1
|
Chen F, Schenkel M, Geuverink E, van de Zande L, Beukeboom LW. Absence of complementary sex determination in two Leptopilina species (Figitidae, Hymenoptera) and a reconsideration of its incompatibility with endosymbiont-induced thelytoky. INSECT SCIENCE 2022; 29:900-914. [PMID: 34525260 PMCID: PMC9297927 DOI: 10.1111/1744-7917.12969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 05/19/2023]
Abstract
Complementary sex determination (CSD) is a widespread sex determination mechanism in haplodiploid Hymenoptera. Under CSD, sex is determined by the allelic state of one or multiple CSD loci. Heterozygosity at one or more loci leads to female development, whereas hemizygosity of haploid eggs and homozygosity of diploid eggs results in male development. Sexual (arrhenotokous) reproduction normally yields haploid male and diploid female offspring. Under asexual reproduction (thelytoky), diploidized unfertilized eggs develop into females. Thelytoky is often induced by bacterial endosymbionts that achieve egg diploidization by gamete duplication. As gamete duplication leads to complete homozygosity, endosymbiont-induced thelytokous reproduction is presumed to be incompatible with CSD, which relies on heterozygosity for female development. Previously, we excluded CSD in four Asobara (Braconidae) species and proposed a two-step mechanism for Wolbachia-induced thelytoky in Asobara japonica. Here, we conclusively reject CSD in two cynipid wasp species, Leptopilina heterotoma and Leptopilina clavipes. We further show that thelytoky in L. clavipes depends on Wolbachia titer but that diploidization and feminization steps cannot be separated, unlike in A. japonica. We discuss what these results reveal about the sex determination mechanism of L. clavipes and the presumed incompatibility between CSD and endosymbiont-induced thelytoky in the Hymenoptera.
Collapse
Affiliation(s)
- Fangying Chen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenP.O. Box 11103Groningen9700 CCthe Netherlands
| | - Martijn Schenkel
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenP.O. Box 11103Groningen9700 CCthe Netherlands
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenP.O. Box 11103Groningen9700 CCthe Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenP.O. Box 11103Groningen9700 CCthe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenP.O. Box 11103Groningen9700 CCthe Netherlands
| |
Collapse
|
2
|
Progeny fitness determines the performance of the parasitoid Therophilus javanus, a prospective biocontrol agent against the legume pod borer. Sci Rep 2021; 11:8990. [PMID: 33903703 PMCID: PMC8076171 DOI: 10.1038/s41598-021-88644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
Therophilus javanus (Bhat & Gupta) is an exotic larval endoparasitoid newly imported from Asia into Africa as a classical biological control agent against the pod borer Maruca vitrata (Fabricius). The parasitoid preference for the five larval instars of M. vitrata and their influence on progeny sex ratio were assessed together with the impact of larval host age at the time of oviposition on development time, mother longevity and offspring production. In a choice situation, female parasitoids preferred to oviposit in the first three larval instars. The development of immature stages of the parasitoid was observed inside three-day-old hosts, whereby the first two larval instars of T. javanus completed their development as endoparasites and the third larval instar as ectoparasite. The development time was faster when first larval instars (two- and three-day-old) of the host caterpillars were parasitized compared to second larval instar (four-day-old). The highest proportion of daughters (0.51) was observed when females were provided with four-day-old hosts. The lowest intrinsic rate of increase (r) (0.21 ± 0.01), the lowest rate of increase (λ) (1.23 ± 0.01), and the lowest net reproductive rate (Ro) (35.93 ± 6.51) were recorded on four-day-old hosts. These results are discussed in the light of optimizing mass rearing and release strategies.
Collapse
|
3
|
Geuverink E, Verhulst EC, van Leussen M, van de Zande L, Beukeboom LW. Maternal provision of non-sex-specific transformer messenger RNA in sex determination of the wasp Asobara tabida. INSECT MOLECULAR BIOLOGY 2018; 27:99-109. [PMID: 29030993 DOI: 10.1111/imb.12352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In many insect species maternal provision of sex-specifically spliced messenger RNA (mRNA) of sex determination genes is an essential component of the sex determination mechanism. In haplodiploid Hymenoptera, maternal provision in combination with genomic imprinting has been shown for the parasitoid Nasonia vitripennis, known as maternal effect genomic imprinting sex determination (MEGISD). Here, we characterize the sex determination cascade of Asobara tabida, another hymenopteran parasitoid. We show the presence of the conserved sex determination genes doublesex (dsx), transformer (tra) and transformer-2 (tra2) orthologues in As. tabida. Of these, At-dsx and At-tra are sex-specifically spliced, indicating a conserved function in sex determination. At-tra and At-tra2 mRNA is maternally provided to embryos but, in contrast to most studied insects, As. tabida females transmit a non-sex-specific splice form of At-tra mRNA to the eggs. In this respect, As. tabida sex determination differs from the MEGISD mechanism. How the paternal genome can induce female development in the absence of maternal provision of sex-specifically spliced mRNA remains an open question. Our study reports a hitherto unknown variant of maternal effect sex determination and accentuates the diversity of insect sex determination mechanisms.
Collapse
Affiliation(s)
- E Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - E C Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - M van Leussen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - L van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - L W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Ma WJ, Pannebakker BA, van de Zande L, Schwander T, Wertheim B, Beukeboom LW. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp. BMC Evol Biol 2015; 15:84. [PMID: 25963738 PMCID: PMC4456809 DOI: 10.1186/s12862-015-0370-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. Results We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7–1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutations in the host genome but that diploid males are most likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development. Conclusions Our new model of endosymbiont-induced thelytoky overthrows the view that certain sex determination mechanisms constrain the evolution of endosymbiont-induced thelytoky in hymenopteran insects. Endosymbionts can cause parthenogenesis through feminization, even in groups in which endosymbiont-diploidized eggs would develop into males following the hosts’ sex determination mechanism. In addition, our model broadens our understanding of the mechanisms by which endosymbionts induce thelytoky to enhance their transmission to the next generation. Importantly, it also provides a novel window to study the yet-poorly known haplodiploid sex determination mechanisms in haplodiploid insects. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0370-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands. .,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Bart A Pannebakker
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | - Louis van de Zande
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Tanja Schwander
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands. .,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Bregje Wertheim
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Leo W Beukeboom
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Carabajal Paladino L, Muntaabski I, Lanzavecchia S, Le Bagousse-Pinguet Y, Viscarret M, Juri M, Fueyo-Sánchez L, Papeschi A, Cladera J, Bressa MJ. Complementary sex determination in the parasitic wasp Diachasmimorpha longicaudata. PLoS One 2015; 10:e0119619. [PMID: 25789748 PMCID: PMC4366257 DOI: 10.1371/journal.pone.0119619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
We studied the sex determination in Diachasmimorpha longicaudata, a parasitoid braconid wasp widely used as biological control agent of fruit pest tephritid flies. We tested the complementary sex determination hypothesis (CSD) known in at least 60 species of Hymenoptera. According to CSD, male or female development depends on the allelic composition of one sex locus (single-locus CSD) or multiple sex loci (multiple-locus CSD). Hemizygote individuals are normal haploid males, and heterozygotes for at least one sex locus are normal diploid females, but homozygotes for all the sex loci are diploid males. In order to force the occurrence of diploid males in D. longicaudata, we established highly inbred lines and examined their offspring using chromosome counting, flow cytometry, and sex ratio analysis. We found that when mother-son crosses were studied, this wasp produced about 20% of diploid males out of the total male progeny. Our results suggest that this parasitoid may represent the second genus with multiple-locus CSD in Hymenoptera. Knowledge about the sex determination system in D. longicaudata is relevant for the improvement of mass rearing protocols of this species. This information also provides the necessary background for further investigations on the underlying molecular mechanisms of sex determination in this species, and a better insight into the evolution of this pathway in Hymenoptera in particular and insects in general.
Collapse
Affiliation(s)
- Leonela Carabajal Paladino
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Instituto de Genética “Ewald A Favret,” Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
- * E-mail:
| | - Irina Muntaabski
- Instituto de Genética “Ewald A Favret,” Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Silvia Lanzavecchia
- Instituto de Genética “Ewald A Favret,” Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | | | - Mariana Viscarret
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Marianela Juri
- Instituto de Genética “Ewald A Favret,” Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciana Fueyo-Sánchez
- Instituto de Ecología y Desarrollo Sustentable, Universidad Nacional de Luján, Luján, Argentina
| | - Alba Papeschi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge Cladera
- Instituto de Genética “Ewald A Favret,” Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - María José Bressa
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Ma WJ, Kuijper B, de Boer JG, van de Zande L, Beukeboom LW, Wertheim B, Pannebakker BA. Absence of complementary sex determination in the parasitoid wasp genus Asobara (Hymenoptera: Braconidae). PLoS One 2013; 8:e60459. [PMID: 23637750 PMCID: PMC3614920 DOI: 10.1371/journal.pone.0060459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/26/2013] [Indexed: 11/29/2022] Open
Abstract
An attractive way to improve our understanding of sex determination evolution is to study the underlying mechanisms in closely related species and in a phylogenetic perspective. Hymenopterans are well suited owing to the diverse sex determination mechanisms, including different types of Complementary Sex Determination (CSD) and maternal control sex determination. We investigated different types of CSD in four species within the braconid wasp genus Asobara that exhibit diverse life-history traits. Nine to thirteen generations of inbreeding were monitored for diploid male production, brood size, offspring sex ratio, and pupal mortality as indicators for CSD. In addition, simulation models were developed to compare these observations to predicted patterns for multilocus CSD with up to ten loci. The inbreeding regime did not result in diploid male production, decreased brood sizes, substantially increased offspring sex ratios nor in increased pupal mortality. The simulations further allowed us to reject CSD with up to ten loci, which is a strong refutation of the multilocus CSD model. We discuss how the absence of CSD can be reconciled with the variation in life-history traits among Asobara species, and the ramifications for the phylogenetic distribution of sex determination mechanisms in the Hymenoptera.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Inbreeding and the evolution of sociality in arthropods. Naturwissenschaften 2012; 99:779-88. [DOI: 10.1007/s00114-012-0961-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 11/26/2022]
|
8
|
Bourdais D, Hance T. Lack of behavioural evidence for kin avoidance in mate choice in a hymenopteran parasitoid (Hymenoptera: Braconidae). Behav Processes 2009; 81:92-4. [DOI: 10.1016/j.beproc.2009.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/16/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
|
9
|
de Boer JG, Ode PJ, Rendahl AK, Vet LEM, Whitfield JB, Heimpel GE. Experimental support for multiple-locus complementary sex determination in the parasitoid Cotesia vestalis. Genetics 2008; 180:1525-35. [PMID: 18791258 PMCID: PMC2581954 DOI: 10.1534/genetics.107.083907] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 08/22/2008] [Indexed: 11/18/2022] Open
Abstract
Despite its fundamental role in development, sex determination is highly diverse among animals. Approximately 20% of all animals are haplodiploid, with haploid males and diploid females. Haplodiploid species exhibit diverse but poorly understood mechanisms of sex determination. Some hymenopteran insect species exhibit single-locus complementary sex determination (sl-CSD), where heterozygosity at a polymorphic sex locus initiates female development. Diploid males are homozygous at the sex locus and represent a genetic load because they are inviable or sterile. Inbreeding depression associated with CSD is therefore expected to select for other modes of sex determination resulting in fewer or no diploid males. Here, we investigate an alternative, heretofore hypothetical, mode of sex determination: multiple-locus CSD (ml-CSD). Under ml-CSD, diploid males are predicted to develop only from zygotes that are homozygous at all sex loci. We show that inbreeding for eight generations in the parasitoid wasp Cotesia vestalis leads to increasing proportions of diploid males, a pattern that is consistent with ml-CSD but not sl-CSD. The proportion of diploid males (0.27 +/- 0.036) produced in the first generation of inbreeding (mother-son cross) suggests that two loci are likely involved. We also modeled diploid male production under CSD with three linked loci. Our data visually resemble CSD with linked loci because diploid male production in the second generation was lower than that in the first. To our knowledge, our data provide the first experimental support for ml-CSD.
Collapse
Affiliation(s)
- Jetske G de Boer
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The dominant and ancestral mode of sex determination in the Hymenoptera is arrhenotokous parthenogenesis, in which diploid females develop from fertilized eggs and haploid males develop from unfertilized eggs. We discuss recent progress in the understanding of the genetic and cytoplasmic mechanisms that make arrhenotoky possible. The best-understood mode of sex determination in the Hymenoptera is complementary sex determination (CSD), in which diploid males are produced under conditions of inbreeding. The gene mediating CSD has recently been cloned in the honey bee and has been named the complementary sex determiner. However, CSD is only known from 4 of 21 hymenopteran superfamilies, with some taxa showing clear evidence of the absence of CSD. Sex determination in the model hymenopteran Nasonia vitripennis does not involve CSD, but it is consistent with a form of genomic imprinting in which activation of the female developmental pathway requires paternally derived genes. Some other hymenopterans are not arrhenotokous but instead exhibit thelytoky or paternal genome elimination.
Collapse
Affiliation(s)
- George E Heimpel
- Department of Entomology, University of Minnesota, St Paul, MN, USA.
| | | |
Collapse
|
11
|
De Boer JG, Ode PJ, Vet LEM, Whitfield J, Heimpel GE. Complementary sex determination in the parasitoid wasp Cotesia vestalis (C. plutellae). J Evol Biol 2007; 20:340-8. [PMID: 17210027 DOI: 10.1111/j.1420-9101.2006.01193.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the Hymenoptera, single locus complementary sex determination (sl-CSD) describes a system where males develop either from unfertilized haploid eggs or from fertilized diploid eggs that are homozygous at a single polymorphic sex locus. Diploid males are often inviable or sterile, and are produced more frequently under inbreeding. Within families where sl-CSD has been demonstrated, we predict that sl-CSD should be more likely in species with solitary development than in species where siblings develop gregariously (and likely inbreed). We examine this prediction in the parasitoid wasp genus Cotesia, which contains both solitary and gregarious species. Previous studies have shown that sl-CSD is absent in two gregarious species of Cotesia, but present in one gregarious species. Here, we demonstrate CSD in the solitary Cotesia vestalis, using microsatellite markers. Diploid sons are produced by inbred, but not outbred, females. However, frequencies of diploid males were lower than expected under sl-CSD, suggesting that CSD in C. vestalis involves more than one locus.
Collapse
Affiliation(s)
- J G De Boer
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.
Collapse
Affiliation(s)
- S Vuilleumier
- Eawag Ecology Centre, Kastanienbaum (Lucerne), Switzerland.
| | | | | | | |
Collapse
|
13
|
Schrempf A, Aron S, Heinze J. Sex determination and inbreeding depression in an ant with regular sib-mating. Heredity (Edinb) 2006; 97:75-80. [PMID: 16705320 DOI: 10.1038/sj.hdy.6800846] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Haplodiploidy is one of the most widespread mechanisms of sex determination in animals. In many Hymenoptera, including all hitherto investigated social species, diploid individuals, which are heterozygous at the sex locus, develop as females, whereas haploid, hemizygous individuals develop as males (single-locus complementary sex determination, sl-CSD). Inbreeding leads to homozygosity at the sex locus, resulting in the production of diploid males, which are usually sterile and constitute a considerable fitness cost. Nevertheless, regular inbreeding without diploid male production is known from several solitary wasps, suggesting that in these species sex is not determined by sl-CSD but alternative mechanisms. Here, we examine sex determination in an ant with regular inbreeding, Cardiocondyla obscurior. The almost complete absence of diploid males after 10 generations of brother-sister mating in the laboratory documents for the first time the absence of sl-CSD and CSD with two or a few unlinked sex loci in a species of social Hymenoptera. Queens, which mated with a brother, appeared to decrease the number of males in their brood, as expected from the relatedness relationships under inbreeding. In contrast, some colonies began to show signs of an inbreeding depression after several generations of sib-mating, such as shortened queen life span, higher brood mortality, and a shift to more male-biased sex ratios in some colonies, presumably due to lower insemination capability of sperm.
Collapse
Affiliation(s)
- A Schrempf
- Lehrstuhl Biologie I, University of Regensburg, Universitätsstrasse 31, Regensburg D-93040, Germany.
| | | | | |
Collapse
|
14
|
Wu Z, Hopper KR, Ode PJ, Fuester RW, Tuda M, Heimpel GE. Single-locus complementary sex determination absent in Heterospilus prosopidis (Hymenoptera: Braconidae). Heredity (Edinb) 2006; 95:228-34. [PMID: 16077738 DOI: 10.1038/sj.hdy.6800720] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the haplodiploid Hymenoptera, haploid males arise from unfertilized eggs, receiving a single set of maternal chromosomes while diploid females arise from fertilized eggs and receive both maternal and paternal chromosomes. Under single-locus complementary sex determination (sl-CSD), sex is determined by multiple alleles at a single locus. Sex locus heterozygotes develop as females, while hemizygous and homozygous eggs develop as haploid and diploid males, respectively. Diploid males, which are inviable or sterile in almost all cases studied, are therefore produced in high frequency under inbreeding or in populations with low sex allele diversity. CSD is considered to be the ancestral form of sex determination within the Hymenoptera because members of the most basal taxa have CSD while some of the more derived groups have other mechanisms of sex determination that produce the haplo-diploid pattern without penalizing inbreeding. In this study, we investigated sex determination in Heterospilus prosopidis Viereck, a parasitoid from a relatively primitive subfamily of the Braconidae, a hymenopteran family having species with and without CSD. By comparing sex ratio and mortality patterns produced by inbred and outbred females, we were able to rule out sl-CSD as a sex determination mechanism in this species. The absence of sl-CSD in H. prosopidis was unexpected given its basal phylogenetic position in the Braconidae. This and other recent studies suggest that sex determination systems in the Hymenoptera may be evolutionary labile.
Collapse
Affiliation(s)
- Z Wu
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
15
|
van Wilgenburg E, Driessen G, Beukeboom LW. Single locus complementary sex determination in Hymenoptera: an "unintelligent" design? Front Zool 2006; 3:1. [PMID: 16393347 PMCID: PMC1360072 DOI: 10.1186/1742-9994-3-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 01/05/2006] [Indexed: 11/23/2022] Open
Abstract
The haplodiploid sex determining mechanism in Hymenoptera (males are haploid, females are diploid) has played an important role in the evolution of this insect order. In Hymenoptera sex is usually determined by a single locus, heterozygotes are female and hemizygotes are male. Under inbreeding, homozygous diploid and sterile males occur which form a genetic burden for a population. We review life history and genetical traits that may overcome the disadvantages of single locus complementary sex determination (sl-CSD). Behavioural adaptations to avoid matings between relatives include active dispersal from natal patches and mating preferences for non-relatives. In non-social species, temporal and spatial segregation of male and female offspring reduces the burden of sl-CSD. In social species, diploid males are produced at the expense of workers and female reproductives. In some social species, diploid males and diploid male producing queens are killed by workers. Diploid male production may have played a role in the evolution or maintenance of polygyny (multiple queens) and polyandry (multiple mating). Some forms of thelytoky (parthenogenetic female production) increase homozygosity and are therefore incompatible with sl-CSD. We discuss a number of hypothetical adaptations to sl-CSD which should be considered in future studies of this insect order.
Collapse
Affiliation(s)
- Ellen van Wilgenburg
- Department of Zoology, University of Melbourne, VIC 3010 Australia
- Institute of Biology Leiden, University of Leiden, P.O. Box 9516, NL-2300 RA Leiden, The Netherlands
| | - Gerard Driessen
- Department of Animal Ecology, Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Institute of Biology Leiden, University of Leiden, P.O. Box 9516, NL-2300 RA Leiden, The Netherlands
| | - Leo W Beukeboom
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 14, NL-9750 AA Haren, The Netherlands
- Institute of Biology Leiden, University of Leiden, P.O. Box 9516, NL-2300 RA Leiden, The Netherlands
| |
Collapse
|
16
|
Schrempf A, Reber C, Tinaut A, Heinze J. Inbreeding and local mate competition in the ant Cardiocondyla batesii. Behav Ecol Sociobiol 2004. [DOI: 10.1007/s00265-004-0869-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Stahlhut JK, Cowan DP. Single-locus complementary sex determination in the inbreeding wasp Euodynerus foraminatus Saussure (Hymenoptera: Vespidae). Heredity (Edinb) 2004; 92:189-96. [PMID: 14666131 DOI: 10.1038/sj.hdy.6800394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Hymenoptera have arrhenotokous haplodiploidy in which males normally develop from unfertilized eggs and are haploid, while females develop from fertilized eggs and are diploid. Multiple sex determination systems are known to underlie haplodiploidy, and the best understood is single-locus complementary sex determination (sl-CSD) in which sex is determined at a single polymorphic locus. Individuals heterozygous at the sex locus develop as females; individuals that are hemizygous (haploid) or homozygous (diploid) at the sex locus develop as males. sl-CSD can be detected with inbreeding experiments that produce diploid males in predictable proportions as well as sex ratio shifts due to diploid male production. This sex determination system is considered incompatible with inbreeding because the ensuing increase in homozygosity increases the production of diploid males that are inviable or infertile, imposing a high cost on matings between close relatives. However, in the solitary hunting wasp Euodynerus foraminatus, a species suspected of having sl-CSD, inbreeding may be common due to a high incidence of sibling matings at natal nests. In laboratory crosses with E. foraminatus, we find that sex ratios and diploid male production (detected as microsatellite heterozygosity) are consistent with sl-CSD, but not with other sex determination systems. This is the first documented example of sl-CSD in a hymenopteran with an apparent natural history of inbreeding, and thus presents a paradox for our understanding of hymenopteran genetics.
Collapse
Affiliation(s)
- J K Stahlhut
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA
| | | |
Collapse
|
18
|
Cowan DP, Stahlhut JK. Functionally reproductive diploid and haploid males in an inbreeding hymenopteran with complementary sex determination. Proc Natl Acad Sci U S A 2004; 101:10374-9. [PMID: 15232002 PMCID: PMC478579 DOI: 10.1073/pnas.0402481101] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Indexed: 11/18/2022] Open
Abstract
It has become a matter of orthodoxy that among wasps, ants, bees, and other insects in the order Hymenoptera, only uniparental haploid males that arise from unfertilized eggs are capable of reproduction. This idea is of interest because the best understood and perhaps most widespread sex determination system among these insects [known as single locus complementary sex determination (sl-CSD)] does not depend on ploidy alone and, paradoxically, consistently results in small numbers of diploid biparental males. To date, the reproductive potential of diploid males has been studied in 13 of the perhaps 200,000 hymenopterans world-wide; in each of these instances, the diploid males are genetic dead ends because they are inviable or sterile. The data from these species have resulted in a general conclusion that has been invoked for virtually all species with sl-CSD and has become the basis for assumptions regarding conservation biology, sex ratio analysis, and the evolution of social behavior. Here, we report that in the solitary vespid wasp Euodynerus foraminatus, both diploid and haploid males are fertile, which documents normal fertility in diploid males of a hymenopteran with sl-CSD. This wasp has high levels of inbreeding because of frequent brother-sister mating in nature; therefore, diploid males are more frequently produced and thus more likely exposed to selection favoring their fertility. Because inbreeding and diploid male production may be important features of the population biology of many hymenopterans, we sound a cautionary note regarding ideas about the evolutionary ecology of these insects.
Collapse
Affiliation(s)
- David P Cowan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | | |
Collapse
|
19
|
Stahlhut JK, Cowan DP. Inbreeding in a natural population of Euodynerus foraminatus (Hymenoptera: Vespidae), a solitary wasp with single-locus complementary sex determination. Mol Ecol 2004; 13:631-8. [PMID: 14871366 DOI: 10.1046/j.1365-294x.2004.02090.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The solitary wasp Euodynerus foraminatus has single-locus complementary sex determination (sl-CSD), which is normally incompatible with inbreeding because it increases the production of sterile or inviable diploid males. Previous field observations of E. foraminatus have suggested that high levels of sibling mating are present in this species. However, conclusions about inbreeding and its genetic consequences could be flawed if based solely upon behavioural observations. Through microsatellite DNA genotyping of 102 E. foraminatus females in southwest Michigan, we estimate that between 55% and 77% of the matings in this population take place between siblings, but the frequency of diploid males is lower than expected. Our data suggest that a mixture of inbreeding and outbreeding persists in E. foraminatus despite the presence of sl-CSD.
Collapse
Affiliation(s)
- Julie K Stahlhut
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA
| | | |
Collapse
|
20
|
Sharbel TF, Mitchell-Olds T. Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae). Heredity (Edinb) 2001; 87:59-68. [PMID: 11678988 DOI: 10.1046/j.1365-2540.2001.00908.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arabis holboellii is a North American member of the Brassicaceae that can reproduce via sex or apomixis. Previous studies have shown sexual individuals to be diploid, whilst apomictic individuals can be diploid (and aneuploid) or polyploid (typically 3x). Apomictic individuals can furthermore be facultative (i.e. both sexual and apomictic seed production in a single individual). Using flow cytometry, ploidy variation in 245 accessions of A. holboellii and A. drummondii from western North America and Greenland has been examined. Additionally, the chloroplast trnL intron region from each accession was sequenced for phylogenetic analysis of ploidy variation. Based upon 17 informative single nucleotide and insertion-deletion polymorphisms, we identified seven and 14 chloroplast haplotypes for A. drummondii and A. holboellii, respectively. Six of the haplotypes were found in both species. Ten of the chloroplast haplotypes were characterized by diploid, aneuploid, and triploid individuals, and thus we conclude that polyploidy has repeatedly and independently arisen within the species complex. As triploid individuals, which undergo normal meiosis, can only reproduce through apomixis, this may imply that the phenotype apomixis has also arisen multiple times. Arabis holboellii thus appears to have some predisposition to evolve apomictic reproduction.
Collapse
Affiliation(s)
- T F Sharbel
- Max Planck Institut für Chemische Okologie, Carl Zeiss Promenade 10, 07745 Jena, Germany.
| | | |
Collapse
|