1
|
Batistuzzo A, Salas-Lucia F, Gereben B, Ribeiro MO, Bianco AC. Sustained Pituitary T3 Production Explains the T4-mediated TSH Feedback Mechanism. Endocrinology 2023; 164:bqad155. [PMID: 37864846 PMCID: PMC10637099 DOI: 10.1210/endocr/bqad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The regulation of thyroid activity and thyroid hormone (TH) secretion is based on feedback mechanisms that involve the anterior pituitary TSH and medial basal hypothalamus TSH-releasing hormone. Plasma T3 levels can be "sensed" directly by the anterior pituitary and medial basal hypothalamus; plasma T4 levels require local conversion of T4 to T3, which is mediated by the type 2 deiodinase (D2). To study D2-mediated T4 to T3 conversion and T3 production in the anterior pituitary gland, we used mouse pituitary explants incubated with 125I-T4 for 48 hours to measure T3 production at different concentrations of free T4. The results were compared with cultures of D1- or D2-expressing cells, as well as freshly isolated mouse tissue. These studies revealed a unique regulation of the D2 pathway in the anterior pituitary gland, distinct from that observed in nonpituitary tissues. In the anterior pituitary, increasing T4 levels reduced D2 activity slightly but caused a direct increase in T3 production. However, the same changes in T4 levels decreased T3 production in human HSkM cells and murine C2C12 cells (both skeletal muscle) and mouse bone marrow tissue, which reached zero at 50 pM free T4. In contrast, the increase in T4 levels caused the pig kidney LLC-PK1 cells and kidney fragments to proportionally increase T3 production. These findings have important implications for both physiology and clinical practice because they clarify the mechanism by which fluctuations in plasma T4 levels are transduced in the anterior pituitary gland to mediate the TSH feedback mechanism.
Collapse
Affiliation(s)
- Alice Batistuzzo
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA
| | - Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo, SP, 01302-907, Brazil
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Nf L, Ai M. Refractory Pit1 plurihormonal tumours and thyrotroph adenomas. Pituitary 2023:10.1007/s11102-023-01312-9. [PMID: 37117845 DOI: 10.1007/s11102-023-01312-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/30/2023]
Abstract
Pit-1 tumours are derived from neoplastic cells of either somatotroph, lactotroph or thyrotroph cell lineages, but there are also distinct mixed tumours and plurihormonal tumours within this category as described within the 2022 edition of the WHO classification of pituitary tumours. Plurihormonal tumours and thyrotroph adenomas are transcriptionally similar and grouped together to discuss in this review, although it is clear an immature type of plurihormonal tumour exists which are more commonly associated with refractory disease. Management of residual or recurrent disease should follow that of other aggressive pituitary tumours, although a trial of somatostatin analogue therapy is certainly warranted before considering temozolomide therapy.
Collapse
Affiliation(s)
- Lenders Nf
- Department of Endocrinology, St Vincent's Hospital, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - McCormack Ai
- Department of Endocrinology, St Vincent's Hospital, Sydney, NSW, Australia.
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Deng Y, Han Y, Gao S, Dong W, Yu Y. The Physiological Functions and Polymorphisms of Type II Deiodinase. Endocrinol Metab (Seoul) 2023; 38:190-202. [PMID: 37150515 PMCID: PMC10164501 DOI: 10.3803/enm.2022.1599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023] Open
Abstract
Type II deiodinase (DIO2) is thought to provide triiodothyronine (T3) to the nucleus to meet intracellular needs by deiodinating the prohormone thyroxine. DIO2 is expressed widely in many tissues and plays an important role in a variety of physiological processes, such as controlling T3 content in developing tissues (e.g., bone, muscles, and skin) and the adult brain, and regulating adaptive thermogenesis in brown adipose tissue (BAT). However, the identification and cloning of DIO2 have been challenging. In recent years, several clinical investigations have focused on the Thr92Ala polymorphism, which is closely correlated with clinical syndromes such as type 2 diabetes, obesity, hypertension, and osteoarthritis. Thr92Ala-DIO2 was also found to be related to bone and neurodegenerative diseases and tumors. However, relatively few reviews have synthesized research on individual deiodinases, especially DIO2, in the past 5 years. This review summarizes current knowledge regarding the physiological functions of DIO2 in thyroid hormone signaling and adaptive thermogenesis in BAT and the brain, as well as the associations between Thr92Ala-DIO2 and bone and neurodegenerative diseases and tumors. This discussion is expected to provide insights into the physiological functions of DIO2 and the clinical syndromes associated with Thr92Ala-DIO2.
Collapse
Affiliation(s)
- Yan Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Yi Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Sheng Gao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Zhao Y, Chen P, Lv HJ, Wu Y, Liu S, Deng X, Shi B, Fu J. Comprehensive Analysis of Expression and Prognostic Value of Selenoprotein Genes in Thyroid Cancer. Genet Test Mol Biomarkers 2022; 26:159-173. [PMID: 35481968 DOI: 10.1089/gtmb.2021.0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Low selenium levels are associated with an increased incidence and advanced stage of thyroid cancers (THCAs). In response to changes in selenium levels, a hierarchy of selenoprotein biosynthesis allows tissue-specific fine-tuning of the 25 selenoproteins. To determine the role of individual selenoproteins on thyroid carcinogenesis, we carried out a multiomic data mining study. Methods: The expression levels of individual selenoproteins and their correlations with prognosis in THCAs were analyzed using Oncomine, GEPIA, and Kaplan-Meier plotter platforms. Co-expression analyses using the cBioportal database were carried out to identify genes that are correlated with selenoproteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments were performed for genes correlated with selenoproteins that were identified as clinically significant. Results and Discussion: DIO1, GPX3, SELENOO, SELENOP, SELENOS, and SELENOV were significantly downregulated in THCAs and were associated with poor prognoses. Biological processes including negative regulation of growth and angiogenesis were enriched in DIO1-positively and DIO1-negatively correlated genes, respectively. Many biological processes including negative regulation of growth and MAPK cascade were enriched in GPX3-positively and GPX3-negatively correlated genes, respectively. The antitumor effects of SELENOS might be attributed to their protection against endoplasmic reticulum (ER) stress. SELENOO was revealed to be correlated with ER stress, mitochondrial translation, and telomere maintenance. Biological processes of SELENOV-correlated genes were enriched in redox processes and ER calcium ion homeostasis. Moreover, cell adhesion and angiogenesis were also shown to be negatively regulated by SELENOV, providing an antimetastatic effect similar as DIO1. Conclusion: This study explored the distinct roles of the 25 selenoproteins in THCA pathogenesis, providing potential oncosuppressing effects of 6 selenoproteins.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong-Jun Lv
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shu Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueyang Deng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Fu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Janowska M, Potocka N, Paszek S, Skrzypa M, Żulewicz K, Kluz M, Januszek S, Baszuk P, Gronwald J, Lubiński J, Zawlik I, Kluz T. An Assessment of GPX1 (rs1050450), DIO2 (rs225014) and SEPP1 (rs7579) Gene Polymorphisms in Women with Endometrial Cancer. Genes (Basel) 2022; 13:genes13020188. [PMID: 35205233 PMCID: PMC8871918 DOI: 10.3390/genes13020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Numerous studies indicate a relationship between the presence of GPX1 (rs1050450), DIO2 (rs225014) and SEPP1 (rs7579) gene polymorphisms and the development of chronic or neoplastic diseases. However, there are no reports on the influence of these polymorphisms on the development of endometrial cancer. Methods: 543 women participated in the study. The study group consisted of 269 patients with diagnosed endometrial cancer. The control group consisted of 274 healthy women. Blood samples were drawn from all the participants. The PCR-RFLP method was used to determine polymorphisms in the DIO2 (rs225014) and GPX1 (rs1050450) genes. The analysis of polymorphisms in the SEPP1 (rs7579) gene was performed by means of TaqMan probes. Results: There was a 1.99-fold higher risk of developing endometrial cancer in CC homozygotes, DIO2 (rs225014) polymorphism (95% Cl 1.14–3.53, p = 0.017), compared to TT homozygotes. There was no correlation between the occurrence of GPX1 (rs1050450) and SEPP1 (rs7579) polymorphisms and endometrial cancer. Conclusion: Carriers of the DIO2 (rs225014) polymorphism may be predisposed to the development of endometrial cancer. Further research confirming this relationship is recommended.
Collapse
Affiliation(s)
- Magdalena Janowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Kamila Żulewicz
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland;
| | - Sławomir Januszek
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Correspondence:
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
6
|
Abstract
Hormones are key drivers of cancer development, and alteration of the intratumoral concentration of thyroid hormone (TH) is a common feature of many human neoplasias. Besides the systemic control of TH levels, the expression and activity of deiodinases constitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. The action of deiodinases ensures tight control of TH availability at intracellular level in a time- and tissue-specific manner, and alterations in deiodinase expression are frequent in tumors. Research over the past decades has shown that in cancer cells, a complex and dynamic expression of deiodinases is orchestrated by a network of growth factors, oncogenic proteins, and miRNA. It has become increasingly evident that this fine regulation exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or inhibit various cellular functions. This review summarizes recent advances in the identification of the complex interplay between deiodinases and cancer and how this family of enzymes is relevant in cancer progression. We also discuss whether deiodinase expression could represent a diagnostic tool with which to define tumor staging in cancer treatment or even a therapeutic tool against cancer.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
- Correspondence: Domenico Salvatore, Department of Public Health, University of Naples “Federico II”, Napoli, Italy.
| |
Collapse
|
7
|
Pituitary Hyperplasia, Hormonal Changes and Prolactinoma Development in Males Exposed to Estrogens-An Insight From Translational Studies. Int J Mol Sci 2020; 21:ijms21062024. [PMID: 32188093 PMCID: PMC7139613 DOI: 10.3390/ijms21062024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen signaling plays an important role in pituitary development and function. In sensitive rat or mice strains of both sexes, estrogen treatments promote lactotropic cell proliferation and induce the formation of pituitary adenomas (dominantly prolactin or growth-hormone-secreting ones). In male patients receiving estrogen, treatment does not necessarily result in pituitary hyperplasia, hyperprolactinemia or adenoma development. In this review, we comprehensively analyze the mechanisms of estrogen action upon their application in male animal models comparing it with available data in human subjects. Sex-specific molecular targets of estrogen action in lactotropic (PRL) cells are highlighted in the context of their proliferative and secretory activity. In addition, putative effects of estradiol on the cellular/tumor microenvironment and the contribution of postnatal pituitary progenitor/stem cells and transdifferentiation processes to prolactinoma development have been analyzed. Finally, estrogen-induced morphological and hormone-secreting changes in pituitary thyrotropic (TSH) and adrenocorticotropic (ACTH) cells are discussed, as well as the putative role of the thyroid and/or glucocorticoid hormones in prolactinoma development, based on the current scarce literature.
Collapse
|
8
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
9
|
Abstract
The deiodinase family of enzymes mediates the activation and inactivation of thyroid hormone. The role of these enzymes in the regulation of the systemic concentrations of thyroid hormone is well established and underpins the treatment of common thyroid diseases. Interest in this field has increased in the past 10 years as the deiodinases became implicated in tissue development and homeostasis, as well as in the pathogenesis of a wide range of human diseases. Three deiodinases have been identified, namely, types 1, 2 and 3 iodothyronine deiodinases, which differ in their catalytic properties and tissue distribution. Notably, the expression of these enzymes changes during the lifetime of an individual in relation to the different needs of each organ and to ageing. The systemic homeostatic role of deiodinases clearly emerges during changes in serum concentrations of thyroid hormone, as seen in patients with thyroid dysfunction. By contrast, the role of deiodinases at the tissue level allows thyroid hormone signalling to be finely tuned within a given cell in a precise time-space window without perturbing serum concentrations of thyroid hormone. This Review maps the overall functional role of the deiodinases and explores challenges and novel opportunities arising from the expanding knowledge of these 'master' components of the thyroid homeostatic system.
Collapse
Affiliation(s)
- Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
10
|
Goemann IM, Marczyk VR, Romitti M, Wajner SM, Maia AL. Current concepts and challenges to unravel the role of iodothyronine deiodinases in human neoplasias. Endocr Relat Cancer 2018; 25:R625-R645. [PMID: 30400023 DOI: 10.1530/erc-18-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of several metabolic processes and the energy consumption of the organism. Their action is exerted primarily through interaction with nuclear receptors controlling the transcription of thyroid hormone-responsive genes. Proper regulation of TH levels in different tissues is extremely important for the equilibrium between normal cellular proliferation and differentiation. The iodothyronine deiodinases types 1, 2 and 3 are key enzymes that perform activation and inactivation of THs, thus controlling TH homeostasis in a cell-specific manner. As THs seem to exert their effects in all hallmarks of the neoplastic process, dysregulation of deiodinases in the tumoral context can be critical to the neoplastic development. Here, we aim at reviewing the deiodinases expression in different neoplasias and exploit the mechanisms by which they play an essential role in human carcinogenesis. TH modulation by deiodinases and other classical pathways may represent important targets with the potential to oppose the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vicente Rodrigues Marczyk
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Simone Magagnin Wajner
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL. Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 2017; 24:R367-R385. [PMID: 28928142 DOI: 10.1530/erc-17-0192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erika L Souza Meyer
- Department of Internal MedicineUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
13
|
Boelaert K. WOMEN IN CANCER PROFILE: From bedside to bench and back: my journey in thyroid disease. Endocr Relat Cancer 2016; 23:P9-P13. [PMID: 27633515 DOI: 10.1530/erc-16-0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kristien Boelaert
- Reader in EndocrinologyInstitute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
14
|
Abstract
INTRODUCTION Prolactinomas are the most common functional pituitary adenomas. Current classification systems rely on phenotypic elements and have few molecular markers for complementary classification. Treatment protocols for prolactinomas are also devoid of molecular targets, leaving those refractory to standard treatments without many options. METHODS A systematic literature review was performed utilizing the PRISMA guidelines. We aimed to summarize prior research exploring gene and protein expression in prolactinomas in order to highlight molecular variations associated with tumor development, growth, and prolactin secretion. A PubMed search of select MeSH terms was performed to identify all studies reporting gene and protein expression findings in prolactinomas from 1990 to 2014. RESULTS 1392 abstracts were screened and 51 manuscripts were included in the analysis, yielding 54 upregulated and 95 downregulated genes measured by various direct and indirect analytical methods. Of the many genes identified, three upregulated (HMGA2, HST, SNAP25), and three downregulated (UGT2B7, Let7, miR-493) genes were selected for further analysis based on our subjective identification of strong potential targets. CONCLUSIONS Many significant genes have been identified and validated in prolactinomas and most have not been fully analyzed for therapeutic and diagnostic potential. These genes could become candidate molecular targets for biomarker development and precision drug targeting as well as catalyze deeper research efforts utilizing next generation profiling/sequencing techniques, particularly genome scale expression and epigenomic analyses.
Collapse
Affiliation(s)
- Justin Seltzer
- Department of Neurosurgery, Keck School of Medicine of USC, 1200 North State St., Los Angeles, CA, 90033, USA.
| | - Thomas C Scotton
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Keiko Kang
- Department of Neurosurgery, Keck School of Medicine of USC, 1200 North State St., Los Angeles, CA, 90033, USA
| | - Gabriel Zada
- Department of Neurosurgery, Keck School of Medicine of USC, 1200 North State St., Los Angeles, CA, 90033, USA
- USC Pituitary Center, Keck School of Medicine of USC, Los Angeles, CA, USA
- Zilka Neurogenetics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - John D Carmichael
- Division of Endocrinology, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
- USC Pituitary Center, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
15
|
Stoedter M, Renko K, Ibáñez E, Plano D, Becker NP, Martitz J, Palop JA, Calvo A, Sanmartín C, Schomburg L. Strong induction of iodothyronine deiodinases by chemotherapeutic selenocompounds. Metallomics 2015; 7:347-54. [PMID: 25579002 DOI: 10.1039/c4mt00273c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological activity of thyroid hormones (TH) is regulated by selenoenzymes of the iodothyronine deiodinase (DIO) family catalysing TH activating and inactivating reactions. Besides TH metabolism, several studies indicate an important role of DIO isoenzymes in tumorigenesis and cancer growth. It is therefore of therapeutic importance to identify modulators of DIO expression. We have synthesized and studied a series of selenocompounds containing a methyl- or benzyl-imidoselenocarbamate backbone. One of these novel compounds had chemotherapeutic activities in a murine xenograft tumour model by an unknown mechanism. Therefore, we tested their effects on DIO expression in vitro. In HepG2 hepatocarcinoma cells, DIO1 activity was strongly (up to 10-fold) increased by the methyl- but not by the corresponding benzyl-imidoselenocarbamates. Steady-state mRNA levels remained unaltered under these conditions indicating a post-transcriptional mode of action. The effects were further characterized in HEK293 cells stably expressing DIO1, DIO2 or DIO3. Even within the artificial genetic context of the expression vectors, all three DIO isoenzymes were up-regulated by the methyl- and to a lesser extent by the benzyl-imidoselenocarbamates. Consistent stimulating effects were observed with methyl-N,N'-di(quinolin-3-ylcarbonyl)-imidoselenocarbamate (EI201), a selenocompound known for its anti-tumour activity. DIO inducing effects were unrelated to the intracellular accumulation of selenium, yet the precise mode of action remains elusive. Collectively, our data highlight that these selenocompounds may constitute interesting pharmacological compounds for modifying DIO expression potentially affecting the balance between cell differentiation and proliferation.
Collapse
Affiliation(s)
- M Stoedter
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, CVK, Südring 10, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Seltzer J, Ashton CE, Scotton TC, Pangal D, Carmichael JD, Zada G. Gene and protein expression in pituitary corticotroph adenomas: a systematic review of the literature. Neurosurg Focus 2015; 38:E17. [PMID: 25639319 DOI: 10.3171/2014.10.focus14683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECT Functional corticotroph pituitary adenomas (PAs) secrete adrenocorticotropic hormone (ACTH) and are the cause of Cushing's disease, which accounts for 70% of all cases of Cushing's syndrome. Current classification systems for PAs rely primarily on laboratory hormone findings, tumor size and morphology, invasiveness, and immunohistochemical findings. Likewise, drug development for functional ACTH-secreting PAs (ACTH-PAs) is limited and has focused largely on blocking the production or downstream effects of excess cortisol. The authors aimed to summarize the findings from previous studies that explored gene and protein expression of ACTH-PAs to prioritize potential genetic and protein targets for improved molecular diagnosis and treatment of Cushing's disease. METHODS A systematic literature review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A PubMed search of select medical subject heading (MeSH) terms was performed to identify all studies that reported gene- and protein-expression findings in ACTH-PAs from January 1, 1990, to August 24, 2014, the day the search was performed. The inclusion criteria were studies on functional ACTH-PAs compared with normal pituitary glands, on human PA tissue only, with any method of analysis, and published in the English language. Studies using anything other than resected PA tissue, those that compared other adenoma types, those without baseline expression data, or those in which any pretreatment was delivered before analysis were excluded. RESULTS The primary search returned 1371 abstracts, of which 307 were found to be relevant. Of those, 178 were selected for secondary full-text analysis. Of these, 64 articles met the inclusion criteria and an additional 4 studies were identified from outside the search for a total of 68 included studies. Compared with the normal pituitary gland, significant gene overexpression in 43 genes and 22 proteins was reported, and gene underexpression in 58 genes and 15 proteins was reported. Immunohistochemistry was used in 39 of the studies, and reverse transcriptase polymerase chain reaction was used in 26 of the studies, primarily, and as validation for 4 others. Thirteen studies used both immunohistochemistry and reverse transcriptase polymerase chain reaction. Other methods used included microarray, in situ hybridization, Northern blot analysis, and Western blot analysis. Expression of prioritized genes emphasized in multiple studies were often validated on both the gene and protein levels. Genes/proteins found to be overexpressed in ACTH-PAs relative to the normal pituitary gland included hPTTG1/securin, NEUROD1/NeuroD1 (Beta2), HSD11B2/11β-hydroxysteroid dehydrogenase 2, AKT/Akt, protein kinase B, and CCND1/cyclin D1. Candidate genes/proteins found to be underexpressed in ACTH-PAs relative to the normal pituitary gland included CDKN1B/p27(Kip1), CDKN2A/p16, KISS1/kisspeptin, ACTHR/ACTH-R, and miR-493. CONCLUSIONS On the basis of the authors' systematic review, many significant gene and protein targets that may contribute to tumorigenesis, invasion, and hormone production/secretion of ACTH have been identified and validated in ACTH-PAs. Many of these potential targets have not been fully analyzed for their therapeutic and diagnostic potential but may represent candidate molecular targets for biomarker development and drug targeting. This review may help catalyze additional research efforts using modern profiling and sequencing techniques and alteration of gene expression.
Collapse
|
17
|
Barake M, Tritos NA. Evaluation and management of thyrotropin-secreting pituitary adenomas. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2014. [DOI: 10.2217/ije.14.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thyrotropin (TSH)-secreting pituitary adenomas are uncommon pituitary neoplasms. They have been increasingly recognized with the advent of ultrasensitive TSH assays and advanced pituitary imaging. Clinically, patients may often present with signs and symptoms of hyperthyroidism. Some patients may present with tumor-related local mass effect, anterior hypopituitarism or syndromes related to co-secretion of other pituitary hormones. Their diagnosis and differential diagnosis from other causes of hyperthyroidism and ‘inappropriate TSH secretion’ often presents a clinical challenge. While trans-sphenoidal pituitary adenomectomy remains the therapeutic modality of choice, medical treatment with somatostatin receptor agonists or dopamine agonists is often needed as adjunctive therapy or perhaps as a potential alternative to surgery. Radiation therapy to the sella may be advised as a third-line therapy.
Collapse
Affiliation(s)
- Maya Barake
- Bellevue University Medical Center, Beirut, Lebanon
| | - Nicholas A Tritos
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Zero Emerson Place, Suite 112, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| |
Collapse
|
18
|
Kornasiewicz O, Dębski M, Grat M, Lenartowicz B, Stępnowska M, Szałas A, Bar-Andziak E, Krawczyk M. Enzymatic activity of type 1 iodothyronine deiodinase in selected liver tumors. Arch Med Sci 2014; 10:801-5. [PMID: 25276167 PMCID: PMC4175756 DOI: 10.5114/aoms.2013.34323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 10/19/2012] [Accepted: 02/28/2013] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Type 1 iodothyronine deiodinase (D1) converts thyroxin (T4) into tri-iodothyronine (T3). Strong evidence indicates that thyroid hormone metabolism is disturbed in neoplasms such as thyroid and breast cancer. However, there is limited data concerning the function of the D1 enzyme in liver tumors. We aimed to estimate the enzymatic activity of D1 in two different common liver tumors. MATERIAL AND METHODS We obtained 20 tumor samples from patients who had undergone a liver resection. Of the tissue samples, there were 13 benign lesions of focal nodular hyperplasia (FNH) and 7 malignant lesions of hepatocellular carcinomas (HCC). The D1 activity was assessed by measuring the amount of radioactive iodine released in reaction to D1-catalysed deiodination. Groups were compared by the Mann-Whitney non-parametrical test for independent trials, and the Kruskal Wallis test. RESULTS The enzymatic activity of D1 was not significantly altered in the FNH group (median = 536 fmol/mg of protein/min; p = 0.972) and HCC group (367 fmol/mg; p = 0.128) when compared to matched normal liver parenchyma controls (546 fmol/mg and 556 fmol/mg, respectively). CONCLUSIONS Liver parenchyma expresses high levels of D1. The results clearly revealed that D1 activity was not significantly different between benign and malignant tumors (FNH and HCC) compared to healthy liver parenchyma cells.
Collapse
Affiliation(s)
- Oskar Kornasiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| | - Marcin Dębski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
| | - Michal Grat
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| | - Barbara Lenartowicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| | - Marta Stępnowska
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
| | - Anna Szałas
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
| | - Ewa Bar-Andziak
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| |
Collapse
|
19
|
Alternative splicing of iodothyronine deiodinases in pituitary adenomas. Regulation by oncoprotein SF2/ASF. Biochim Biophys Acta Mol Basis Dis 2013; 1832:763-72. [PMID: 23462647 DOI: 10.1016/j.bbadis.2013.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/22/2022]
Abstract
Pituitary tumors belong to the group of most common neoplasms of the sellar region. Iodothyronine deiodinase types 1 (DIO1) and 2 (DIO2) are enzymes contributing to the levels of locally synthesized T3, a hormone regulating key physiological processes in the pituitary, including its development, cellular proliferation, and hormone secretion. Previous studies revealed that the expression of deiodinases in pituitary tumors is variable and, moreover, there is no correlation between mRNA and protein products of the particular gene, suggesting the potential role of posttranscriptional regulatory mechanisms. In this work we hypothesized that one of such mechanisms could be the alternative splicing. Therefore, we analyzed expression and sequences of DIO1 and DIO2 splicing variants in 30 pituitary adenomas and 9 non-tumorous pituitary samples. DIO2 mRNA was expressed as only two mRNA isoforms. In contrast, nine splice variants of DIO1 were identified. Among them, five were devoid of exon 3. In silico sequence analysis of DIO1 revealed multiple putative binding sites for splicing factor SF2/ASF, of which the top-ranked sites were located in exon 3. Silencing of SF2/ASF in pituitary tumor GH3 cells resulted in change of ratio between DIO1 isoforms with or without exon 3, favoring the expression of variants without exon 3. The expression of SF2/ASF mRNA in pituitary tumors was increased when compared with non-neoplastic control samples. In conclusion, we provide a new mechanism of posttranscriptional regulation of DIO1 and show deregulation of DIO1 expression in pituitary adenoma, possibly resulting from disturbed expression of SF2/ASF.
Collapse
|
20
|
Casula S, Bianco AC. Thyroid hormone deiodinases and cancer. Front Endocrinol (Lausanne) 2012; 3:74. [PMID: 22675319 PMCID: PMC3365412 DOI: 10.3389/fendo.2012.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022] Open
Abstract
Deiodinases constitute a group of thioredoxin fold-containing selenoenzymes that play an important function in thyroid hormone homeostasis and control of thyroid hormone action. There are three known deiodinases: D1 and D2 activate the pro-hormone thyroxine (T4) to T3, the most active form of thyroid hormone, while D3 inactivates thyroid hormone and terminates T3 action. A number of studies indicate that deiodinase expression is altered in several types of cancers, suggesting that (i) they may represent a useful cancer marker and/or (ii) could play a role in modulating cell proliferation - in different settings thyroid hormone modulates cell proliferation. For example, although D2 is minimally expressed in human and rodent skeletal muscle, its expression level in rhabdomyosarcoma (RMS)-13 cells is threefold to fourfold higher. In basal cell carcinoma (BCC) cells, sonic hedgehog (Shh)-induced cell proliferation is accompanied by induction of D3 and inactivation of D2. Interestingly a fivefold reduction in the growth of BCC in nude mice was observed if D3 expression was knocked down. A decrease in D1 activity has been described in renal clear cell carcinoma, primary liver cancer, lung cancer, and some pituitary tumors, while in breast cancer cells and tissue there is an increase in D1 activity. Furthermore D1 mRNA and activity were found to be decreased in papillary thyroid cancer while D1 and D2 activities were significantly higher in follicular thyroid cancer tissue, in follicular adenoma, and in anaplastic thyroid cancer. It is conceivable that understanding how deiodinase dysregulation in tumor cells affect thyroid hormone signaling and possibly interfere with tumor progression could lead to new antineoplastic approaches.
Collapse
Affiliation(s)
- Sabina Casula
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA
| | - Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA
- *Correspondence: Antonio C. Bianco, University of Miami Miller School of Medicine, Batchelor Research Building, 1400 N.W. 10th Avenue, Suite 601, Miami, FL 33136, USA. e-mail:
| |
Collapse
|
21
|
Abstract
Thyroid hormones (TH) regulate key cellular processes, including proliferation, differentiation, and apoptosis in virtually all human cells. Disturbances in TH pathway and the resulting deregulation of these processes have been linked with neoplasia. The concentrations of TH in peripheral tissues are regulated via the activity of iodothyronine deiodinases. There are 3 types of these enzymes: type 1 and type 2 deiodinases are involved in TH activation while type 3 deiodinase inactivates TH. Expression and activity of iodothyronine deiodinases are disturbed in different types of neoplasia. According to the limited number of studies in cancer cell lines and mouse models changes in intratumoral and extratumoral T3 concentrations may influence proliferation rate and metastatic progression. Recent findings showing that increased expression of type 3 deiodinases may lead to enhanced tumoral proliferation support the idea that deiodinating enzymes have the potential to influence cancer progression. This review summarizes the observations of impaired expression and activity in different cancer types, published to date, and the mechanisms behind these alterations, including impaired regulation via TH receptors, transforming growth factor-β, and Sonic-hedgehog pathway. Possible roles of deiodinases as cancer markers and potential modulators of tumor progression are also discussed.
Collapse
Affiliation(s)
- A Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | |
Collapse
|
22
|
The enzymatic activity of type 1 iodothyronine deiodinase (D1) is low in liver hemangioma: a preliminary study. Arch Immunol Ther Exp (Warsz) 2010; 58:77-80. [PMID: 20049650 PMCID: PMC2816262 DOI: 10.1007/s00005-009-0056-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 08/07/2009] [Indexed: 11/18/2022]
Abstract
Type 1 iodothyronine deiodinase (D1) is a crucial enzyme which converts the prohormone thyroxine (T4) into active tri-iodothyronine (T3). There has been strong evidence that the metabolism of thyroid hormones is disturbed in some neoplastic tissues such as thyroid, renal, and breast cancer. However, there are few available data about D1 enzyme activity in benign tumors such as hemangioma, which is the most common primary liver tumor. Hence this study aimed to determine the enzymatic activity of D1 in hemangiomas in relation to healthy liver tissue. Seven tumors and healthy control tissues were obtained from patients who had liver resection due to hemangioma. The activity was assessed by measurement of radioactive iodine released by deiodination catalyzed by D1. It was found that D1 activity was significantly lower in the hemagiomas than in the healthy surrounding tissue (p = 0.0017). The results indicated that thyroid hormones play important roles not only in the regulation of cell metabolism, but also in cell growth, division, and apoptosis. The active form T3 acts through its nuclear receptors and influences the up- and down-regulation of target genes. Healthy liver tissue expresses a high level of D1, but disturbed D1 activity may result in changes in the local concentration of T3 which may impair gene transcription. These finding demonstrate a low enzymatic activity of D1 in liver hemangioma and suggest an as yet unknown role of thyroid hormones in this type of benign liver tumor.
Collapse
|
23
|
|
24
|
Huang SA. Deiodination and cellular proliferation: parallels between development, differentiation, tumorigenesis, and now regeneration. Endocrinology 2009; 150:3-4. [PMID: 19114598 PMCID: PMC2630899 DOI: 10.1210/en.2008-1460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stephen A Huang
- Thyroid Program of the Division of Endocrinology, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
25
|
Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 2008; 29:898-938. [PMID: 18815314 PMCID: PMC2647704 DOI: 10.1210/er.2008-0019] [Citation(s) in RCA: 573] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/15/2008] [Indexed: 02/06/2023]
Abstract
The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T(3) during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-kappaB, growth factors, bile acids, hypoxia-inducible factor-1alpha, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.
Collapse
Affiliation(s)
- Balázs Gereben
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Meyer ELS, Goemann IM, Dora JM, Wagner MS, Maia AL. Type 2 iodothyronine deiodinase is highly expressed in medullary thyroid carcinoma. Mol Cell Endocrinol 2008; 289:16-22. [PMID: 18514391 PMCID: PMC2527534 DOI: 10.1016/j.mce.2008.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/08/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Type II deiodinase (D2) plays a critical role in controlling intracellular T3 concentration and early studies indicated a follicular but not a parafollicular C-cell origin of D2 activity in the thyroid gland. Here, we show that D2 is highly expressed in human medullary thyroid carcinoma (MTC), a tumor that arises from the C-cells. D2 transcripts were detected in all MTC samples obtained from 12 unselected MTC patients and the levels of D2 activity were comparable to those found in surrounding normal follicular tissue (0.41+/-0.10 fmol min mg protein vs. 0.43+/-0.41 fmol min mg protein, P=0.91). Additional analysis in the TT cells, a human MTC cell line, demonstrated that the D2 expression is downregulated by thyroid hormones and enhanced by cAMP analogs and dexamethasone. The thyroid hormone receptor alpha1 and beta isoforms were also detected in all MTC samples and in TT cells, thus suggesting a potential role of T3 locally produced by D2 in this neoplastic tissue.
Collapse
Affiliation(s)
- Erika L Souza Meyer
- Thyroid Section, Endocrinology Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
27
|
Meyer ELS, Wagner MS, Maia AL. [Iodothyronine deiodinases expression in thyroid neoplasias]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2007; 51:690-700. [PMID: 17891232 DOI: 10.1590/s0004-27302007000500006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 03/10/2007] [Indexed: 11/22/2022]
Abstract
The iodothyronine deiodinases constitute a family of selenoenzymes that catalyze the removal of iodine from the outer ring or inner ring of the thyroid hormones. The activating enzymes, deiodinases type I (D1) and type II (D2), are highly expressed in normal thyroid gland. Benign or malignant neoplastic transformation of the thyroid cells is associated with changes on the expression of these enzymes, suggesting that D1 or D2 can be markers of cellular differentiation. Abnormalities on the expression of both enzymes and also of the deiodinase type III (D3), that inactivates thyroid hormones, have been found in other human neoplasias. So far, the mechanism or implications of these findings on tumor pathogenesis are not well understood. Nevertheless, its noteworthy that abnormal expression of D2 can cause thyrotoxicosis in patients with metastasis of follicular thyroid carcinoma and that increased D3 expression in large hemangiomas causes severe hypothyroidism.
Collapse
Affiliation(s)
- Erika L Souza Meyer
- Setor de Tireóide, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
28
|
Foppiani L, Del Monte P, Ruelle A, Bandelloni R, Quilici P, Bernasconi D. TSH-secreting adenomas: rare pituitary tumors with multifaceted clinical and biological features. J Endocrinol Invest 2007; 30:603-9. [PMID: 17848845 DOI: 10.1007/bf03346356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
TSH-secreting pituitary adenomas (TSH-omas) are a rare cause of hyperthyroidism in clinical practice. As their diagnosis is often delayed, these tumors are mostly diagnosed as macroadenomas, preventing an effective and radical cure and leading to serious local and systemic comorbidities. In addition to neurosurgery, medical therapy with the effective and tolerable SS analogs is a fundamental tool for the treatment of TSHomas. We report 3 cases of TSH-macroadenomas which displayed different clinical presentations. All patients showed increased free-thyroid hormone levels with inappropriately normal (2 patients) or high (1 patient) TSH levels. Magnetic resonance imaging (MRI)/computed tomography (CT) evidenced a pituitary macroadenoma and octreoscan was positive in all patients. In the 2 patients who underwent neurosurgery, hormonal hypersecretion by the tumor normalized. Histology showed nuclear pleomorphism and fibrosis, whereas immunohistochemistry showed positivity for TSH and, in a lesser amount, for FSH. In one of these patient (case 1), however, the presence of a tumor remnant inside the left cavernous sinus prompted us, in accordance with the patient, to start therapy with octreotide- long-acting release. As the third patient had a cardiac comorbidity which contraindicated neurosurgery, he underwent satisfactory treatment with long-acting SS analogs alone which normalized thyroid hormone levels. In this case, previous treatment with amiodarone confused and delayed the correct diagnosis of TSH-oma. As a result of improved laboratory and morphological techniques, TSH-omas should currently be diagnosed in early stages, thus enabling most patients to be managed satisfactorily through a combined approach.
Collapse
Affiliation(s)
- L Foppiani
- Division of Endocrinology, Galliera Hospital, 16128 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Köhrle J. Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination. Best Pract Res Clin Endocrinol Metab 2007; 21:173-91. [PMID: 17574002 DOI: 10.1016/j.beem.2007.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone metabolism by the three deiodinase selenoproteins -- DIO1, DIO2, and DIO3 -- regulates the local availability of various iodothyronine metabolites and thus mediates their effects on gene expression, thermoregulation, energy metabolism, and many key reactions during the development and maintenance of an adult organism. Circulating serum levels of thyroid hormone and thyroid-stimulating hormone, used as a combined indicator of thyroid hormone status, reflect a composite picture of: thyroid secretion; tissue-specific production of T(3) by DIO1 and DIO2 activity, which both contribute to circulating levels of T(3); and degradation of the prohormone T4, of the thyromimetically active T(3), of the inactive rT(3), of other iodothyronines metabolites with a lower iodine content and of thyroid hormone conjugates. Degradation reactions are catalyzed by either DIO1 or DIO3. Aberrant expression of individual deiodinases in disease, single nucleotide polymorphisms in their genes, and novel regulators of DIO gene expression (such as bile acids) provide a more complex picture of the fine tuning and the adaptation of systemic and local bioavailability of thyroid hormones.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie und Endokrinologisches Forschungszentrum der Charité EnForCé, Charité Universitätsmedizin Berlin, CCM Charitéplatz 1, Berlin, Germany.
| |
Collapse
|
30
|
Fliers E, Unmehopa UA, Alkemade A. Functional neuroanatomy of thyroid hormone feedback in the human hypothalamus and pituitary gland. Mol Cell Endocrinol 2006; 251:1-8. [PMID: 16707210 DOI: 10.1016/j.mce.2006.03.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 03/29/2006] [Indexed: 11/23/2022]
Abstract
A major change in thyroid setpoint regulation occurs in various clinical conditions such as critical illness and psychiatric disorders. As a first step towards identifying determinants of these setpoint changes, we have studied the distribution and expression of thyroid hormone receptor (TR) isoforms, type 2 and type 3 deiodinase (D2 and D3), and the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the human hypothalamus and anterior pituitary. Although the post-mortem specimens used for these studies originated from patients who had died from many different pathologies, the anatomical distribution of these proteins was similar in all patients. D2 enzyme activity was detectable in the infundibular nucleus/median eminence (IFN/ME) region coinciding with local D2 immunoreactivity in glial cells. Additional D2 immunostaining was present in tanycytes lining the third ventricle. Thyrotropin-releasing hormone (TRH) containing neurons in the paraventricular nucleus (PVN) expressed MCT8, TRs as well as D3. These findings suggest that the prohormone thyroxine (T4) is taken up in hypothalamic glial cells that convert T4 into the biologically active triiodothyronine (T3) via the enzyme D2, and that T3 is subsequently transported to TRH producing neurons in the PVN. In these neurons, T3 may either bind to TRs or be metabolized into inactive iodothyronines by D3. By inference, local changes in thyroid hormone metabolism resulting from altered hypothalamic deiodinase or MCT8 expression may underlie the decrease in TRH mRNA reported earlier in the PVN of patients with critical illness and depression. In the anterior pituitary, D2 and MCT8 immunoreactivity occurred exclusively in folliculostellate (FS) cells. Both TR and D3 immunoreactivity was observed in gonadotropes and to a lesser extent in thyrotropes and other hormone producing cell types. Based upon these neuroanatomical findings, we propose a novel model for central thyroid hormone feedback in humans, with a pivotal role for hypothalamic glial cells and pituitary FS cells in processing and activation of T4. Production and action of T3 appear to occur in separate cell types of the human hypothalamus and anterior pituitary.
Collapse
Affiliation(s)
- Eric Fliers
- Department of Endocrinology and Metabolism F5-168, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Christoffolete MA, Ribeiro R, Singru P, Fekete C, da Silva WS, Gordon DF, Huang SA, Crescenzi A, Harney JW, Ridgway EC, Larsen PR, Lechan RM, Bianco AC. Atypical expression of type 2 iodothyronine deiodinase in thyrotrophs explains the thyroxine-mediated pituitary thyrotropin feedback mechanism. Endocrinology 2006; 147:1735-43. [PMID: 16396983 DOI: 10.1210/en.2005-1300] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T(4), the main product of thyroid secretion, is a critical signal in plasma that mediates the TSH-negative feedback mechanism. As a prohormone, T(4) must be converted to T(3) to acquire biological activity; thus, type 2 iodothyronine deiodinase (D2) is expected to play a critical role in this feedback mechanism. However, the mechanistic details of this pathway are still missing because, counterintuitively, D2 activity is rapidly lost in the presence of T(4) by a ubiquitin-proteasomal mechanism. In the present study, we demonstrate that D2 and TSH are coexpressed in rat pituitary thyrotrophs and that hypothyroidism increases D2 expression in these cells. Studies using two murine-derived thyrotroph cells, TtT-97 and TalphaT1, demonstrate high expression of D2 in thyrotrophs and confirm its sensitivity to negative regulation by T(4)-induced proteasomal degradation of this enzyme. Despite this, expression of the Dio2 gene in TalphaT1 cells is higher than their T(4)-induced D2 ubiquitinating capacity. As a result, D2 activity and net T(3) production in these cells are sustained, even at free T(4) concentrations that are severalfold above the physiological range. In this system, free T(4) concentrations and net D2-mediated T(3) production correlated negatively with TSHbeta gene expression. These results resolve the apparent paradox between the homeostatic regulation of D2 and its role in mediating the critical mechanism by which T(4) triggers the TSH-negative feedback.
Collapse
Affiliation(s)
- Marcelo A Christoffolete
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Alkemade A, Friesema EC, Kuiper GG, Wiersinga WM, Swaab DF, Visser TJ, Fliers E. Novel neuroanatomical pathways for thyroid hormone action in the human anterior pituitary. Eur J Endocrinol 2006; 154:491-500. [PMID: 16498064 DOI: 10.1530/eje.1.02111] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE An increasing number of proteins appear to be involved in thyroid hormone feedback action at the level of the anterior pituitary, but the cell types expressing these proteins are largely unknown. The aim of the present study was to identify cell types in the human anterior pituitary that express type II and type III deiodinase (D2 and D3), the recently described thyroid hormone transporter (MCT8) and thyroid hormone receptor (TR) isoforms by means of double-labeling immunocytochemistry. RESULTS We found TR isoforms to be expressed most prominently in gonadotropes and - although to a lesser extent - in thyrotropes, corticotropes, lactotropes and somatotropes. D3 staining showed a distribution pattern that was remarkably similar. By contrast, D2 immunoreactivity was observed exclusively in folliculostellate (FS) cells showing coexpression with human leukocyte antigen (HLA), a marker of major histocompatibility complex (MHC)-class II. MCT8 immunostaining was present in FS cells without HLA coexpression. CONCLUSIONS From these results, we propose a novel neuroanatomical model for thyroid hormone feedback on the human pituitary, with a central role for FS cells in thyroid hormone activation, which thus play an important role in the suppression of TSH secretion by circulating thyroxine (T(4)).
Collapse
Affiliation(s)
- Anneke Alkemade
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Recent identification of new selenocysteine-containing proteins has revealed relationships between the two trace elements selenium (Se) and iodine and the hormone network. Several selenoproteins participate in the protection of thyrocytes from damage by H(2)O(2) produced for thyroid hormone biosynthesis. Iodothyronine deiodinases are selenoproteins contributing to systemic or local thyroid hormone homeostasis. The Se content in endocrine tissues (thyroid, adrenals, pituitary, testes, ovary) is higher than in many other organs. Nutritional Se depletion results in retention, whereas Se repletion is followed by a rapid accumulation of Se in endocrine tissues, reproductive organs, and the brain. Selenoproteins such as thioredoxin reductases constitute the link between the Se metabolism and the regulation of transcription by redox sensitive ligand-modulated nuclear hormone receptors. Hormones and growth factors regulate the expression of selenoproteins and, conversely, Se supply modulates hormone actions. Selenoproteins are involved in bone metabolism as well as functions of the endocrine pancreas and adrenal glands. Furthermore, spermatogenesis depends on adequate Se supply, whereas Se excess may impair ovarian function. Comparative analysis of the genomes of several life forms reveals that higher mammals contain a limited number of identical genes encoding newly detected selenocysteine-containing proteins.
Collapse
Affiliation(s)
- J Köhrle
- Institut für Experimentelle Endokrinologie, Charité, Humboldt Universität zu Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany.
| | | | | | | |
Collapse
|
34
|
Abstract
Type 3 iodothyronine deiodinase (D3) is the physiologic inactivator of thyroid hormones, catalyzing the inner ring deiodination of thyroxine (T(4)) to reverse triiodothyronine (rT(3)) and (T(3)) to 3, 3'-diiodothyronine (T(2)), both of which are biologically inactive. Its physiologic role and pathophysiologic effects in humans can be understood in this context. D3 activity in the normal uteroplacental unit regulates the transfer of maternal thyroid hormone to the fetus and, in patients with consumptive hypothyroidism, the rapid destruction of circulating thyroid hormone by tumoral D3 can produce severe hypothyroxinemia. D3 is expressed in multiple fetal structures, but the uterine endometrium and the placenta are the only normal tissues known to express high levels of D3 activity in the mature human. D3 has also been found in vascular anomalies, in human brain tumors, and in some malignant cell lines. These data have led to the categorization of D3 as an oncofetal protein, but recent data indicate that postnatal expression can be reactivated in normal tissues during critical illness and other pathologic conditions.
Collapse
Affiliation(s)
- Stephen A Huang
- Division of Endocrinology, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| |
Collapse
|
35
|
Araki O, Morimura T, Ogiwara T, Mizuma H, Mori M, Murakami M. Expression of type 2 iodothyronine deiodinase in corticotropin-secreting mouse pituitary tumor cells is stimulated by glucocorticoid and corticotropin-releasing hormone. Endocrinology 2003; 144:4459-65. [PMID: 12960076 DOI: 10.1210/en.2003-0419] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We identified the presence of iodothyronine deiodinase in AtT-20 mouse pituitary tumor cells that secrete corticotropin. Iodothyronine deiodinating activity in AtT-20 cells fulfills all the characteristics of type 2 iodothyronine deiodinase (D2), including the inhibition by thyroid hormones, the insensitivity to inhibition by 6-propyl-2-thiouracil, and the low Michaelis-Menten constant value for T4. Northern analysis using mouse D2 cRNA probe demonstrated the hybridization signal of approximately 7.0 kb in size in AtT-20 cells. D2 activity and D2 mRNA were stimulated by glucocorticoid in a dose-dependent manner but were not stimulated by testosterone or beta-estradiol. D2 expression was stimulated by (Bu)2cAMP, and CRH in a dose-dependent manner in the presence of dexamethasone. These results suggest the previously unrecognized role of local thyroid hormone activation by D2 in the regulation of pituitary corticotrophs.
Collapse
Affiliation(s)
- Osamu Araki
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Thyroid hormone action is achieved through the binding of 3,5,3'-triiodothyronine to its nuclear receptor, which results in alterations in gene expression. An impairment in thyroid hormone action during vertebrate development results in severe, irreversible abnormalities in tissue growth, maturation, and function. The deiodinases are a family of selenoproteins expressed in a number of fetal and adult tissues that catalyze the activation and inactivation of thyroid hormones. Their unique biochemical characteristics and tissue and developmental expression patterns suggest that deiodinases may control the concentration of active thyroid hormone available to specific tissues or cell types at certain stages of development. The deiodinases thus appear to play an important role in regulating thyroid hormone action at a prereceptor level. Current research focusing on a better understanding of the biochemistry, regulation, and physiologic role of these enzymes is the focus of this review.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03755, USA.
| | | |
Collapse
|
37
|
Friedrichsen S, Christ S, Heuer H, Schäfer MKH, Mansouri A, Bauer K, Visser TJ. Regulation of iodothyronine deiodinases in the Pax8-/- mouse model of congenital hypothyroidism. Endocrinology 2003; 144:777-84. [PMID: 12586753 DOI: 10.1210/en.2002-220715] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones are essential for a variety of developmental and metabolic processes. Congenital hypothyroidism (CHT) results in severe defects in the development of different tissues, in particular brain. As an animal model for CHT, we studied Pax8(-/-) mice, which are born without a thyroid gland. We determined the expression of iodothyronine deiodinase D1 in liver and kidney, D2 in brain and pituitary, and D3 in brain, as well as serum T(4), T(3), and rT(3) levels in Pax8(-/-) vs. control mice during the first 3 wk of life. In control mice, serum T(4) and T(3) were undetectable on the day of birth (d 0) and increased to maximum levels on d 15. In Pax8(-/-) mice, serum T(4) and T(3) remained below detection limits. Serum rT(3) was high on d 0 in both groups and rapidly decreased in Pax8(-/-), but not in control mice. Hepatic and renal D1 activities and mRNA levels were low on d 0 and increased in control mice roughly parallel to serum T(4) and T(3) levels. In Pax8(-/-) mice, tissue D1 activities and mRNA levels remained low. Cerebral D2 activities were low on d 0 and increased to maximum levels on d 15, which were approximately 10-fold higher in Pax8(-/-) than in control mice. D2 mRNA levels were higher in Pax8(-/-) than in control mice only on d 21. Cerebral D3 activities and mRNA levels were high on d 0 and showed a moderate decrease between d 3 and 15, with values slightly lower in Pax8(-/-) than in control mice. One day after the injection of 200 ng T(4) or 20 ng T(3)/g body weight, tissue deiodinase activities and mRNA levels were at least partially restored toward control levels, with the exception of cerebral D3 activity. In conclusion, these findings show dramatic age and thyroid state-dependent changes in the expression of deiodinases in central and peripheral tissues of mice during the first 3 wk of life.
Collapse
Affiliation(s)
- Sönke Friedrichsen
- Max Planck Institut für Experimentelle Endokrinologie, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|