaths globally, a death toll AIDS and tuberculosis exact every 2 h. In 2003, 40 million people were infected with HIV, 2 billion with M. tuberculosis, and 15 million with both. Last year, 5 million and 50 million were newly infected with HIV or M. tuberculosis, respectively, with 2 million new double infections. Better control measures are urgently needed.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Schumannstrasse 21-22, 10117 Berlin, Germany.
| | | |
Collapse
|
30
|
Beatty JD, Islam S, North ME, Knight SC, Ogden CW. Urine dendritic cells: a noninvasive probe for immune activity in bladder cancer? BJU Int 2005; 94:1377-83. [PMID: 15610124 DOI: 10.1111/j.1464-410x.2004.05176.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To test the hypothesis that dendritic cells (DC), antigen-presenting cells with the potential to stimulate primary T-cell responses, may appear in the urine of patients with bladder cancer, and that their characteristics may reflect those of DC in cancer tissue. PATIENTS AND METHODS Cells from digested tissue of transurethral resection specimens from eight patients and urine from 18 with bladder cancers were analysed using flow cytometry, immunohistochemistry and electron microscopy. Urine samples from 12 patients were also analysed during intravesical bacillus Calmette-Guerin (BCG) therapy. RESULTS Immature DC positive for major histocompatibility complex class II antigens, negative for markers of other leukocyte lineages and with low levels of co-stimulatory markers, were identified in CD45-positive cells isolated immediately from cancer tissue or amongst cells migrating from tissue fragments after overnight culture. Immature-phenotype DC were also identified in the urine of patients with bladder cancer. Their identity was confirmed by immunohistochemistry and electron microscopy. Using these methods, DC were monitored from the bladder during BCG installation for bladder cancer in 12 patients for a mean of 10 months. Of six patients who developed a recurrence of their bladder cancer over this period, all but one showed a lower percentage of DC in their urine at the end of their initial treatment. CONCLUSION We identified DC in the urine of patients with bladder cancer for the first time. We speculate that variability in the percentage of urinary DC may reflect changes in immunological activity at the tumour site; prospective studies are required to evaluate the relevance of these DC counts and characteristics to clinical outcome.
Collapse
Affiliation(s)
- John D Beatty
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK.
| | | | | | | | | |
Collapse
|
31
|
Liu M, Kilarski WW, Gerwins P, Oberg K, Zhou Y. Efficient human interferon-alpha gene transfer to neuroendocrine tumor cells with long-term and stable expression. Neuroendocrinology 2005; 82:264-73. [PMID: 16721032 DOI: 10.1159/000092862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 02/13/2006] [Indexed: 12/21/2022]
Abstract
Interferon (IFN)-alpha has been used in the treatment of neuroendocrine (NE) tumors; however, the feasibility of IFN-alpha gene therapy has not been evaluated in NE tumor cells. In this study, human IFN-alpha2 (hIFN-alpha2) gene has been transferred into a NE tumor cell line BON. hIFN-alpha2-expressing BON cells were subcutaneously inoculated in nude mice. The results demonstrated that hIFN-alpha2 exerted significant antiproliferative effects on NE tumor cell lines (BON and LCC18) and other tumor cell lines (CA46 and SW480) as well as porcine aorta cell line. Furthermore, hIFN-alpha2 demonstrated its antineovascular activity in mice tumor and a direct antiangiogenic effect in chicken chorioallantoic membrane assay. hIFN-alpha2-expressing BON cells had a stable and long-term expression. Mice implanted with hIFN-alpha2-expressing BON cells showed a lower incidence, a delayed development and a significantly longer doubling time of the tumor compared to both wild-type (WT) and vector group. In addition, IFN-alpha significantly inhibited cell adhesion of WT BON cells. hIFN-alpha2-expressing BON tumors had a high level of hIFN-alpha2 protein. Finally, mice implanted with a mixture of WT and hIFN-alpha2-expressing BON cells (1:1) presented a delayed tumor development and had an even lower incidence of tumors than those implanted with hIFN-alpha2-expressing BON cells only. The doubling time of tumor was also longest in the mixture group. Our data suggest that hIFN-alpha2 gene therapy might be possible to be used as a new treatment for NE tumor patients. Further studies on the regulation of hIFN-alpha expression are needed, especially in combination with other cytokines, which could lead to a better understanding and improvements of hIFN-alpha gene therapy.
Collapse
Affiliation(s)
- Minghui Liu
- Endocrine Oncology Unit, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
32
|
Dennehy M, Williamson AL. Factors influencing the immune response to foreign antigen expressed in recombinant BCG vaccines. Vaccine 2005; 23:1209-24. [PMID: 15652663 DOI: 10.1016/j.vaccine.2004.08.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 08/26/2004] [Indexed: 11/30/2022]
Abstract
A wide range of recombinant BCG vaccine candidates containing foreign viral, bacterial, parasite or immunomodulatory genetic material have been developed and evaluated, primarily in animal models, for immune response to the foreign antigen. This review considers some of the factors that may influence the immunogenicity of these vaccines. The influence of levels and timing of expression of the foreign antigen and the use of targeting sequences are considered in the first section. Genetic and functional stability of rBCG is reviewed in the second section. In the last section, the influence of dose and route of immunization, strain of BCG and the animal model used are discussed.
Collapse
Affiliation(s)
- Maureen Dennehy
- The Biovac Institute, Private Bag X3, Pinelands, 7430 Cape Town, South Africa.
| | | |
Collapse
|
33
|
Abstract
For patients with urological cancers, immunotherapy is currently a treatment option for metastatic renal cell carcinoma, and those with "high risk" superficial bladder cancers. In this review, our current understanding of tumour immune escape is discussed. The principles and role of current immunotherapies for these tumours are described, and new areas of immunotherapeutic promise are highlighted.
Collapse
Affiliation(s)
- T R L Griffiths
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester General Hospital, Leicester, UK.
| | | |
Collapse
|
34
|
Luo Y, Yamada H, Chen X, Ryan AA, Evanoff DP, Triccas JA, O'Donnell MA. Recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) expressing mouse IL-18 augments Th1 immunity and macrophage cytotoxicity. Clin Exp Immunol 2004; 137:24-34. [PMID: 15196240 PMCID: PMC1809079 DOI: 10.1111/j.1365-2249.2004.02522.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Interleukin-18 (IL-18) has been demonstrated to synergize with BCG for induction of a T-helper-type 1 (Th1) immune response. Since successful treatment of superficial bladder cancer with BCG requires proper induction of Th1 immunity, we have developed a recombinant (r) BCG strain that functionally secretes mouse (m) IL-18. This rBCG-mIL-18 strain significantly increased production of the major Th1 cytokine IFN-gamma in splenocyte cultures, at levels comparable to that elicited by control BCG plus exogenous rIL-18. IFN-gamma production by splenocytes was eliminated by addition of neutralizing anti-IL-18 antibody. Endogenous IL-12 played a favourable role whereas IL-10 played an adverse role in rBCG-mIL-18-induced IFN-gamma production. Enhanced host antimycobacterial immunity was observed in mice infected with rBCG-mIL-18 which showed less splenic enlargement and reduced bacterial load compared to control mice infected with BCG. Further, splenocytes from rBCG-mIL-18-infected mice, in response to BCG antigen, displayed increased production of IFN-gamma and GMCSF, decreased production of IL-10, elevated cellular proliferation and higher differentiation of IFN-gamma-secreting cells. rBCG-mIL-18 also enhanced BCG-induced macrophage cytotoxicity against bladder cancer MBT-2 cells in a dose-dependent manner. Neutralizing all endogenous macrophage-derived cytokines tested (IL-12, IL-18 and TNF-alpha) as well as IFN-gamma severely diminished the rBCG-mIL-18-induced macrophage cytolytic activity, indicating a critical role for these cytokines in this process. Cytokine analysis for supernatants of macrophage-BCG mixture cultures manifested higher levels of IFN-gamma and TNF-alpha in rBCG-mIL-18 cultures than in control BCG cultures. Taken together, this rBCG-mIL-18 strain augments BCG's immunostimulatory property and may serve as a better agent for bladder cancer immunotherapy and antimycobacterial immunization.
Collapse
Affiliation(s)
- Y Luo
- Department of Urology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242-1089, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Castañón-Arreola M, López-Vidal Y. A second-generation anti TB vaccine is long overdue. Ann Clin Microbiol Antimicrob 2004; 3:10. [PMID: 15176980 PMCID: PMC446207 DOI: 10.1186/1476-0711-3-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Accepted: 06/03/2004] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium bovis BCG vaccine significantly reduces the risk of tuberculosis by 50% and continues to be used to prevent tuberculosis around the world. However, it has been shown to be ineffective in some geographical regions. The existence of different BCG strains was described more than 60 years ago, these vary in their antigenic content but the genetic mutations in BCG strains have yet been shown to affect their protection. After the declaration of tuberculosis as a global emergency in 1993, current research attempts to develop a novel more-effective vaccine. Using new technologies, recombinant, auxotroph, DNA, subunit and phylogenetically closely related mycobacteria, naturally or genetically attenuated, have been used as vaccines in animal models, but their protective efficacy, is less than that offered by the current BCG vaccine. Today it is mandatory that a major effort be made to understand how different BCG vaccine strains influence immune response and why in some cases vaccines have failed, so we can rationally develop the next generation of tuberculosis vaccines to reduce the prevalence from 10% to less than 2 % for developed countries.
Collapse
Affiliation(s)
- Mauricio Castañón-Arreola
- Programa de Inmunología Molecular Microbiana, Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autonoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
36
|
Arnold J, de Boer EC, O'Donnell MA, Böhle A, Brandau S. Immunotherapy of Experimental Bladder Cancer with Recombinant BCG Expressing Interferon-γ. J Immunother 2004; 27:116-23. [PMID: 14770083 DOI: 10.1097/00002371-200403000-00005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
One of the most potent immunotherapies presently used is the application of Bacillus Calmette Guérin (BCG) to prevent recurrences of superficial bladder cancer. Despite its successful use, nonresponders and certain side effects remain a major obstacle. Therefore, current studies aim at developing recombinant BCG (rBCG) strains to further improve the effectiveness of the therapy. In BCG-treated patients a strong local induction of Th1-like cytokines was observed. For this reason rBCG-strains secreting Th1-like cytokines might be potentially useful agents to improve this type of immunotherapy. Because we previously demonstrated the essential role of IFNgamma in BCG-induced antitumor responses, in this study a rBCG strain secreting murine IFNgamma (rBCG-IFNgamma) was generated and tested for its immunostimulatory capacity in several in vitro and in vivo test systems. In vitro rBCG-IFNgamma specifically up-regulated expression of MHC class I molecules on a murine bladder cancer cell line (MB49), compared to the rBCG control strain (transfected with an empty vector). In a murine model of experimental bladder cancer, intravesical instillation of rBCG-IFNgamma resulted in an enhanced recruitment of CD4+ T-cells into the bladder and further induced the local expression of IL-2 and IL-4 cytokines (mRNA) compared to control rBCG. With a low-dose treatment regimen for murine orthotopic bladder cancer, rBCG-IFNgamma significantly prolonged survival, whereas the therapeutic effect of wild-type control BCG did not reach statistical significance. We conclude that this recombinant BCG strain has enhanced immunostimulatory potential and might offer new opportunities in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Judith Arnold
- Research Center Borstel, Division of Immunotherapy, Borstel, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE Of all medical disciplines it is exclusively in urology in which immunotherapy for cancer has an established position today with intravesical bacillus Calmette-Guerin (BCG) against superficial bladder carcinoma recurrences. BCG is regarded as the most successful immunotherapy to date. However, the mode of action has not yet been fully elucidated. We provide a thorough overview of this complex field of research. MATERIALS AND METHODS Rather than simply reporting all experimental data available for better understanding the involved immune mechanisms, we chose to provide comprehensively only information supported by several independent pathways of evidence. RESULTS Major findings made during the last few years include systematic analyses of patient material, detailed in vitro studies and investigations in animal models, which have led to a substantially greater understanding of the mechanisms involved. CONCLUSIONS The efficacy of BCG is based on a complex and long lasting local immune activation. The bladder as a confined compartment, in which high local concentrations of the immunotherapy agent and effective recruitment of immune cells can be achieved, serves as an ideal target organ for this type of immunotherapy approach.
Collapse
Affiliation(s)
- Andreas Böhle
- Department of Urology, HELIOS Agnes Karll Hospital, Am Hochkamp 21, 23611 Bad Schwartau, Germany.
| | | |
Collapse
|
38
|
Dietrich G, Viret JF, Hess J. Novel vaccination strategies based on recombinant Mycobacterium bovis BCG. Int J Med Microbiol 2003; 292:441-51. [PMID: 12635927 DOI: 10.1078/1438-4221-00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this manuscript, we will review the utilization of Mycobacterium bovis Bacille Calmette-Guerin (BCG) as a vaccine against tuberculosis (TB) and as a carrier system for heterologous antigens. BCG is one of the most widely used vaccines. Novel techniques in genome manipulation allow the construction of virulence-attenuated recombinant (r)-BCG strains that can be employed as homologous vaccines, or as heterologous antigen delivery systems, for priming pathogen-specific immunity against infectious diseases, including TB. Several approaches are available for heterologous antigen expression and compartmentalization in BCG and recent findings show the potential to modulate and direct the immune responses induced by r-BCG strains as desired. Recent achievements in complete genome analysis of various target pathogens, combined with a better understanding of protective pathogen-specific immune responses, form the basis for the rational design of a new generation of recombinant mycobacterial vaccines against a multitude of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- Cattle
- Communicable Disease Control
- Genetic Vectors
- Humans
- Mycobacterium bovis/genetics
- Recombination, Genetic
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/immunology
- Vaccination/methods
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Guido Dietrich
- Bacterial Vaccine Research, Berna Biotech Ltd., Berne, Switzerland.
| | | | | |
Collapse
|
39
|
Riemensberger J, Böhle A, Brandau S. IFN-gamma and IL-12 but not IL-10 are required for local tumour surveillance in a syngeneic model of orthotopic bladder cancer. Clin Exp Immunol 2002; 127:20-6. [PMID: 11882028 PMCID: PMC1906285 DOI: 10.1046/j.1365-2249.2002.01734.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent studies, a crucial role for IFN-gamma in immunosurveillance of tumours and in IL-12 immunotherapy has been suggested. Nevertheless, little is known about the relevance of IFN-gamma and IL-12 for tumour surveillance in noncytokine immunotherapy. Adjuvant immunotherapy with viable BCG (Bacillus Calmette--Guérin) is considered to be the most powerful clinical treatment regimen of bladder cancer and is known to induce a variety of proinflammatory cytokines. Consequently, we analysed the antitumour response of IFN-gamma knockout (KO), IL-12 KO and IL-10 KO mice in the absence and presence of BCG immunotherapy in a syngeneic orthotopic model of bladder cancer. IFN-gamma KO and IL-12 KO mice died much earlier and by far smaller tumour inocula compared to wildtype mice, while this intrinsic antitumour response was not altered in IL-10 KO mice. BCG immunotherapy was effective in wildtype mice, but totally ineffective in IFN-gamma KO and IL-12 KO mice. BCG induced a massive local immune response in the bladder of treated animals. This response was markedly increased in IL-10 KO mice, which coincides with increased therapeutic efficacy in this mouse strain compared with wildtype mice. Our data establish a crucial role for a Th1 type immune response in the intrinsic and immunotherapeutic control of local orthotopic bladder cancer.
Collapse
Affiliation(s)
- J Riemensberger
- Division of Immunotherapy, Research Center Borstel, Borstel, Germany
| | | | | |
Collapse
|
40
|
EDITORIAL COMMENT. J Urol 2001. [DOI: 10.1016/s0022-5347(01)69511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
|