1
|
Zaunders J, Dyer WB, Churchill M, Munier CML, Cunningham PH, Suzuki K, McBride K, Hey-Nguyen W, Koelsch K, Wang B, Hiener B, Palmer S, Gorry PR, Bailey M, Xu Y, Danta M, Seddiki N, Cooper DA, Saksena NK, Sullivan JS, Riminton S, Learmont J, Kelleher AD. Possible clearance of transfusion-acquired nef/LTR-deleted attenuated HIV-1 infection by an elite controller with CCR5 Δ32 heterozygous and HLA-B57 genotype. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30056-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
2
|
Zaunders J, Dyer WB, Churchill M, Munier CML, Cunningham PH, Suzuki K, McBride K, Hey-Nguyen W, Koelsch K, Wang B, Hiener B, Palmer S, Gorry PR, Bailey M, Xu Y, Danta M, Seddiki N, Cooper DA, Saksena NK, Sullivan JS, Riminton S, Learmont J, Kelleher AD. Possible clearance of transfusion-acquired nef/LTR-deleted attenuated HIV-1 infection by an elite controller with CCR5 Δ32 heterozygous and HLA-B57 genotype. J Virus Erad 2019; 5:73-83. [PMID: 31191910 PMCID: PMC6543488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Subject C135 is one of the members of the Sydney Blood Bank Cohort, infected in 1981 through transfusion with attenuated nef/3' long terminal repeat (LTR)-deleted HIV-1, and has maintained undetectable plasma viral load and steady CD4 cell count, in the absence of therapy. Uniquely, C135 combines five factors separately associated with control of viraemia: nef/LTR-deleted HIV-1, HLA-B57, HLA-DR13, heterozygous CCR5 Δ32 genotype and vigorous p24-stimulated peripheral blood mononuclear cell (PBMC) proliferation. Therefore, we studied in detail viral burden and immunological responses in this individual. METHODS PBMC and gut and lymph node biopsy samples were analysed for proviral HIV-1 DNA by real-time and nested PCRs, and nef/LTR alleles by nested PCR. HIV-specific antibodies were studied by Western blotting, and CD4+ and CD8+ T lymphocyte responses were measured by proliferation and cytokine production in vitro. RESULTS PBMC samples from 1996, but not since, showed amplification of nef alleles with gross deletions. Infectious HIV-1 was never recovered. Proviral HIV-1 DNA was not detected in recent PBMC or gut or lymph node biopsy samples. C135 has a consistently weak antibody response and a substantial CD4+ T cell proliferative response to a previously described HLA-DR13-restricted epitope of HIV-1 p24 in vitro, which augmented a CD8+ T cell response to an immunodominant HLA-B57-restricted epitope of p24, while his T cells show reduced levels of CCR5. CONCLUSIONS Subject C135's early PCR and weak antibody results are consistent with limited infection with a poorly replicating nef/LTR-deleted strain of HIV-1. With his HLA-B57-restricted gag-specific CD8 and helper HLA-DR13-restricted CD4 T cell proliferative responses, C135 appears to have cleared his HIV-1 infection 37 years after transfusion.
Collapse
Affiliation(s)
- John Zaunders
- Centre for Applied Medical Research,
St Vincent's Hospital,
Sydney,
NSW,
Australia,Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia,Corresponding author: John Zaunders
Centre for Applied Medical Research,
St Vincent's Hospital,
Level 9 Lowy Packer Building, 405 Liverpool St,
Darlinghurst,
NSW2010,
Australia
| | - Wayne B Dyer
- Australian Red Cross Blood Service,
Sydney,
NSW,
Australia,Faculty of Medicine and Health,
University of Sydney,
NSW,
Australia
| | - Melissa Churchill
- School of Health and Biomedical Sciences, College of Science, Engineering and Health,
RMIT University,
Bundoora,
VIC,
Australia
| | - C Mee Ling Munier
- Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia
| | - Philip H Cunningham
- Centre for Applied Medical Research,
St Vincent's Hospital,
Sydney,
NSW,
Australia
| | - Kazuo Suzuki
- Centre for Applied Medical Research,
St Vincent's Hospital,
Sydney,
NSW,
Australia
| | - Kristin McBride
- Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia
| | - Will Hey-Nguyen
- Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia
| | - Kersten Koelsch
- Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia
| | - Bin Wang
- Ingham Institute,
Liverpool,
NSW,
Australia
| | - Bonnie Hiener
- Centre for Virus Research, Westmead Institute for Medical Research,
University of Sydney,
Sydney,
NSW,
Australia
| | - Sarah Palmer
- Centre for Virus Research, Westmead Institute for Medical Research,
University of Sydney,
Sydney,
NSW,
Australia
| | - Paul R Gorry
- School of Health and Biomedical Sciences, College of Science, Engineering and Health,
RMIT University,
Bundoora,
VIC,
Australia
| | - Michelle Bailey
- Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia
| | - Yin Xu
- Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia
| | - Mark Danta
- Department of Gastroenterology and Hepatology,
St Vincent's Hospital,
Sydney,
NSW,
Australia
| | - Nabila Seddiki
- Vaccine Research Institute, Faculté de Médecine,
Université Paris Est Créteil,
Créteil,
France
| | - David A Cooper
- Centre for Applied Medical Research,
St Vincent's Hospital,
Sydney,
NSW,
Australia,Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia
| | - Nitin K Saksena
- IGO Neurodegenerative Disease Section,
Sydney,
NSW,
Australia,China National Gene Bank,
Beijing Institute of Genomics,
Shenzhen,
China
| | - John S Sullivan
- Australian Red Cross Blood Service,
Sydney,
NSW,
Australia,Central Clinical School,
University of Sydney,
NSW,
Australia
| | - Sean Riminton
- Department of Clinical Immunology,
Concord Repatriation General Hospital,
Sydney,
NSW,
Australia
| | - Jenny Learmont
- Australian Red Cross Blood Service,
Sydney,
NSW,
Australia
| | - Anthony D Kelleher
- Centre for Applied Medical Research,
St Vincent's Hospital,
Sydney,
NSW,
Australia,Kirby Institute,
University of New South Wales,
Sydney,
NSW,
Australia
| |
Collapse
|
5
|
Saunders KO, Ward-Caviness C, Schutte RJ, Freel SA, Overman RG, Thielman NM, Cunningham CK, Kepler TB, Tomaras GD. Secretion of MIP-1β and MIP-1α by CD8(+) T-lymphocytes correlates with HIV-1 inhibition independent of coreceptor usage. Cell Immunol 2010; 266:154-64. [PMID: 21030011 PMCID: PMC3615706 DOI: 10.1016/j.cellimm.2010.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/29/2010] [Indexed: 01/22/2023]
Abstract
CD8(+) T-lymphocytes can utilize noncytolytic mechanisms to suppress HIV-1 replication through the secretion of soluble factors. The secretion of MIP-1β, MIP-1α, IP-10, MIG, IL-1α, and interferon gamma correlated most strongly with soluble noncytolytic suppression (p<0.0001). Since the noncytolytic response is impaired by histone hyperacetylation, we examined the ability of histone hyperacetylation to alter the expression of immune-related genes. MIP-1α and IP-10 were also among the genes that were down-regulated by histone hyperacetylation. We define a multifactorial cytokine profile of CD8(+) T-lymphocytes capable of mediating noncytolytic suppression of CXCR4-tropic HIV-1 replication.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Cavin Ward-Caviness
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Robert J. Schutte
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Stephanie A. Freel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - R. Glenn Overman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Nathan M. Thielman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Coleen K. Cunningham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Thomas B. Kepler
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA, 27710
| |
Collapse
|
6
|
Wang M, Windgassen D, Papoutsakis ET. Comparative analysis of transcriptional profiling of CD3+, CD4+ and CD8+ T cells identifies novel immune response players in T-cell activation. BMC Genomics 2008; 9:225. [PMID: 18485203 PMCID: PMC2396644 DOI: 10.1186/1471-2164-9-225] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/16/2008] [Indexed: 11/29/2022] Open
Abstract
Background T-cell activation is an essential step of the immune response and relies on the tightly controlled orchestration of hundreds of genes/proteins, yet the cellular and molecular events underlying this complex process are not fully understood, especially at the genome-scale. Significantly, a comparative genome-scale transcriptional analysis of two T-cell subsets (CD4+ and CD8+) against each other and against the naturally mixed population (CD3+ cells) remains unexplored. Results Comparison of the microarray-based gene expression patterns between CD3+ T cells, and the CD4+ and CD8+ subsets revealed largely conserved, but not identical, transcriptional patterns. We employed a Gene-Ontology-driven transcriptional analysis coupled with protein abundance assays in order to identify novel T-cell activation genes and cell-type-specific genes associated with the immune response. We identified potential genes involved in the communication between the two subsets (including IL23A, NR4A2, CD83, PSMB2, -8, MIF, IFI16, TNFAIP1, POU2AF1, and OTUB1) and would-be effector-function-specific genes (XCL2, SLAMF7, TNFSF4, -5, -9, CSF3, CD48 and CD244). Chemokines induced during T-cell activation, but not previously identified in T cells, include CCL20, CXCL9, -10, -11 (in all three populations), and XCL2 (preferentially in CD8+ T cells). Increased expression of other unexpected cytokines (GPI, OSM and MIF) suggests their involvement in T-cell activation with their functions yet to be examined. Differential expression of many receptors, not previously reported in the context of T-cell activation, including CCR5, CCR7, IL1R2, IL1RAP, IL6R, TNFRSF25 and TNFRSF1A, suggests their role in this immune process. Several receptors involved in TCR activation (CD3D, CD3G, TRAT1, ITGAL, ITGB1, ITGB2, CD8A and B (CD8+ T-cell specific) along with LCK, ZAP70 and TYROBP were synchronously downregulated. Members of cell-surface receptors (HLA-Ds and KLRs), none previously identified in the context of T-cell activation, were also downregulated. Conclusion This comparative genome-scale, transcriptional analysis of T-cell activation in the CD4+ and CD8+ subsets and the mixed CD3+ populations made possible the identification of many immune-response genes not previously identified in the context of T-cell activation. Significantly, it made possible to identify the temporal patterns of many previously known T-cell activation genes, and also identify genes implicated in effector functions of and communication between CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Min Wang
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, IL, USA.
| | | | | |
Collapse
|
7
|
Wang B, Dyer WB, Zaunders JJ, Mikhail M, Sullivan JS, Williams L, Haddad DN, Harris G, Holt JAG, Cooper DA, Miranda-Saksena M, Boadle R, Kelleher AD, Saksena NK. Comprehensive analyses of a unique HIV-1-infected nonprogressor reveal a complex association of immunobiological mechanisms in the context of replication-incompetent infection. Virology 2002; 304:246-64. [PMID: 12504566 DOI: 10.1006/viro.2002.1706] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that a unique HIV-1-infected nonprogressor was infected with a nonevolving replication-incompetent HIV-1 strain, showing a total absence of viral evolution in vivo. Potent immune responses against HIV-1 were observed in his PBMC, despite an apparent lack of viral replication for at least 8 years. His PBMC resisted superinfection with CCR5, CXCR4, and dual-tropic HIV-1 strains, although highly purified CD4+ T cells supported infection, but without any visible cytopathic effect. Potent noncytolytic CD8+ T cell antiviral activity was shown to protect his PBMC from productive infection. This activity was not mediated by several known chemokines or IFN-gamma, which were produced at high levels after PHA activation of his CD8+ T cells, indicating the action of other CAF-like CD8 factors. This antiviral activity was a memory response, induced by HIV-specific stimulation to similar levels observed by PHA stimulation, but absent in ex vivo resting T cells. Immunological mechanisms associated with this antiviral suppressive activity included vigorous Gag-specific helper T cell proliferative responses and high-level IFN-gamma release by both CD4 and CD8 T cells. These responses were broadly directed against multiple Gag epitopes, both previously reported and some novel epitopes. Strong HIV-specific helper T cell function was also associated with strong neutralizing antibodies. Understanding how to induce these protective immune responses in other individuals could provide a major step forward in the design of effective immunotherapies or vaccines against HIV infection.
Collapse
Affiliation(s)
- Bin Wang
- Retroviral Genetics Laboratory, Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Westmead, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|