1
|
Celada SI, Lim CX, Carisey AF, Ochsner SA, Arce Deza CF, Rexie P, Poli De Frias F, Cardenas-Castillo R, Polverino F, Hengstschläger M, Tsoyi K, McKenna NJ, Kheradmand F, Weichhart T, Rosas IO, Van Kaer L, Celada LJ. SHP2 promotes sarcoidosis severity by inhibiting SKP2-targeted ubiquitination of TBET in CD8 + T cells. Sci Transl Med 2023; 15:eade2581. [PMID: 37703351 PMCID: PMC11126869 DOI: 10.1126/scitranslmed.ade2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Sarcoidosis is an interstitial lung disease (ILD) characterized by interferon-γ (IFN-γ) and T-box expressed in T cells (TBET) dysregulation. Although one-third of patients progress from granulomatous inflammation to severe lung damage, the molecular mechanisms underlying this process remain unclear. Here, we found that pharmacological inhibition of phosphorylated SH2-containing protein tyrosine phosphatase-2 (pSHP2), a facilitator of aberrant IFN-γ abundance, decreased large granuloma formation and macrophage infiltration in the lungs of mice with sarcoidosis-like disease. Positive treatment outcomes were dependent on the effective enhancement of TBET ubiquitination within CD8+ T cells. Mechanistically, we identified a posttranslational modification pathway in which the E3 F-box protein S-phase kinase-associated protein 2 (SKP2) targets TBET for ubiquitination in T cells under normal conditions. However, this pathway was disrupted by aberrant pSHP2 signaling in CD8+ T cells from patients with progressive pulmonary sarcoidosis and end-stage disease. Ex vivo inhibition of pSHP2 in CD8+ T cells from patients with end-stage sarcoidosis enhanced TBET ubiquitination and suppressed IFN-γ and collagen synthesis. Therefore, these studies provided new mechanistic insights into the SHP2-dependent posttranslational regulation of TBET and identified SHP2 inhibition as a potential therapeutic intervention against severe sarcoidosis. Furthermore, these studies also suggest that the small-molecule SHP2 inhibitor SHP099 might be used as a therapeutic measure against human diseases linked to TBET or ubiquitination.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Clarice X. Lim
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexandre F. Carisey
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Hospital, Memphis, TN 38105, USA
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | - Carlos F. Arce Deza
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Praveen Rexie
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Fernando Poli De Frias
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Mout Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Rafael Cardenas-Castillo
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca Polverino
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Konstantin Tsoyi
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Houston, TX 77030, USA
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Ivan O. Rosas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Lindsay J. Celada
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| |
Collapse
|
2
|
d'Alessandro M, Bergantini L, Mezzasalma F, Cavallaro D, Gangi S, Baglioni S, Armati M, Abbritti M, Cattelan S, Cameli P, Bargagli E. Immune-Checkpoint Expression on CD4, CD8 and NK Cells in Blood, Bronchoalveolar Lavage and Lymph Nodes of Sarcoidosis. Mol Diagn Ther 2022; 26:437-449. [PMID: 35761164 PMCID: PMC9276617 DOI: 10.1007/s40291-022-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Background Sarcoidosis features non-necrotizing granulomas consisting mainly of activated CD4-lymphocytes. T-cell activation is regulated by immune checkpoint (IC) molecules. The present study aimed to compare IC expression on CD4, CD8 and NK cells from peripheral, alveolar and lung‐draining lymph node (LLN) samples of sarcoidosis patients. Methods Flow-cytometry analysis was performed to detect IC molecules and a regression decision tree model was constructed to investigate potential binary classifiers for sarcoidosis diagnosis as well as for the IC distribution. Results Fourteen patients (7 females) were consecutively recruited in the study; all enrolled patients showed hilo-mediastinal lymph node enlargement and lung parenchyma involvement with chest X-rays and high resolution computed tomography. CD4+PD1+ and CD8+PD1+ were higher in bronchoalveolar lavage (BAL) than in LLN (p = 0.0159 and p = 0.0439, respectively). CD4+ T-cell immunoglobulin and ITIM domain (TIGIT)+ were higher in BAL than in peripheral blood mononuclear cells (PBMCs) (p = 0.0239), while CD8+TIGIT+ were higher in PBMC than in BAL (p = 0.0386). CD56+TIGIT+ were higher in LLN than in PBMC (p = 0.0126). The decision-tree model showed the best clustering cells of PBMC, BAL and LLN: CD56, CD4/CD8 and CD4+TIGIT+ cells. Considering patients and controls, the best subset was CD4+CTLA-4+. Conclusion High expression of PD1 and TIGIT on T cells in BAL, as well as CTLA-4 and TIGIT on T cells in LLN, suggest that inhibition of these molecules could be a therapeutic strategy for avoiding the development of chronic inflammation and tissue damage in sarcoidosis patients. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40291-022-00596-0.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy.
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Fabrizio Mezzasalma
- Diagnostic and Interventional Bronchoscopy Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Dalila Cavallaro
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Sara Gangi
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | | | - Martina Armati
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | | | - Stefano Cattelan
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| |
Collapse
|
3
|
Shahraki AH, Tian R, Zhang C, Fregien NL, Bejarano P, Mirsaeidi M. Anti-inflammatory Properties of the Alpha-Melanocyte-Stimulating Hormone in Models of Granulomatous Inflammation. Lung 2022; 200:463-472. [PMID: 35717488 PMCID: PMC9360058 DOI: 10.1007/s00408-022-00546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/29/2022] [Indexed: 11/08/2022]
Abstract
Purpose Alpha-melanocyte stimulating hormone (α-MSH) is known to have anti-inflammatory effects. However, the anti-inflammatory properties of α-MSH on normal bronchial epithelial cells are largely unknown, especially in the context of in vitro sarcoidosis models. Methods We evaluated the anti-inflammatory effects of α-MSH on two different in vitro sarcoidosis models (lung-on-membrane model; LOMM and three-dimensional biochip pulmonary sarcoidosis model; 3D-BSGM) generated from NBECs and an in vivo sarcoidosis mouse model. Results Treatment with α-MSH decreased inflammatory cytokine levels and downregulated type I interferon pathway genes and related proteins in LOMM and 3D-BSGM models. Treatment with α-MSH also significantly decreased macrophages and cytotoxic T-cells counts in a sarcoidosis mice model. Conclusion Our results confirm the direct role of type I IFNs in the pathogenesis of sarcoid lung granulomas and highlight α-MSH as a potential novel therapeutic agent for treating pulmonary sarcoidosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00408-022-00546-x.
Collapse
Affiliation(s)
- Abdolrazagh Hashemi Shahraki
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, 655 West 11th Street, Jacksonville, FL, 32209, USA
| | - Runxia Tian
- Department of Cell Biology, University of Miami, Miami, FL, USA
| | - Chongxu Zhang
- Department of Cell Biology, University of Miami, Miami, FL, USA
| | - Nevis L Fregien
- Department of Cell Biology, University of Miami, Miami, FL, USA
| | - Pablo Bejarano
- Department of Pathology, Cleveland Clinic, Weston, FL, USA
| | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, 655 West 11th Street, Jacksonville, FL, 32209, USA.
| |
Collapse
|
4
|
Parasa VR, Forsslund H, Enger T, Lorenz D, Kullberg S, Eklund A, Sköld M, Wahlström J, Grunewald J, Brighenti S. Enhanced CD8 + cytolytic T cell responses in the peripheral circulation of patients with sarcoidosis and non-Löfgren's disease. Respir Med 2017; 138S:S38-S44. [PMID: 29055517 DOI: 10.1016/j.rmed.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of CD4+ T cells in the immunopathogenesis of pulmonary sarcoidosis is well-established, while less is known about the phenotype and function of CD8+ cytolytic T cells (CTLs). METHODS CD8+ CTLs were explored in peripheral blood and bronchoalveolar lavage (BAL) samples obtained from up to 25 patients with sarcoidosis and 25 healthy controls. The proportion of CTLs was assessed by the expression of cytolytic effector molecules perforin, granzyme B and granulysin in CD8+ T cells, using flow cytometry. Cytolytic function in blood lymphocytes was assessed using a standard 51Cr-release assay. Patients with Löfgren´s syndrome (LS) and an acute disease onset, were compared to non-LS patients with an insidious onset. RESULTS Higher proportions of peripheral CD8+ CTLs expressing perforin and granzyme B were observed in sarcoidosis compared to healthy controls. Blood CTLs from non-LS patients had significantly higher expression of perforin, granzyme B and granulysin compared to matched BAL, while LS patients maintained lower levels of effector molecules in both compartments. Mitogen-stimulated peripheral lymphocytes from sarcoidosis patients, particularly from the non-LS group, showed a higher target cell lysis compared to controls. CONCLUSION These results demonstrated enhanced peripheral CD8+ CTL responses in sarcoidosis, especially in non-LS patients who have an increased risk of chronic disease. Further comprehensive clinical studies are warranted to increase our understanding of CD8+ CTL responses in sarcoidosis.
Collapse
Affiliation(s)
- Venkata Ramanarao Parasa
- Karolinska Institutet, Center for Infectious Medicine, Department of Medicine Huddinge, Stockholm, Sweden
| | - Helena Forsslund
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Tobias Enger
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Daniel Lorenz
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Susanna Kullberg
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Anders Eklund
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Magnus Sköld
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Jan Wahlström
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Johan Grunewald
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Susanna Brighenti
- Karolinska Institutet, Center for Infectious Medicine, Department of Medicine Huddinge, Stockholm, Sweden.
| |
Collapse
|
5
|
Song JY, Filie AC, Venzon D, tevenson MSS, Yuan CM. Flow cytometry increases the sensitivity of detection of leukemia and lymphoma cells in bronchoalveolar lavage specimens. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2012; 82:305-12. [PMID: 22837143 PMCID: PMC3598592 DOI: 10.1002/cyto.b.21033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/08/2012] [Accepted: 05/31/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND Recent studies have definitively determined that flow cytometry (FC) is significantly more sensitive than cytomorphology (CM) in detection of hematolymphoid neoplasms (HLNs). However, its utility in paucicellular bronchoalveolar lavage (BAL) specimens has not been established. METHODS FC was performed on BAL specimens submitted from 44 patients with a prior diagnosis of HLN. Panels chosen were based upon cellularity of specimen and patient history. FC results were compared with concurrent CM evaluations. RESULTS All 44 BALs were deemed satisfactory for FC and yielded informative results that assisted in diagnosis. Diagnoses included 22/44 B-cell neoplasms, 16/44 T-cell neoplasms, four/44 myeloid neoplasms, and two/44 plasma cell neoplasms. Overall concordance was demonstrated between FC and CM in 77% (34/44) of cases. In nine/44 cases (20%), one technique (FC or CM) clearly detected malignant cells when the other did not. FC was more sensitive than CM in detecting a HLN in eight/nine discordant cases. In only one case (one/44, 2%) were malignant HLN cells suspected by CM, but not identified by FC (one/44, 2%). CONCLUSION We demonstrate, in the largest series published to date, that FC can be performed on BAL specimens. FC is indicated in evaluation of BAL for HLN and improves sensitivity of detection of HLN over CM alone. An integrated FC and CM approach is superior to either technique alone in diagnostic evaluation of BAL.
Collapse
Affiliation(s)
- Joo Y. Song
- Hematopathology section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Armando C. Filie
- Cytopathology section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Constance M. Yuan
- Hematopathology section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Wikén M, Grunewald J, Eklund A, Wahlström J. Multiparameter phenotyping of T-cell subsets in distinct subgroups of patients with pulmonary sarcoidosis. J Intern Med 2012; 271:90-103. [PMID: 21682779 DOI: 10.1111/j.1365-2796.2011.02414.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Sarcoidosis is an inflammatory disorder in which elevated numbers of activated T cells are found in the lung. HLA-DRB1*0301(pos) (DR3(pos) ) patients are characterized by good prognosis and an accumulation of lung CD4(pos) T cells expressing the T-cell receptor (TCR) gene segment AV2S3. Our aim was to phenotype lung and blood T-cell subsets in distinct patient groups to better understand the function of these subsets. DESIGN Bronchoalveolar lavage (BAL) fluid and whole blood were obtained from a total of 22 patients with sarcoidosis, of whom 11 were DR3(pos) . Using eight-colour flow cytometry, phenotyping of T cells was performed with regard to CD3, CD4, CD8, CD25, CD27, CD45RO, CD57, CD69, CD103, FOXP3 and TCR AV2S3. RESULTS DR3(pos) patients had fewer FOXP3(pos) (regulatory) CD45RO(pos) (memory) BAL T cells than DR3(neg) patients. Fewer AV2S3(pos) T cells were FOXP3(pos) , compared with AV2S3(neg) cells, thus indicating an effector function and not a regulatory role for this subset. Fewer lung and blood AV2S3(pos) T cells were CD25(pos) CD27(pos) , and more were CD25(neg) CD27(neg) and CD69(pos) , compared with AV2S3(neg) T cells, indicating a higher degree of differentiation and activation in both compartments. CONCLUSION Our main findings were a lower proportion of regulatory T cells in DR3(pos) patients, together with the accumulation of AV2S3(pos) T cells with a highly activated effector phenotype in the lungs of these patients. This may provide for efficient elimination of a harmful antigen in DR3(pos) patients and could thus help to explain the spontaneous recovery typically seen in these patients.
Collapse
Affiliation(s)
- M Wikén
- Respiratory Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
7
|
Bahgat MM, Błazejewska P, Schughart K. Inhibition of lung serine proteases in mice: a potentially new approach to control influenza infection. Virol J 2011; 8:27. [PMID: 21251300 PMCID: PMC3034701 DOI: 10.1186/1743-422x-8-27] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 01/20/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Host serine proteases are essential for the influenza virus life cycle because the viral haemagglutinin is synthesized as a precursor which requires proteolytic maturation. Therefore, we studied the activity and expression of serine proteases in lungs from mice infected with influenza and evaluated the effect of serine protease inhibitors on virus replication both in cell culture and in infected mice. RESULTS Two different inbred mouse strains were investigated: DBA/2J as a highly susceptible and C57Bl/6J as a more resistant strain to influenza virus infection. The serine proteases from lung homogenates of mice exhibited pH optima of 10.00. Using the substrate Bz-Val-Gly-Arg-p-nitroanilide or in zymograms, the intensities of proteolysis increased in homogenates from both mouse strains with time post infection (p.i.) with the mouse-adapted influenza virus A/Puerto Rico/8/34 (H1N1; PR8). In zymograms at day 7 p.i., proteolytic bands were stronger and numerous in lung homogenates from DBA/2J than C57Bl/6J mice. Real-time PCR results confirmed differential expression of several lung proteases before and after infecting mice with the H1N1 virus. The most strongly up-regulated proteases were Gzma, Tmprss4, Elane, Ctrl, Gzmc and Gzmb. Pretreatment of mouse and human lung cell lines with the serine protease inhibitors AEBSF or pAB or a cocktail of both prior to infection with the H1N1 or the A/Seal/Massachusetts/1/80 (H7N7; SC35M) virus resulted in a decrease in virus replication. Pretreatment of C57Bl/6J mice with either AEBSF or a cocktail of AEBSF and pAB prior to infection with the H1N1 virus significantly reduced weight loss and led to a faster recovery of treated versus untreated mice while pAB alone exerted a very poor effect. After infection with the H7N7 virus, the most significant reduction of weight loss was obtained upon pretreatment with either the protease inhibitor cocktail or pAB. Furthermore, pretreatment of C57BL/6J mice with AEBSF prior to infection resulted in a significant reduction in the levels of both the H1N1 and H7N7 nucleoproteins in mice lungs and also a significant reduction in the levels of the HA transcript in the lungs of the H1N1--but not the H7N7-infected mice. CONCLUSION Multiple serine protease activities might be implicated in mediating influenza infection. Blocking influenza A virus infection in cultured lung epithelia and in mice by the used serine protease inhibitors may provide an alternative approach for treatment of influenza infection.
Collapse
Affiliation(s)
- Mahmoud M Bahgat
- Department of Infection Genetics and University of Veterinary Medicine Hannover, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | |
Collapse
|
8
|
Abstract
The cytotoxic granzyme B (GrB)/perforin pathway has been traditionally viewed as a primary mechanism that is used by cytotoxic lymphocytes to eliminate allogeneic, virally infected and/or transformed cells. Although originally proposed to have intracellular and extracellular functions, upon the discovery that perforin, in combination with GrB, could induce apoptosis, other potential functions for this protease were, for the most part, disregarded. As there are 5 granzymes in humans and 11 granzymes in mice, many studies used perforin knockout mice as an initial screen to evaluate the role of granzymes in disease. However, in recent years, emerging clinical and biochemical evidence has shown that the latter approach may have overlooked a critical perforin-independent, pathogenic role for these proteases in disease. This review focuses on GrB, the most characterized of the granzyme family, in disease. Long known to be a pro-apoptotic protease expressed by cytotoxic lymphocytes and natural killer cells, it is now accepted that GrB can be expressed in other cell types of immune and nonimmune origin. To the latter, an emerging immune-independent role for GrB has been forwarded due to recent discoveries that GrB may be expressed in nonimmune cells such as smooth muscle cells, keratinocytes, and chondrocytes in certain disease states. Given that GrB retains its activity in the blood, can cleave extracellular matrix, and its levels are often elevated in chronic inflammatory diseases, this protease may be an important contributor to certain pathologies. The implications of sustained elevations of intracellular and extracellular GrB in chronic vascular, dermatological, and neurological diseases, among others, are developing. This review examines, for the first time, the multiple roles of GrB in disease pathogenesis.
Collapse
|
9
|
Markers of inflammation in sarcoidosis: blood, urine, BAL, sputum, and exhaled gas. Clin Chest Med 2008; 29:445-58, viii. [PMID: 18539237 DOI: 10.1016/j.ccm.2008.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sarcoidosis is characterized by intense inflammation at the different sites of localization. Many different mediators, such as cytokines, chemokines, and other proteins with various functions, that participate in its complex pathogenesis have been proposed as markers of inflammation. This article examines the principal literature on these different markers analyzed in serum, bronchoalveolar lavage, expired breath, and urine. After many years of research, no single marker sufficiently sensitive and specific for diagnosis of sarcoidosis has yet been found. Greater correlation with clinical parameters is needed and proper validation.
Collapse
|
10
|
Kobayashi Y, Koike Y, Tokutomi T, Kuroki Y, Todoroki I. Case 2: fever, rash and pulmonary involvement. Diagnosis: Kawasaki disease. Acta Paediatr 2006; 95:1145-8. [PMID: 16938766 DOI: 10.1080/08035250600686953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yuki Kobayashi
- Department of Paediatrics, Self-Defence Forces Central Hospital, Tokyo, Japan
| | | | | | | | | |
Collapse
|