1
|
Sokolova M, Vartiainen MK. Chromatin Immunoprecipitation Experiments from Drosophila Ovaries. Methods Mol Biol 2023; 2626:335-351. [PMID: 36715914 DOI: 10.1007/978-1-0716-2970-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chromatin is composed of DNA and its associated proteins, and has an essential role in all cellular processes, including those taking place during Drosophila oogenesis. In order to understand the molecular basis of chromatin-based processes, such as transcription, it is essential to be able to study how and when different proteins, such as transcription factors, histones and RNA polymerases, interact with chromatin. One of the most popular methods to study this is chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Here, we describe a ChIP-seq protocol that has been optimized for Drosophila ovaries, focusing on sample preparation through preliminary data processing.
Collapse
Affiliation(s)
- Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
2
|
Maya-Maldonado K, Cardoso-Jaime V, Hernández-Martínez S, Recio-Tótoro B, Bello-Garcia D, Hernández-Hernández FDLC, Lanz-Mendoza H. Plasmodium exposure alters midgut epithelial cell dynamics during the immune memory in Anopheles albimanus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104424. [PMID: 35447160 DOI: 10.1016/j.dci.2022.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Immunological priming in insects is defined as a previous contact with non-virulent pathogens, which induces protection after a second virulent infection. The mechanism of this process is not well understood. We have observed midgut DNA synthesis (endoreplication) in Plasmodium berghei exposure mosquitoes (primed) and after the immune challenge, which could be an essential component of the priming response in the mosquito. Endoreplication requires cell cycle components re-direction to make multiple DNA copies. Therefore, it is fundamental to understand the role of cell cycle components in priming. Here, we analyzed the expression of the cyclins A, B, E, and AurkA, and the endoreplication components NOTCH and HNT in the mosquito Anopheles albimanus; after priming with non-infective Plasmodium berghei and challenged with an infective P. berghei. The overexpression of cell cycle elements occurred seven days after priming with a quick reduction 24 h after the challenge. Hnt and NOTCH overexpression occurred 24 h after priming. Antimicrobial peptide cecropin is quickly overexpressed after 24 h in primed mosquitoes, then is downregulated at day seven and overexpressed again after parasite challenge. We also found that DNA synthesis occurs in cells with different nuclear sizes, suggesting a change in midgut epithelial dynamics after Plasmodium exposure. Inhibition of DNA synthesis via cisplatin revealed that DNA synthesis is required for priming to limit Plasmodium infection. Our results indicate the importance of cell cycle components on DNA synthesis and Notch pathway during priming response in An. albimanus mosquitoes.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Av. Instituto Politécnico Nacional 2508, CP. 07360, Ciudad de México, México; Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Victor Cardoso-Jaime
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Av. Instituto Politécnico Nacional 2508, CP. 07360, Ciudad de México, México; Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Salvador Hernández-Martínez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Benito Recio-Tótoro
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Deane Bello-Garcia
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Fidel de la Cruz Hernández-Hernández
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Av. Instituto Politécnico Nacional 2508, CP. 07360, Ciudad de México, México
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
3
|
Kolesnikova TD, Kolodyazhnaya AV, Pokholkova GV, Schubert V, Dovgan VV, Romanenko SA, Prokopov DY, Zhimulev IF. Effects of Mutations in the Drosophila melanogaster Rif1 Gene on the Replication and Underreplication of Pericentromeric Heterochromatin in Salivary Gland Polytene Chromosomes. Cells 2020; 9:cells9061501. [PMID: 32575592 PMCID: PMC7349278 DOI: 10.3390/cells9061501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
In Drosophila salivary gland polytene chromosomes, a substantial portion of heterochromatin is underreplicated. The combination of mutations SuURES and Su(var)3-906 results in the polytenization of a substantial fraction of unique and moderately repeated sequences but has almost no effect on satellite DNA replication. The Rap1 interacting factor 1 (Rif) protein is a conserved regulator of replication timing, and in Drosophila, it affects underreplication in polytene chromosomes. We compared the morphology of pericentromeric regions and labeling patterns of in situ hybridization of heterochromatin-specific DNA probes between wild-type salivary gland polytene chromosomes and the chromosomes of Rif1 mutants and SuUR Su(var)3-906 double mutants. We show that, despite general similarities, heterochromatin zones exist that are polytenized only in the Rif1 mutants, and that there are zones that are under specific control of Su(var)3-9. In the Rif1 mutants, we found additional polytenization of the largest blocks of satellite DNA (in particular, satellite 1.688 of chromosome X and simple satellites in chromosomes X and 4) as well as partial polytenization of chromosome Y. Data on pulsed incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into polytene chromosomes indicated that in the Rif1 mutants, just as in the wild type, most of the heterochromatin becomes replicated during the late S phase. Nevertheless, a significantly increased number of heterochromatin replicons was noted. These results suggest that Rif1 regulates the activation probability of heterochromatic origins in the satellite DNA region.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| | - Alexandra V. Kolodyazhnaya
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany;
| | - Viktoria V. Dovgan
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Blatt P, Martin ET, Breznak SM, Rangan P. Post-transcriptional gene regulation regulates germline stem cell to oocyte transition during Drosophila oogenesis. Curr Top Dev Biol 2019; 140:3-34. [PMID: 32591078 DOI: 10.1016/bs.ctdb.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During oogenesis, several developmental processes must be traversed to ensure effective completion of gametogenesis including, stem cell maintenance and asymmetric division, differentiation, mitosis and meiosis, and production of maternally contributed mRNAs, making the germline a salient model for understanding how cell fate transitions are mediated. Due to silencing of the genome during meiotic divisions, there is little instructive transcription, barring a few examples, to mediate these critical transitions. In Drosophila, several layers of post-transcriptional regulation ensure that the mRNAs required for these processes are expressed in a timely manner and as needed during germline differentiation. These layers of regulation include alternative splicing, RNA modification, ribosome production, and translational repression. Many of the molecules and pathways involved in these regulatory activities are conserved from Drosophila to humans making the Drosophila germline an elegant model for studying the role of post-transcriptional regulation during stem cell differentiation and meiosis.
Collapse
Affiliation(s)
- Patrick Blatt
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Elliot T Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Shane M Breznak
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States.
| |
Collapse
|
5
|
Ren D, Guo W, Yang P, Song J, He J, Zhao L, Kang L. Structural and functional differentiation of a fat body-like tissue adhering to testis follicles facilitates spermatogenesis in locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103207. [PMID: 31421206 DOI: 10.1016/j.ibmb.2019.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The fat body is distributed throughout the body of insects, playing the essential role in intermediary metabolism and nutrient storage. However, the function of differentiation of fat bodies adhering to different tissues remains largely unknown. Here, we identified a fat body-like tissue (FLT) surrounding testis follicles and described its features at morphological, cellular and molecular levels. The FLT is morphologically distinguished with the abdominal fat body (FB) and dominated by diploid cells instead of polyploid cells. The transcriptomic analysis demonstrated that the FLT and FB have dramatically different gene expression profiles. Moreover, genes in the cell cycle pathway, which include both DNA replication- and cell division-related genes, were successively active during development of the FLT, suggesting that FLT cells possibly undergo a mitotic cycle rather than an endocycle. Deprivation of the FLT resulted in distortion of the testis follicles, disappearance of sperm bundles, reduction of total sperm number and increase of dead sperm, indicating a critical role of the FLT in the spermatogenesis in testis follicles. The special functional differentiation of the two similar tissues suggested that FLT-FB cells are able to establish a promising system to study mitotic-to-endocycle transition.
Collapse
Affiliation(s)
- Dani Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianfeng Zhao
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Kolesnikova TD, Antonenko OV, Makunin IV. Replication timing in Drosophila and its peculiarities in polytene chromosomes. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Drosophila melanogaster is one of the popular model organisms in DNA replication studies. Since the 1960s, DNA replication of polytene chromosomes has been extensively studied by cytological methods. In the recent two decades, the progress in our understanding of DNA replication was associated with new techniques. Use of fluorescent dyes increased the resolution of cytological methods significantly. High-throughput methods allowed analysis of DNA replication on a genome scale, as well as its correlation with chromatin structure and gene activi ty. Precise mapping of the cytological structures of polytene chromosomes to the genome assembly allowed comparison of replication between polytene chromosomes and chromosomes of diploid cells. New features of replication characteristic for D. melanogaster were described for both diploid and polytene chromosomes. Comparison of genomic replication profiles revealed a significant similarity between Drosophila and other well-studi ed eukaryotic species, such as human. Early replication is often confined to intensely transcribed gene-dense regions characterized by multiple replication initiation sites. Features of DNA replication in Drosophila might be explained by a compact genome. The organization of replication in polytene chromosomes has much in common with the organization of replication in chromosomes in diploid cells. The most important feature of replication in polytene chromosomes is its low rate and the dependence of S-phase duration on many factors: external and internal, local and global. The speed of replication forks in D. melanogaster polytene chromosomes is affected by SUUR and Rif1 proteins. It is not known yet how universal the mechanisms associated with these factors are, but their study is very promising.
Collapse
Affiliation(s)
- T. D. Kolesnikova
- Institute of Molecular and Cellular Biology, SB RAS. Novosibirsk State University
| | | | - I. V. Makunin
- Institute of Molecular and Cellular Biology, SB RAS; Research Computing Centre, The University of Queensland
| |
Collapse
|
7
|
Abstract
The Drosophila melanogaster ovary has served as a popular and successful model for understanding a wide range of biological processes: stem cell function, germ cell development, meiosis, cell migration, morphogenesis, cell death, intercellular signaling, mRNA localization, and translational control. This review provides a brief introduction to Drosophila oogenesis, along with a survey of its diverse biological topics and the advanced genetic tools that continue to make this a popular developmental model system.
Collapse
|
8
|
Heck BW, Zhang B, Tong X, Pan Z, Deng WM, Tsai CC. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biol Open 2011; 1:182-96. [PMID: 23213409 PMCID: PMC3507286 DOI: 10.1242/bio.2012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr) mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H)], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H), and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.
Collapse
Affiliation(s)
- Bryan W Heck
- UMDNJ-Robert Wood Johnson Medical School, Department of Physiology and Biophysics , 683 Hoes Lane, Piscataway, NJ 08854 , USA
| | | | | | | | | | | |
Collapse
|
9
|
LaFever L, Feoktistov A, Hsu HJ, Drummond-Barbosa D. Specific roles of Target of rapamycin in the control of stem cells and their progeny in the Drosophila ovary. Development 2010; 137:2117-26. [PMID: 20504961 PMCID: PMC2882131 DOI: 10.1242/dev.050351] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2010] [Indexed: 12/21/2022]
Abstract
Stem cells depend on intrinsic and local factors to maintain their identity and activity, but they also sense and respond to changing external conditions. We previously showed that germline stem cells (GSCs) and follicle stem cells (FSCs) in the Drosophila ovary respond to diet via insulin signals. Insulin signals directly modulate the GSC cell cycle at the G2 phase, but additional unknown dietary mediators control both G1 and G2. Target of rapamycin, or TOR, is part of a highly conserved nutrient-sensing pathway affecting growth, proliferation, survival and fertility. Here, we show that optimal TOR activity maintains GSCs but does not play a major role in FSC maintenance, suggesting differential regulation of GSCs versus FSCs. TOR promotes GSC proliferation via G2 but independently of insulin signaling, and TOR is required for the proliferation, growth and survival of differentiating germ cells. We also report that TOR controls the proliferation of FSCs but not of their differentiating progeny. Instead, TOR controls follicle cell number by promoting survival, independently of either the apoptotic or autophagic pathways. These results uncover specific TOR functions in the control of stem cells versus their differentiating progeny, and reveal parallels between Drosophila and mammalian follicle growth.
Collapse
Affiliation(s)
- Leesa LaFever
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Alexander Feoktistov
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hwei-Jan Hsu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Environmental Health Sciences, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Multiple functions for Drosophila Mcm10 suggested through analysis of two Mcm10 mutant alleles. Genetics 2010; 185:1151-65. [PMID: 20498296 DOI: 10.1534/genetics.110.117234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA replication and the correct packaging of DNA into different states of chromatin are both essential processes in all eukaryotic cells. High-fidelity replication of DNA is essential for the transmission of genetic material to cells. Likewise the maintenance of the epigenetic chromatin states is essential to the faithful reproduction of the transcriptional state of the cell. It is becoming more apparent that these two processes are linked through interactions between DNA replication proteins and chromatin-associated proteins. In addition, more proteins are being discovered that have dual roles in both DNA replication and the maintenance of epigenetic states. We present an analysis of two Drosophila mutants in the conserved DNA replication protein Mcm10. A hypomorphic mutant demonstrates that Mcm10 has a role in heterochromatic silencing and chromosome condensation, while the analysis of a novel C-terminal truncation allele of Mcm10 suggests that an interaction with Mcm2 is not required for chromosome condensation and heterochromatic silencing but is important for DNA replication.
Collapse
|
11
|
Ambrus AM, Frolov MV. Mutation of the DEAD-box helicase belle downregulates the cyclin-dependent kinase inhibitor Dacapo. Cell Cycle 2010; 9:1016-20. [PMID: 20160476 DOI: 10.4161/cc.9.5.10953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The retinoblastoma protein (pRB) negatively regulates cell proliferation by limiting the activity of the family of E2F transcription factors. In Drosophila, mutation of the DEAD-box helicase belle (bel) relieves an E2F/pRB induced G(1) cell cycle arrest; however, the mechanism of this rescue is unknown. Here, we show that the level of the cyclin-dependent kinase inhibitor Dacapo (Dap), homolog of mammalian p21/p27, is strongly reduced both in bel mutant cells in vivo and in tissue culture cells depleted of Bel by RNA interference. Interestingly, the loss of bel also partially alleviates an ectopically induced G(1) cell cycle arrest. Additionally, we show that Bel undergoes nucleocytoplasmic shuttling. Thus, inactivation of bel renders cells less sensitive to several anti-proliferative signals inducing G(1) arrest.
Collapse
Affiliation(s)
- Aaron M Ambrus
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
12
|
Kolesnikova TD, Andreeva EN, Pindyurin AV, Ananko NG, Belyakin SN, Shloma VV, Yurlova AA, Makunin IV, Pokholkova GV, Volkova EI, Zarutskaya EA, Kokoza EB, Semeshin VF, Belyaeva ES, Zhimulev IF. Contribution of the SuUR gene to the organization of epigenetically repressed regions of Drosophila melanogaster chromosomes. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406080011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zhang H, Tower J. Sequence requirements for function of the Drosophila chorion gene locus ACE3 replicator and ori-beta origin elements. Development 2004; 131:2089-99. [PMID: 15105371 DOI: 10.1242/dev.01064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The developmentally regulated amplification of the Drosophila third chromosome chorion gene locus requires multiple chromosomal elements. Amplification control element third chromosome (ACE3) appears to function as a replicator, in that it is required in cis for the activity of nearby DNA replication origin(s). Ori-beta is the major origin in the locus, and is a sequence-specific element that is sufficient for high-level amplification in combination with ACE3. Sequence requirements for amplification were examined using a transgenic construct that was buffered from chromosomal position effects by flanking insulator elements. The parent construct supported 18- to 20-fold amplification, and contained the 320 bp ACE3, the approximately 1.2 kb S18 chorion gene and the 840 bp ori-beta. Deletion mapping of ACE3 revealed that an evolutionarily conserved 142 bp core sequence functions in amplification in this context. Several deletions had quantitative effects, suggesting that multiple, partially redundant elements comprise ACE3. S. cerevisiae ARS1 origin sequences could not substitute for ori-beta, thereby confirming the sequence specificity of ori-beta. Deletion mapping of ori-beta identified two required components: a 140 bp 5' element and a 226 bp A/T-rich 3' element called the beta-region that has significant homology to ACE3. Antibody to the origin recognition complex subunit 2 (ORC2) recognizes large foci that localize to the endogenous chorion gene loci and to active transgenic constructs at the beginning of amplification. Mutations in Orc2 itself, or the amplification trans regulator satin eliminated the ORC2 foci. By contrast, with a null mutation of chiffon (dbf4-like) that eliminates amplification, diffuse ORC2 staining was still present, but failed to localize into foci. The data suggest a novel function for the Dbf4-like chiffon protein in ORC localization. Chromosomal position effects that eliminated amplification of transgenic constructs also eliminated foci formation. However, use of the buffered vector allowed amplification of transgenic constructs to occur in the absence of detectable foci formation. Taken together, the data suggest a model in which ACE3 and ori-beta nucleate the formation of a ORC2-containing chromatin structure that spreads along the chromosome in a mechanism dependent upon chiffon.
Collapse
Affiliation(s)
- Hongjun Zhang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | |
Collapse
|
14
|
Schaeffer V, Althauser C, Shcherbata HR, Deng WM, Ruohola-Baker H. Notch-Dependent Fizzy-Related/Hec1/Cdh1 Expression Is Required for the Mitotic-to-Endocycle Transition in Drosophila Follicle Cells. Curr Biol 2004; 14:630-6. [PMID: 15062106 DOI: 10.1016/j.cub.2004.03.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 02/13/2004] [Accepted: 02/19/2004] [Indexed: 01/15/2023]
Abstract
During Drosophila oogenesis, Notch function regulates the transition from mitotic cell cycle to endocycle in follicle cells at stage 6. Loss of either Notch function or its ligand Delta (Dl) disrupts the normal transition; this disruption causes mitotic cycling to continue and leads to an overproliferation phenotype. In this context, the only known cell cycle component that responds to the Notch pathway is String/Cdc25 (Stg), a G2/M cell cycle regulator. We found that prolonged expression of string is not sufficient to keep cells efficiently in mitotic cell cycle past stage 6, suggesting that Notch also regulates other cell cycle components in the transition. By using an expression screen, we found such a component: Fizzy-related/Hec1/Cdh1 (Fzr), a WD40 repeat protein. Fzr regulates the anaphase-promoting complex/cyclosome (APC/C) and is expressed at the mitotic-to-endocycle transition in a Notch-dependent manner. Mutant clones of Fzr revealed that Fzr is dispensable for mitosis but essential for endocycles. Unlike in Notch clones, in Fzr mutant cells mitotic markers are absent past stage 6. Only a combined reduction of Fzr and ectopic Stg expression prolongs mitotic cycles in follicle cells, suggesting that these two cell cycle regulators, Fzr and Stg, are important mediators of the Notch pathway in the mitotic-to-endocycle transition.
Collapse
Affiliation(s)
- Valerie Schaeffer
- Department of Biochemistry, University of Washington, J591 Health Science Building, Seattle, WA 98195-7350, USA
| | | | | | | | | |
Collapse
|
15
|
Morita K, Flemming AJ, Sugihara Y, Mochii M, Suzuki Y, Yoshida S, Wood WB, Kohara Y, Leroi AM, Ueno N. A Caenorhabditis elegans TGF-beta, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length. EMBO J 2002; 21:1063-73. [PMID: 11867534 PMCID: PMC125886 DOI: 10.1093/emboj/21.5.1063] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Revised: 12/06/2001] [Accepted: 01/08/2002] [Indexed: 11/12/2022] Open
Abstract
Using cDNA-based array analysis combined with double-stranded RNA interference (dsRNAi), we have identified yk298h6 as a target gene of Caenorhabditis elegans TGF-beta signaling. Worms overexpressing dbl-1, a TGF-beta ligand, are 16% longer than wild type. Array analysis shows yk298h6 to be one of several genes suppressed in such worms. Disruption of yk298h6 function by dsRNAi also resulted in long worms, suggesting that it is a negative regulator of body length. yk298h6 was then mapped to, and shown to be identical to, lon-1, a known gene that affects body length. lon-1 encodes a 312 amino acid protein with a motif sequence that is conserved from plants to humans. Expression studies confirm that LON-1 is repressed by DBL-1, suggesting that LON-1 is a novel downstream component of the C.elegans TGF-beta growth regulation pathway. Consistent with this, LON-1 is expressed mainly in the larval and adult hypodermis and has dose-dependent effects on body length associated with changes in hypodermal ploidy, but not hypodermal cell proliferation.
Collapse
Affiliation(s)
- Kiyokazu Morita
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - Anthony J. Flemming
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - Yukiko Sugihara
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - Makoto Mochii
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - Yo Suzuki
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - Satoru Yoshida
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - William B. Wood
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - Yuji Kohara
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - Armand M. Leroi
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, and Department of Biomechanics, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA and Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA Present address: Department of Life Science, Himeji Institute of Technology, Hyogo 678-1297, Japan Corresponding author e-mail:
| |
Collapse
|
16
|
Deng WM, Althauser C, Ruohola-Baker H. Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle inDrosophilafollicle cells. Development 2001; 128:4737-46. [PMID: 11731454 DOI: 10.1242/dev.128.23.4737] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In many developmental processes, polyploid cells are generated by a variation of the normal cell cycle called the endocycle in which cells increase their genomic content without dividing. How the transition from the normal mitotic cycle to endocycle is regulated is poorly understood. We show that the transition from mitotic cycle to endocycle in the Drosophila follicle cell epithelium is regulated by the Notch pathway. Loss of Notch function in follicle cells or its ligand Delta function in the underlying germline disrupts the normal transition of the follicle cells from mitotic cycle to endocycle, mitotic cycling continues, leading to overproliferation of these cells. The regulation is at the transcriptional level, as Su(H), a downstream transcription factor in the pathway, is also required cell autonomously in follicle cells for proper transitioning to the endocycle. One target of Notch and Su(H) is likely to be the G2/M cell cycle regulator String, a phosphatase that activates Cdc2 by dephosphorylation. String is normally repressed in the follicle cells just before the endocycle transition, but is expressed when Notch is inactivated. Analysis of the activity of String enhancer elements in follicle cells reveals the presence of an element that promotes expression of String until just before the onset of polyploidy in wild-type follicle cells but well beyond this stage in Notch mutant follicle cells. This suggests that it may be the target of the endocycle promoting activity of the Notch pathway. A second element that is insensitive to Notch regulation promotes String expression earlier in follicle cell development, which explains why Notch, while active at both stages, represses String only at the mitotic cycle-endocycle transition.
Collapse
Affiliation(s)
- W M Deng
- Department of Biochemistry, University of Washington, J591, HSB, Seattle, WA 98195-7350, USA
| | | | | |
Collapse
|
17
|
Masutani M, Nozaki T, Watanabe M, Ochiya T, Hasegawa F, Nakagama H, Suzuki H, Sugimura T. Involvement of poly(ADP-ribose) polymerase in trophoblastic cell differentiation during tumorigenesis. Mutat Res 2001; 477:111-7. [PMID: 11376692 DOI: 10.1016/s0027-5107(01)00112-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(ADP-ribose) polymerase (Parp) monitors DNA strand breaks and poly(ADP-ribosyl)ates nuclear proteins using NAD as a substrate. The participation of Parp in DNA damage responses has been demonstrated by recent studies using Parp knockout mice. On the other hand, accumulated evidence has shown that Parp is involved in the regulation of gene expression and cell differentiation. In this study, the role of Parp in tumorigenesis and differentiation was studied with Parp-/- embryonic stem (ES) cells. When Parp+/+, Parp+/-, and Parp-/- ES cells were injected subcutaneously into nude mice, teratocarcinoma-like tumors developed from ES cells. However, only tumors derived from Parp-/- ES cells showed trophoblast giant cells (TGCs) containing single or multiple megalo-nuclei. These TGCs are located in a large blood-lake like hemorrhage. This example suggests that Parp is not essential for tumor formation, however, it is involved in trophoblastic cell differentiation and could consequently affect tumor phenotype.
Collapse
Affiliation(s)
- M Masutani
- Biochemistry Division, National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, 104-0045, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bosco G, Du W, Orr-Weaver TL. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat Cell Biol 2001; 3:289-95. [PMID: 11231579 DOI: 10.1038/35060086] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The E2F transcription factor and retinoblastoma protein control cell-cycle progression and DNA replication during S phase. Mutations in the Drosophila dE2F1 and dDP genes affect the origin recognition complex (DmORC) and initiation of replication at the chorion gene replication origin. Here we show that mutants of Rbf (an retinoblastoma protein homologue) fail to limit DNA replication. We also show that the dDP, dE2F1 and Rbf proteins are located in a complex with DmORC, and that dE2F1 and DmORC are bound to the chorion origin of replication in vivo. Our results indicate that dE2F1 and Rbf function together at replication origins to limit DNA replication through interactions with DmORC.
Collapse
Affiliation(s)
- G Bosco
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
19
|
Abstract
The cell-division cycle is an orchestrated sequence of events that results in the duplication of a cell. In metazoa, cell proliferation is regulated in response to differentiation signals and body-size parameters, which either induce cell duplication or arrest the cell cycle, to ensure that organs develop to the correct size. In addition, the cell cycle may be altered to meet specialized requirements. This can be seen in the rapid cleavage cycles of vertebrates and insects that lack gap phases, in the nested S phases of Drosophila, and in the endocycles of nematodes, insects, plants and mammals that lack mitosis. Here we present the various modes of cell-cycle regulation in metazoa and discuss their possible generation by a combination of universally conserved molecules and new regulatory circuits.
Collapse
Affiliation(s)
- S J Vidwans
- Department of Biochemistry and Biophysics, University of California at San Francisco, California 94143-0448, USA
| | | |
Collapse
|
20
|
Whittaker AJ, Royzman I, Orr-Weaver TL. Drosophila Double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev 2000. [DOI: 10.1101/gad.14.14.1765] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We identified a Drosophila gene, double parked(dup), that is essential for DNA replication and belongs to a new family of replication proteins conserved fromSchizosaccharomyces pombe to humans. Strong mutations indup cause embryonic lethality, preceded by a failure to undergo S phase during the postblastoderm divisions. dup is required also for DNA replication in the adult ovary, establishing thatdup is needed for DNA replication at multiple stages of development. Strikingly, DUP protein colocalizes with the origin recognition complex to specific sites in the ovarian follicle cells. This suggests that DUP plays a direct role in DNA replication. Thedup transcript is cell cycle regulated and is under the control of E2F and Cyclin E. Interestingly, dup mutant embryos fail both to downregulate S phase genes and to engage a checkpoint preventing mitosis until completion of S phase. This could be either because these events depend on progression of S phase beyond the point blocked in the dup mutants or because DUP is needed directly for these feedback mechanisms.
Collapse
|
21
|
Affiliation(s)
- S L Holloway
- Howard Hughes Medical Institute, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
22
|
Austin RJ, Orr-Weaver TL, Bell SP. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev 1999; 13:2639-49. [PMID: 10541550 PMCID: PMC317108 DOI: 10.1101/gad.13.20.2639] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast Saccharomyces cerevisiae, sequence-specific DNA binding by the origin recognition complex (ORC) is responsible for selecting origins of DNA replication. In metazoans, origin selection is poorly understood and it is unknown whether specific DNA binding by metazoan ORC controls replication. To address this problem, we used in vivo and in vitro approaches to demonstrate that Drosophila ORC (DmORC) binds to replication elements that direct repeated initiation of replication to amplify the Drosophila chorion gene loci in the follicle cells of egg chambers. Using immunolocalization, we observe that ACE3, a 440-bp chorion element that contains information sufficient to drive amplification, directs DmORC localization in follicle cells. Similarly, in vivo cross-linking and chromatin immunoprecipitation assays demonstrate association of DmORC with both ACE3 and two other amplification control elements, AER-d and ACE1. To demonstrate that the in vivo localization of DmORC is related to its DNA-binding properties, we find that purified DmORC binds to ACE3 and AER-d in vitro, and like its S. cerevisiae counterpart, this binding is dependent on ATP. Our findings suggest that sequence-specific DNA binding by ORC regulates initiation of metazoan DNA replication. Furthermore, adaptation of this experimental approach will allow for the identification of additional metazoan ORC DNA-binding sites and potentially origins of replication.
Collapse
Affiliation(s)
- R J Austin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
23
|
Affiliation(s)
- P Hieter
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
24
|
Abstract
Microarray-based gene expression analysis identified genes showing ploidy-dependent expression in isogenic Saccharomyces cerevisiae strains that varied in ploidy from haploid to tetraploid. These genes were induced or repressed in proportion to the number of chromosome sets, regardless of the mating type. Ploidy-dependent repression of some G1 cyclins can explain the greater cell size associated with higher ploidies, and suggests ploidy-dependent modifications of cell cycle progression. Moreover, ploidy regulation of the FLO11 gene had direct consequences for yeast development.
Collapse
Affiliation(s)
- T Galitski
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
25
|
Royzman I, Austin RJ, Bosco G, Bell SP, Orr-Weaver TL. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev 1999; 13:827-40. [PMID: 10197983 PMCID: PMC316602 DOI: 10.1101/gad.13.7.827] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1999] [Accepted: 02/16/1999] [Indexed: 11/24/2022]
Abstract
We isolated mutations in Drosophila E2F and DP that affect chorion gene amplification and ORC2 localization in the follicle cells. In the follicle cells of the ovary, the ORC2 protein is localized throughout the follicle cell nuclei when they are undergoing polyploid genomic replication, and its levels appear constant in both S and G phases. In contrast, when genomic replication ceases and specific regions amplify, ORC2 is present solely at the amplifying loci. Mutations in the DNA-binding domains of dE2F or dDP reduce amplification, and in these mutants specific localization of ORC2 to amplification loci is lost. Interestingly, a dE2F mutant predicted to lack the carboxy-terminal transcriptional activation and RB-binding domain does not abolish ORC2 localization and shows premature chorion amplification. The effect of the mutations in the heterodimer subunits suggests that E2F controls not only the onset of S phase but also origin activity within S phase.
Collapse
Affiliation(s)
- I Royzman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
A modified cell cycle, the endo cycle, produces the polyploid or polytene cells that are present in some tissues of most organisms. In the endo cycle, the S phase alternates with a gap phase, but mitosis does not occur. Genes needed to inhibit mitosis during the endo cycle and to promote the onset of S phase have been identified in Drosophila. Genomic intervals are differentially replicated during the endo cycle S phase such that some regions are under-replicated, while others can be amplified. Cyclin E and E2F are needed for this differential DNA replication during Drosophila oogenesis.
Collapse
Affiliation(s)
- I Royzman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|