1
|
Berkholz J, Karle W. Unravelling the molecular interplay: SUMOylation, PML nuclear bodies and vascular cell activity in health and disease. Cell Signal 2024; 119:111156. [PMID: 38574938 DOI: 10.1016/j.cellsig.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
In the seemingly well-researched field of vascular research, there are still many underestimated factors and molecular mechanisms. In recent years, SUMOylation has become increasingly important. SUMOylation is a post-translational modification in which small ubiquitin-related modifiers (SUMO) are covalently attached to target proteins. Sites where these SUMO modification processes take place in the cell nucleus are PML nuclear bodies (PML-NBs) - multiprotein complexes with their essential main component and organizer, the PML protein. PML and SUMO, either alone or as partners, influence a variety of cellular processes, including regulation of transcription, senescence, DNA damage response and defence against microorganisms, and are involved in innate immunity and inflammatory responses. They also play an important role in maintaining homeostasis in the vascular system and in pathological processes leading to the development and progression of cardiovascular diseases. This review summarizes information about the function of SUMO(ylation) and PML(-NBs) in the human vasculature from angiogenesis to disease and highlights their clinical potential as drug targets.
Collapse
Affiliation(s)
- Janine Berkholz
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| | - Weronika Karle
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
2
|
Matsuo M, Ueno T, Monde K, Sugata K, Tan BJY, Rahman A, Miyazato P, Uchiyama K, Islam S, Katsuya H, Nakajima S, Tokunaga M, Nosaka K, Hata H, Utsunomiya A, Fujisawa JI, Satou Y. Identification and characterization of a novel enhancer in the HTLV-1 proviral genome. Nat Commun 2022; 13:2405. [PMID: 35504920 PMCID: PMC9065021 DOI: 10.1038/s41467-022-30029-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes adult T-cell leukemia/lymphoma (ATL), a cancer of infected CD4+ T-cells. There is both sense and antisense transcription from the integrated provirus. Sense transcription tends to be suppressed, but antisense transcription is constitutively active. Various efforts have been made to elucidate the regulatory mechanism of HTLV-1 provirus for several decades; however, it remains unknown how HTLV-1 antisense transcription is maintained. Here, using proviral DNA-capture sequencing, we found a previously unidentified viral enhancer in the middle of the HTLV-1 provirus. The transcription factors, SRF and ELK-1, play a pivotal role in the activity of this enhancer. Aberrant transcription of genes in the proximity of integration sites was observed in freshly isolated ATL cells. This finding resolves certain long-standing questions concerning HTLV-1 persistence and pathogenesis. We anticipate that the DNA-capture-seq approach can be applied to analyze the regulatory mechanisms of other oncogenic viruses integrated into the host cellular genome. Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic virus with constantly active antisense transcription from the proviral genome. Here, Matsuo et al. perform proviral DNA-capture followed by high-throughput sequencing and identify a yet unknown viral enhancer in the middle of the HTLV-1 provirus.
Collapse
Affiliation(s)
- Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Paola Miyazato
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kyosuke Uchiyama
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Saiful Islam
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan.,Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21702, US
| | - Hiroo Katsuya
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, 849-8501, Japan
| | - Shinsuke Nakajima
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, 890-0064, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology and Infectious Disease, Kumamoto University Hospital, Kumamoto, 860-8556, Japan.,Cancer Center, Kumamoto University Hospital, Kumamoto, 860-8556, Japan
| | - Hiroyuki Hata
- Division of Informative Clinical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0972, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, 890-0064, Japan.,Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
3
|
Critical role of CRAG, a splicing variant of centaurin-γ3/AGAP3, in ELK1-dependent SRF activation at PML bodies. Sci Rep 2019; 9:20107. [PMID: 31882856 PMCID: PMC6934726 DOI: 10.1038/s41598-019-56559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
CRMP-5-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, is predominantly expressed in the developing brain. We previously demonstrated that CRAG, but not centaurin-γ3, translocates to the nucleus and activates the serum response factor (SRF)-c-Fos pathway in cultured neuronal cells. However, the physiological relevance of CRAG in vivo is unknown. Here, we found that CRAG/centaurin-γ3-knockout mice showed intensively suppressed kainic acid-induced c-fos expression in the hippocampus. Analyses of molecular mechanisms underlying CRAG-mediated SRF activation revealed that CRAG has an essential role in GTPase activity, interacts with ELK1 (a co-activator of SRF), and activates SRF in an ELK1-dependent manner. Furthermore, CRAG and ELK1 interact with promyelocytic leukaemia bodies through SUMO-interacting motifs, which is required for SRF activation. These results suggest that CRAG plays a critical role in ELK1-dependent SRF-c-fos activation at promyelocytic leukaemia bodies in the developing brain.
Collapse
|
4
|
Liu Y, Zhao D, Qiu F, Zhang LL, Liu SK, Li YY, Liu MT, Wu D, Wang JX, Ding XQ, Liu YX, Dong CJ, Shao XQ, Yang BF, Chu WF. Manipulating PML SUMOylation via Silencing UBC9 and RNF4 Regulates Cardiac Fibrosis. Mol Ther 2017; 25:666-678. [PMID: 28143738 DOI: 10.1016/j.ymthe.2016.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/10/2016] [Accepted: 12/25/2016] [Indexed: 01/25/2023] Open
Abstract
The promyelocytic leukemia protein (PML) is essential in the assembly of dynamic subnuclear structures called PML nuclear bodies (PML-NBs), which are involved in regulating diverse cellular functions. However, the possibility of PML being involved in cardiac disease has not been examined. In mice undergoing transverse aortic constriction (TAC) and arsenic trioxide (ATO) injection, transforming growth factor β1 (TGF-β1) was upregulated along with dynamic alteration of PML SUMOylation. In cultured neonatal mouse cardiac fibroblasts (NMCFs), ATO, angiotensin II (Ang II), and fetal bovine serum (FBS) significantly triggered PML SUMOylation and the assembly of PML-NBs. Inhibition of SUMOylated PML by silencing UBC9, the unique SUMO E2-conjugating enzyme, reduced the development of cardiac fibrosis and partially improved cardiac function in TAC mice. In contrast, enhancing SUMOylated PML accumulation, by silencing RNF4, a poly-SUMO-specific E3 ubiquitin ligase, accelerated the induction of cardiac fibrosis and promoted cardiac function injury. PML colocalized with Pin1 (a positive regulator for TGF-β1 mRNA expression in PML-NBs) and increased TGF-β1 activity. These findings suggest that the UBC9/PML/RNF4 axis plays a critical role as an important SUMO pathway in cardiac fibrosis. Modulating the protein levels of the pathway provides an attractive therapeutic target for the treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Dan Zhao
- Department of Clinical Pharmacy, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The 2nd Affiliated Hospital, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Fang Qiu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Ling-Ling Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Shang-Kun Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Yuan-Yuan Li
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Mei-Tong Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Di Wu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Jia-Xin Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Xiao-Qing Ding
- Department of Clinical Pharmacy, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The 2nd Affiliated Hospital, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Yan-Xin Liu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Chang-Jiang Dong
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Xiao-Qi Shao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China
| | - Bao-Feng Yang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China.
| | - Wen-Feng Chu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P.R. China.
| |
Collapse
|
5
|
Hall MH, Magalska A, Malinowska M, Ruszczycki B, Czaban I, Patel S, Ambrożek-Latecka M, Zołocińska E, Broszkiewicz H, Parobczak K, Nair RR, Rylski M, Pawlak R, Bramham CR, Wilczyński GM. Localization and regulation of PML bodies in the adult mouse brain. Brain Struct Funct 2015; 221:2511-25. [PMID: 25956166 DOI: 10.1007/s00429-015-1053-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/28/2015] [Indexed: 01/19/2023]
Abstract
PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.
Collapse
Affiliation(s)
- Małgorzata H Hall
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Monika Malinowska
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Satyam Patel
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Magdalena Ambrożek-Latecka
- Department of Clinical Cytology, Center of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Ewa Zołocińska
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Hanna Broszkiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Rajeevkumar R Nair
- Neuroscience Research Group, Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Marcin Rylski
- Department of Clinical Cytology, Center of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Robert Pawlak
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 7RH, UK.,Hatherley Laboratories, University of Exeter Medical School, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Clive R Bramham
- Neuroscience Research Group, Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Grzegorz M Wilczyński
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
The elastin peptide (VGVAPG)3 induces the 3D reorganisation of PML-NBs and SC35 speckles architecture, and accelerates proliferation of fibroblasts and melanoma cells. Histochem Cell Biol 2014; 143:245-58. [PMID: 25274422 DOI: 10.1007/s00418-014-1274-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 01/28/2023]
Abstract
During melanoma tumour growth, cancerous cells are exposed to the immediate surrounding the micro- and macro environment, which is largely modified through the degradation of the extracellular matrix by fibroblast-derived metalloproteinases. Among the degradation products, (VGVAPG)3, an elastin peptide is known to stimulate the proliferation of both fibroblasts and cancerous cells by binding to the elastin-binding receptor and activating the MEK/ERK signal transduction pathway. As this process strongly modifies mRNA synthesis, we investigated its effect on the relative three-dimensional organisation of the major partners of the mRNA splicing machinery: promyelocytic nuclear bodies (PML-NBs ) and splicing component 35 speckles (SC35) of normal fibroblasts and melanoma SK-MEL-28 cells. SC35 and PML-NBs proteins were immunolabeled and imaged by confocal microscopy within these cells cultured with (VGVAPG)3. Three-dimensional reconstruction was performed to elucidate the organisation of PML-NBs and SC35 speckles and their spatial relationship. In G0 cells, SC35 speckles were sequestered in PML-NBs. Shortly after (VGVAPG)3 stimulation, the three-dimensional organisation of PML-NBs and SC35 speckles changed markedly. In particular, SC35 speckles gradually enlarged and adopted a heterogeneous organisation, intermingled with PML-NBs. Conversely, inhibition of the elastin-binding protein or MEK/ERK pathway induced a remarkable early sequestration of condensed SC35 speckles in PML-NBs, the hallmark of splicing inhibition. The 3D architecture of speckles/PML-NBs highlights the modulation in their spatial relationship, the multiple roles of PML-NBs in activation, inhibition and sequestration, and provides the first demonstration of the dependence of PML-NBs and SC35 speckles on the elastin peptide for these functions.
Collapse
|
7
|
Shirkoohi R, Fujita H, Darmanin S, Takimoto M. Gelsolin induces promonocytic leukemia differentiation accompanied by upregulation of p21CIP1. Asian Pac J Cancer Prev 2013; 13:4827-34. [PMID: 23167427 DOI: 10.7314/apjcp.2012.13.9.4827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Tumor suppressor genes have received much attention for their roles in the development of human malignancies. Gelsolin has been found to be down-regulated in several types of human cancers, including leukemias. It is, however, expressed in macrophages, which are the final differentiation derivatives for the monocytic myeloid lineage, implicating this protein in the differentiation process of such cells. In order to investigate the role of gelsolin in leukaemic cell differentiation, stable clones over-expressing ectopic gelsolin, and a control clone were established from U937 leukaemia cells. Unlike the control cells, both gelsolin-overexpressing clones displayed retarded growth, improved monocytic morphology, increased NADPH and NSE activities, and enhanced surface expression of the β-integrin receptor, CD11b, when compared with the parental U937 cells. Interestingly, RT- PCR and western blot analysis also revealed that gelsolin enhanced p21CIP1 mRNA and protein expression in the overexpressing clones. Moreover, transient transfection with siRNA silencing P21CIP1, but not the control siRNA, resulted in a reduction in monocytic differentiation, accompanied by an increase in proliferation. In conclusion, our work demonstrates that gelsolin, by itself, is capable of inducing monocytic differentiation in U937 leukaemia cells, most probably through p21CIP1 activation.
Collapse
Affiliation(s)
- Reza Shirkoohi
- Department of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Iran.
| | | | | | | |
Collapse
|
8
|
Nagashima S, Fukuda T, Kubota Y, Sugiura A, Nakao M, Inatome R, Yanagi S. CRMP5-associated GTPase (CRAG) protein protects neuronal cells against cytotoxicity of expanded polyglutamine protein partially via c-Fos-dependent activator protein-1 activation. J Biol Chem 2011; 286:33879-89. [PMID: 21832068 DOI: 10.1074/jbc.m111.234997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously demonstrated that CRAM (CRMP5)-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, facilitated degradation of expanded polyglutamine protein (polyQ) via the nuclear ubiquitin-proteasome pathway. Taking advantage of this feature, we also showed that lentivirus-mediated CRAG expression in the Purkinje cells of mice expressing polyQ resulted in clearance of the polyQ aggregates and rescue from ataxia. However, the molecular basis of the function of CRAG in cell survival against polyQ remains unclear. Here we report that CRAG, but not centaurin-γ3, induces transcriptional activation of c-Fos-dependent activator protein-1 (AP-1) via serum response factor (SRF). Mutation analysis indicated that the nuclear localization signal and both the N- and C-terminal regions of CRAG are critical for SRF-dependent c-Fos activation. CRAG knockdown by siRNA or expression of a dominant negative mutant of CRAG significantly attenuated the c-Fos activation triggered by either polyQ or the proteasome inhibitor MG132. Importantly, c-Fos expression partially rescued the enhanced cytotoxicity of CRAG knockdown in polyQ-expressing or MG132-treated cells. Finally, we suggest the possible involvement of CRAG in the sulfiredoxin-mediated antioxidant pathway via AP-1. Taken together, these results demonstrated that CRAG enhances the cell survival signal against the accumulation of unfolded proteins, including polyQ, through not only proteasome activation, but also the activation of c-Fos-dependent AP-1.
Collapse
Affiliation(s)
- Shun Nagashima
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Lee Y, Lee J, Kwon I, Nakajima Y, Ohmiya Y, Son GH, Lee KH, Kim K. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J Cell Sci 2011; 123:3547-57. [PMID: 20930143 DOI: 10.1242/jcs.070300] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor CLOCK-BMAL1 is a core component of the molecular clock machinery that drives circadian gene expression and physiology in mammals. Recently, we reported that this heterodimeric transcription factor functions as a signaling molecule in response to the resetting stimuli via the Ca²+-dependent protein kinase C pathway. Here, we demonstrate that the CREB-binding protein (CBP) plays a key role in rapid activation of the CLOCK-BMAL1 heterodimer that leads to phase resetting of the circadian clock. Under physiological conditions, a bimolecular fluorescence complementation (BiFC) assay revealed that CLOCK and BMAL1 dimerize in the cytoplasm and subsequently translocate into the nucleus in response to serum stimuli (mean time duration was 29.2 minutes and mean velocity 0.7 μm/minute). Concomitantly, BMAL1 rapidly recruited CBP on Per1 promoter E-box, but not p300 (a functional analog of CBP), in the discrete nuclear foci. However, recruitment of CBP by cAMP/Ca²+ response element-binding (CREB) protein on CRE was not markedly increased upon delivery of the resetting stimuli. Furthermore, overexpression of CBP greatly potentiated the CLOCK-BMAL1-mediated Per1 transcription, and this effect was completely abolished by site-directed mutation of E-box elements, but not by the mutation of CRE in the Per1 promoter. Furthermore, molecular knockdown of CBP severely dampened circadian oscillation of clock gene expression triggered by the resetting stimuli. These findings suggest that CBP recruitment by BMAL1 mediates acute transactivation of CLOCK-BMAL1, thereby inducing immediate-early Per1 transcription and phase resetting of the circadian clock.
Collapse
Affiliation(s)
- Yool Lee
- Department of Biological Sciences and 21st Frontier Program in Neuroscience, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kuwayama K, Matsuzaki K, Mizobuchi Y, Mure H, Kitazato KT, Kageji T, Nakao M, Nagahiro S. Promyelocytic leukemia protein induces apoptosis due to caspase-8 activation via the repression of NFkappaB activation in glioblastoma. Neuro Oncol 2008; 11:132-41. [PMID: 18812519 DOI: 10.1215/15228517-2008-083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Promyelocytic leukemia (PML) protein plays an essential role in the induction of apoptosis; its expression is reduced in various cancers. As the functional roles of PML in glioblastoma multiforme (GBM) have not been clarified, we assessed the expression of PML protein in GBM tissues and explored the mechanisms of PML-regulated cell death in GBM cells. We examined the PML mRNA level and the expression of PML protein in surgical GBM specimens. PML-regulated apoptotic mechanisms in GBM cells transfected with plasmids expressing the PML gene were examined. The protein expression of PML was significantly lower in GBM than in non-neoplastic tissues; approximately 10% of GBM tissues were PML-null. The PML mRNA levels were similar in both tissue types. The overexpression of PML activated caspase-8 and induced apoptosis in GBM cells. In these cells, PML decreased the expression of transactivated forms of NFkappaB/p65, and c-FLIP gene expression was suppressed. Therefore, PML-induced apoptosis resulted from the suppression of the transcriptional activity of NFkappaB/p65. PML overexpression decreased phosphorylated IkappaBalpha and nuclear NFkappaB/p65 and increased the expression of the suppressor of cytokine signaling (SOCS-1). A proteasome inhibitor blocked the reduction of activated p65 by PML. The reduction of PML is associated with the pathogenesis of GBM. PML induces caspase-8-dependent apoptosis via the repression of NFkappaB activation by which PML facilitates the proteasomal degradation of activated p65 and the sequestration of p65 with IkappaBalpha in the cytoplasm. This novel mechanism of PML-regulated apoptosis may represent a therapeutic target for GBM.
Collapse
Affiliation(s)
- Kazuyuki Kuwayama
- Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hirano Y, Takahashi H, Kumeta M, Hizume K, Hirai Y, Otsuka S, Yoshimura SH, Takeyasu K. Nuclear architecture and chromatin dynamics revealed by atomic force microscopy in combination with biochemistry and cell biology. Pflugers Arch 2008; 456:139-53. [PMID: 18172599 DOI: 10.1007/s00424-007-0431-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/29/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
The recent technical development of atomic force microscopy (AFM) has made nano-biology of the nucleus an attractive and promising field. In this paper, we will review our current understanding of nuclear architecture and dynamics from the structural point of view. Especially, special emphases will be given to: (1) How to approach the nuclear architectures by means of new techniques using AFM, (2) the importance of the physical property of DNA in the construction of the higher-order structures, (3) the significance and implication of the linker and core histones and the nuclear matrix/scaffold proteins for the chromatin dynamics, (4) the nuclear proteins that contribute to the formation of the inner nuclear architecture. Spatio-temporal analyses using AFM, in combination with biochemical and cell biological approaches, will play important roles in the nano-biology of the nucleus, as most of nuclear structures and events occur in nanometer, piconewton and millisecond order. The new applications of AFM, such as recognition imaging, fast-scanning imaging, and a variety of modified cantilevers, are expected to be powerful techniques to reveal the nanostructure of the nucleus.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Kyoto University Graduate School of Biostudies, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Suico MA, Nakamura H, Lu Z, Saitoh H, Shuto T, Nakao M, Kai H. SUMO down-regulates the activity of Elf4/myeloid Elf-1-like factor. Biochem Biophys Res Commun 2006; 348:880-8. [PMID: 16904644 DOI: 10.1016/j.bbrc.2006.07.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 07/20/2006] [Indexed: 01/20/2023]
Abstract
Myeloid elf-1-like factor (MEF) or Elf4 is an ETS protein known to regulate the basal expression of the anti-microbial peptides, lysozyme and human beta-defensin-2, in epithelial cells and activate the transcription of perforin in natural killer cells. The numerous target genes of MEF and its biological functions signify the importance of this Ets transcription factor. Here we show that MEF is modified by conjugation with SUMO-1/-2 (small ubiquitin-related modifier) both in mammalian cells and in Escherichia coli overexpressing human SUMO-1/-2. We identified by point mutation that lysine 657 of MEF is the site for sumoylation. This modification down-regulated MEF activity on lysozyme and perforin promoters, and decreased the lysozyme mRNA expression. Chromatin immuno-precipitation analysis revealed that SUMO-conjugation diminished the recruitment of MEF to the lysozyme promoter, which partly explains the down-regulation of MEF activity by SUMO. These findings contribute to our understanding of the regulation of the ETS factor MEF.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Tanaka H, Shirkoohi R, Nakagawa K, Qiao H, Fujita H, Okada F, Hamada JI, Kuzumaki S, Takimoto M, Kuzumaki N. siRNA gelsolin knockdown induces epithelial-mesenchymal transition with a cadherin switch in human mammary epithelial cells. Int J Cancer 2006; 118:1680-91. [PMID: 16217750 DOI: 10.1002/ijc.21559] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epithelial-mesenchymal transition (EMT) describes a process occurring during development and oncogenesis by which epithelial cells obtain fibroblast-like properties and show reduced cell adhesion and increased motility. In this report, we demonstrated typical EMT in human mammary epithelial MCF10A small interfering (si)RNA gelsolin-knockdown cells. EMT was characterized by fibroblastic morphology, loss of contact inhibition and focus formation in monolayer growth, enhanced motility and invasiveness in vitro, increased actin filaments, overexpression of RAC, activation of both extracellular signal-regulated kinase and AKT, inactivation of glycogen synthase kinase-3, conversion of cadherin from the E- to N-type and induction of the transcription factor Snail. These results suggested that gelsolin functions as a switch that controls E- and N-cadherin conversion via Snail, and demonstrated that its knockdown leads to EMT in human mammary epithelial cells and possibly to the development of human mammary tumors.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Cancer Gene Regulation, Research Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This review surveys what is known about the structure and function of the subnuclear domains called Cajal bodies (CBs). The major focus is on CBs in mammalian cells but we provide an overview of homologous CB structures in other organisms. We discuss the protein and RNA components of CBs, including factors recently found to associate in a cell cycle-dependent fashion or under specific metabolic or stress conditions. We also consider the dynamic properties of both CBs and their molecular components, based largely on recent data obtained thanks to the advent of improved in vivo detection and imaging methods. We discuss how these data contribute to an understanding of CB functions and highlight major questions that remain to be answered. Finally, we consider the interesting links that have emerged between CBs and alterations in nuclear structure apparent in a range of human pathologies, including cancer and inherited neurodegenerative diseases. We speculate on the relationship between CB function and molecular disease.
Collapse
Affiliation(s)
- Mario Cioce
- IRBM (Merck Research Laboratories Rome), Rome, Italy.
| | | |
Collapse
|
15
|
Suico MA, Yoshida H, Seki Y, Uchikawa T, Lu Z, Shuto T, Matsuzaki K, Nakao M, Li JD, Kai H. Myeloid Elf-1-like factor, an ETS transcription factor, up-regulates lysozyme transcription in epithelial cells through interaction with promyelocytic leukemia protein. J Biol Chem 2004; 279:19091-8. [PMID: 14976184 DOI: 10.1074/jbc.m312439200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myeloid elf-1-like factor (MEF) or Elf4, which is a member of the ETS transcription factor family, up-regulates the basal expression of lysozyme gene in epithelial cells and is constitutively localized in the nucleus. The mammalian cell nucleus is organized into distinct nuclear domains or compartments that are essential for diverse physiological processes. Promyelocytic leukemia (PML) nuclear body or nuclear domain 10 is one of the nuclear domains and is involved in tumor suppression and regulation of transcription. Here, we investigate the role of PML nuclear body in MEF transactivation. We show that PML, but not Sp100, induced the accumulation of MEF in PML nuclear bodies and that MEF and PML physically interacted. This interaction stimulated MEF transcriptional activity, resulting in the up-regulation of endogenous lysozyme expression. Amino acids 348-517 of MEF were required for the accumulation of MEF in PML nuclear bodies and up-regulation of lysozyme transcription, which is enhanced by PML. Moreover, the C-terminal region of MEF spanning amino acids 477-517 was the putative region required for interaction between MEF and PML as determined with the use of the mammalian two-hybrid system. In addition, heat-shock treatment induced the accumulation of MEF in endogenous PML nuclear bodies and enhanced MEF transactivation of lysozyme gene. Thus, the recruitment of MEF to PML nuclear bodies may partly regulate lysozyme transcription in epithelial cells.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Matsuzaki K, Minami T, Tojo M, Honda Y, Uchimura Y, Saitoh H, Yasuda H, Nagahiro S, Saya H, Nakao M. Serum response factor is modulated by the SUMO-1 conjugation system. Biochem Biophys Res Commun 2003; 306:32-8. [PMID: 12788062 DOI: 10.1016/s0006-291x(03)00910-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum stimulation leads to activation of the serum response factor (SRF)-mediated transcription of immediate-early genes such as c-fos via various signal transduction pathways. We have previously reported that promyelocytic leukemia protein (PML) is involved in the transcriptional regulation by SRF. PML is one of the well-known substrates for modification by small ubiquitin-related modifier-1 (SUMO-1) and several SUMO-1-modified proteins associate with PML. Here, we report that SRF is modified by SUMO-1 chiefly at lysine(147) within the DNA-binding domain. Substitution of this target lysine for alanine did not affect the translocation of SRF to PML-nuclear bodies. The SRF mutant augmented the transcriptional activity under Rho A-stimulated condition but not under serum-starved condition, suggesting that activated SRF is suppressed by its sumoylation. These data support the transcriptional role of SUMO-1 conjugating system in cellular serum response.
Collapse
Affiliation(s)
- Kazuhito Matsuzaki
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, 860-0811, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|