1
|
Šafanda A, Hájková N, Kendall Bártů M, Švajdler M, Matěj R, Hausnerová J, Zima T, Dundr P, Němejcová K. Complex immunohistochemical and molecular study on 5 cases of ovarian juvenile granulosa cell tumors reveals a consistent alteration in the PI3K/AKT/mTOR signaling pathway. Diagn Pathol 2025; 20:3. [PMID: 39773640 PMCID: PMC11707838 DOI: 10.1186/s13000-025-01599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Juvenile granulosa cell tumor (JGCT) of the ovary is a rare tumor with distinct clinicopathological and hormonal features primarily affecting young women and children. We conducted a complex clinicopathological, immunohistochemical, and molecular analysis of five cases of JGCT. METHODS The immunohistochemical examination was performed with 32 markers, including markers that have not been previously investigated. Moreover, DNA next-generation sequencing (NGS) and PTEN methylation analysis was performed. RESULT We found the expression of calretinin, inhibin A, SF1, FOXL2, CD99, CKAE1/3, ER, PR, AR in all cases. WT1 was expressed in one case. Conversely, the expression of p16, OCT3/4, SALL4, GATA3, Napsin A, SATB2, MUC4, TTF1, and CAIX was completely negative. All tumors showed the wild-type pattern of p53 expression. Regarding predictive markers, all tumors were HER2 negative and did not express PD-L1. Mismatch repair proteins (MMR) showed no loss or restriction of expression, similarly to ARID1A, DPC4, BRG1, and INI1. The molecular analysis revealed AKT1 internal tandem duplication in two tumors. Two other cases exhibited mutations in TERT and EP400 and both developed recurrence. All AKT1-wild type tumors exhibited immunohistochemical loss of PTEN expression. However, no mutations, deletions (as assessed by CNV analysis), or promoter hypermethylation in the PTEN gene were detected. CONCLUSION The results of our study further support the hypothesis that the pathogenesis of JGCT may be driven by activation of the PIK3/AKT/mTOR pathway. These findings could potentially have future therapeutic implications, as treatment strategies targeting the PTEN/mTOR pathways are currently under investigation.
Collapse
Affiliation(s)
- Adam Šafanda
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic
| | - Nikola Hájková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, 10034, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic.
| |
Collapse
|
2
|
Němejcová K, Šafanda A, Kendall Bártů M, Michálková R, Švajdler M, Shatokhina T, Laco J, Matěj R, Méhes G, Drozenová J, Hausnerová J, Špůrková Z, Náležinská M, Dundr P. An extensive immunohistochemical analysis of 290 ovarian adult granulosa cell tumors with 29 markers. Virchows Arch 2024; 485:427-437. [PMID: 38904760 DOI: 10.1007/s00428-024-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The current knowledge about the immunohistochemical features of adult granulosa cell tumor (AGCT) is mostly limited to the "traditional" immunohistochemical markers of sex cord differentiation, such as inhibin, calretinin, FOXL2, SF1, and CD99. Knowledge about the immunohistochemical markers possibly used for predictive purpose is limited. In our study, we focused on the immunohistochemical examination of 290 cases of AGCT classified based on strict diagnostic criteria, including molecular testing. The antibodies used included 12 of the "diagnostic" antibodies already examined in previous studies, 10 antibodies whose expression has not yet been examined in AGCT, and 7 antibodies with possible predictive significance, including the expression of HER2, PD-L1, CTLA4, and 4 mismatch repair (MMR) proteins. The results of our study showed expression of FOXL2, SF1, CD99, inhibin A, calretinin, ER, PR, AR, CKAE1/3, and CAIX in 98%, 100%, 90%, 78%, 45%, 41%, 94%, 82%, 26%, and 9% of AGCT, respectively. GATA3, SATB2, napsin A, MUC4, TTF1, and CD44 were all negative. PTEN showed a loss of expression in 71% of cases and DPC4 in 4% of cases. The aberrant staining pattern (overexpression) of p53 was found in 1% (3/268) of cases, 2 primary tumors, and 1 recurrent case. Concerning the predictive markers, the results of our study showed that AGCT is microsatellite stable, do not express PD-L1, and are HER2 negative. The CTLA4 expression was found in almost 70% of AGCT tumor cells.
Collapse
Affiliation(s)
- Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic.
| | - Adam Šafanda
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tetiana Shatokhina
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Charles University, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 10034, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Jana Drozenová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 10034, Prague, Czech Republic
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Zuzana Špůrková
- Department of Pathology, Bulovka University Hospital, Prague, Czech Republic
| | - Monika Náležinská
- Division of Gynecologic Oncology, Department of Surgical Oncology, Masaryk Memorial Cancer Institute and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| |
Collapse
|
3
|
Lakkaniga NR, Wang Z, Xiao Y, Kharbanda A, Lan L, Li HY. Revisiting Aurora Kinase B: A promising therapeutic target for cancer therapy. Med Res Rev 2024; 44:686-706. [PMID: 37983866 DOI: 10.1002/med.21994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/28/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Cancer continues to be a major health concern globally, although the advent of targeted therapy has revolutionized treatment options. Aurora Kinase B is a serine-threonine kinase that has been explored as an oncology therapeutic target for more than two decades. Aurora Kinase B inhibitors show promising biological results in in-vitro and in-vivo experiments. However, there are no inhibitors approved yet for clinical use, primarily because of the side effects associated with Aurora B inhibitors. Several studies demonstrate that Aurora B inhibitors show excellent synergy with various chemotherapeutic agents, radiation therapy, and targeted therapies. This makes it an excellent choice as an adjuvant therapy to first-line therapies, which greatly improves the therapeutic window and side effect profile. Recent studies indicate the role of Aurora B in some deadly cancers with limited therapeutic options, like triple-negative breast cancer and glioblastoma. Herein, we review the latest developments in Aurora Kinase B targeted research, with emphasis on its potential as an adjuvant therapy and its role in some of the most difficult-to-treat cancers.
Collapse
Affiliation(s)
- Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Zhengyu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yao Xiao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
4
|
Karseladze AI, Asaturova AV, Kiseleva IA, Badlaeva AS, Tregubova AV, Zaretsky AR, Uvarova EV, Zanelli M, Palicelli A. Androgen Insensitivity Syndrome with Bilateral Gonadal Sertoli Cell Lesions, Sertoli-Leydig Cell Tumor, and Paratesticular Leiomyoma: A Case Report and First Systematic Literature Review. J Clin Med 2024; 13:929. [PMID: 38398243 PMCID: PMC10889606 DOI: 10.3390/jcm13040929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Androgen insensitivity syndrome (AIS) is a rare Mendelian disorder caused by mutations of the androgen receptor (AR) gene on the long arm of the X chromosome. As a result of the mutation, the receptor becomes resistant to androgens, and hence, karyotypically male patients (46,XY) carry a female phenotype. Their cryptorchid gonads are prone to the development of several types of tumors (germ cell, sex cord stromal, and others). Here, we report a 15-year-old female-looking patient with primary amenorrhea who underwent laparoscopic gonadectomy. Histologically, the patient's gonads showed Sertoli cell hamartomas (SCHs) and adenomas (SCAs) with areas of Sertoli-Leydig cell tumors (SLCTs) and a left-sided paratesticular leiomyoma. Rudimentary Fallopian tubes were also present. The patient's karyotype was 46,XY without any evidence of aberrations. Molecular genetic analysis of the left gonad revealed two likely germline mutations-a pathogenic frameshift deletion in the AR gene (c.77delT) and a likely pathogenic missense variant in the RAC1 gene (p.A94V). Strikingly, no somatic mutations, fusions, or copy number variations were found. We also performed the first systematic literature review (PRISMA guidelines; screened databases: PubMed, Scopus, Web of Science; ended on 7 December 2023) of the reported cases of patients with AIS showing benign or malignant Sertoli cell lesions/tumors in their gonads (n = 225; age: 4-84, mean 32 years), including Sertoli cell hyperplasia (1%), Sertoli cell nodules (6%), SCHs (31%), SCAs (36%), Sertoli cell tumors (SCTs) (16%), and SLCTs (4%). The few cases (n = 14, 6%; six SCAs, four SCTs, two SLCTs, and two SCHs) with available follow-up (2-49, mean 17 months) showed no evidence of disease (13/14, 93%) or died of other causes (1/14, 7%) despite the histological diagnosis. Smooth muscle lesions/proliferations were identified in 19 (8%) cases (including clearly reported rudimentary uterine remnants, 3 cases; leiomyomas, 4 cases). Rudimentary Fallopian tube(s) were described in nine (4%) cases. Conclusion: AIS may be associated with sex cord/stromal tumors and, rarely, mesenchymal tumors such as leiomyomas. True malignant sex cord tumors can arise in these patients. Larger series with longer follow-ups are needed to estimate the exact prognostic relevance of tumor histology in AIS.
Collapse
Affiliation(s)
- Apollon I. Karseladze
- Oncopathology Department, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, Moscow 117513, Russia
| | - Aleksandra V. Asaturova
- 1st Pathology Department, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, Moscow 117513, Russia
| | - Irina A. Kiseleva
- Pediatric Gynecology Department, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, Moscow 117513, Russia
| | - Alina S. Badlaeva
- 1st Pathology Department, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, Moscow 117513, Russia
| | - Anna V. Tregubova
- 1st Pathology Department, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, Moscow 117513, Russia
| | - Andrew R. Zaretsky
- Department of Molecular Technologies, Research Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Bldg. 1, Ostrovityanova Street, Moscow 117997, Russia;
| | - Elena V. Uvarova
- Pediatric Gynecology Department, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, Moscow 117513, Russia
| | - Magda Zanelli
- Pathology Unit, Azienda USL—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.)
| |
Collapse
|
5
|
Jung D, Almstedt K, Battista MJ, Seeger A, Jäkel J, Brenner W, Hasenburg A. Immunohistochemical markers of prognosis in adult granulosa cell tumors of the ovary - a review. J Ovarian Res 2023; 16:50. [PMID: 36869369 PMCID: PMC9983179 DOI: 10.1186/s13048-023-01125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Granulosa cell tumors (GCT) are rare malignant ovarian tumors. The two subtypes, adult and juvenile granulosa cell tumors, differ in clinical and molecular characteristics. GCT are low-malignant tumors and are generally associated with favorable prognosis. However, relapses are common even years and decades after diagnosis. Prognostic and predictive factors are difficult to assess in this rare tumor entity. The purpose of this review is to provide a comprehensive overview of the current state of knowledge on prognostic markers of GCT to identify patients with a high risk of recurrence. METHODS Systematic research for adult ovarian granulosa cell tumors and prognosis revealed n = 409 English full text results from 1965 to 2021. Of these articles, n = 35 were considered for this review after title and abstract screening and topic-specific matching. A specific search for pathologic markers with prognostic relevance for GCT identified n = 19 articles that were added to this review. RESULTS FOXL2 mutation and FOXL2 mRNA were inverse and immunohistochemical (IHC) expression of CD56, GATA-4 and SMAD3 was associated with reduced prognosis. IHC analysis of estrogen receptor, Anti-Mullerian hormone (AMH) and inhibin was not associated with prognosis for GCT. Analyses of mitotic rate, Ki-67, p53, β-catenin and HER2 revealed inconsistent results.
Collapse
Affiliation(s)
- Dennis Jung
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany.
| | - Katrin Almstedt
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Marco J Battista
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Alexander Seeger
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Jörg Jäkel
- Department of Pathology, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Walburgis Brenner
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| |
Collapse
|
6
|
Chauvin S, Cohen-Tannoudji J, Guigon CJ. Estradiol Signaling at the Heart of Folliculogenesis: Its Potential Deregulation in Human Ovarian Pathologies. Int J Mol Sci 2022; 23:ijms23010512. [PMID: 35008938 PMCID: PMC8745567 DOI: 10.3390/ijms23010512] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/26/2023] Open
Abstract
Estradiol (E2) is a major hormone controlling women fertility, in particular folliculogenesis. This steroid, which is locally produced by granulosa cells (GC) within ovarian follicles, controls the development and selection of dominant preovulatory follicles. E2 effects rely on a complex set of nuclear and extra-nuclear signal transduction pathways principally triggered by its nuclear receptors, ERα and ERβ. These transcription factors are differentially expressed within follicles, with ERβ being the predominant ER in GC. Several ERβ splice isoforms have been identified and display specific structural features, which greatly complicates the nature of ERβ-mediated E2 signaling. This review aims at providing a concise overview of the main actions of E2 during follicular growth, maturation, and selection in human. It also describes the current understanding of the various roles of ERβ splice isoforms, especially their influence on cell fate. We finally discuss how E2 signaling deregulation could participate in two ovarian pathogeneses characterized by either a follicular arrest, as in polycystic ovary syndrome, or an excess of GC survival and proliferation, leading to granulosa cell tumors. This review emphasizes the need for further research to better understand the molecular basis of E2 signaling throughout folliculogenesis and to improve the efficiency of ovarian-related disease therapies.
Collapse
|
7
|
miRNAs and Biomarkers in Testicular Germ Cell Tumors: An Update. Int J Mol Sci 2021; 22:ijms22031380. [PMID: 33573132 PMCID: PMC7866514 DOI: 10.3390/ijms22031380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the leading form of solid cancer and death affecting males between the ages of 20 and 40. Today, their surgical resection and chemotherapy are the treatments of first choice, even if sometimes this is not enough to save the lives of patients with TGCT. As seen for several tumors, the deregulation of microRNAs (miRNAs) is also a key feature in TGCTs. miRNAs are small molecules of RNA with biological activity that are released into biological fluids by testicular cancer cells. Their presence, therefore, can be detected and monitored by considering miRNAs as diagnostic and prognostic markers for TGCTs. The purpose of this review is to collect all the studies executed on miRNAs that have a potential role as biomarkers for testicular tumors.
Collapse
|
8
|
Esposito M, Akman HB, Giron P, Ceregido MA, Schepers R, Ramos Paez LC, La Monaca E, De Greve J, Coux O, De Trez C, Lindon C, Gutierrez GJ. USP13 controls the stability of Aurora B impacting progression through the cell cycle. Oncogene 2020; 39:6009-6023. [PMID: 32772043 DOI: 10.1038/s41388-020-01396-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Aurora B kinase plays essential roles in mitosis. Its protein levels increase before the onset of mitosis and sharply decrease during mitosis exit. The latter decrease is due to a balance between the actions of the E3 ubiquitin ligase anaphase-promoting complex or cyclosome (activated by the Cdh1 adapter), and the deubiquitinating enzyme USP35. Aurora B also executes important functions in interphase. Abnormal modulation of Aurora B in interphase leads to cell cycle defects often linked to aberrant chromosomal condensation and segregation. Very little is however known about how Aurora B levels are regulated in interphase. Here we found that USP13-associates with and stabilizes Aurora B in cells, especially before their entry into mitosis. In order for USP13 to exert its stabilizing effect on Aurora B, their association is promoted by the Aurora B-mediated phosphorylation of USP13 at Serine 114. We also present evidence that USP13 instigates Aurora B deubiquitination and/or protect it from degradation in a non-catalytic manner. In addition, we report that genetic or chemical modulation of the cellular levels/activity of USP13 affects unperturbed cell-cycle progression. Overall our study unveils the molecular and cellular connections of the USP13-Aurora B axis, which potentially participates in the rewiring of the cell cycle happening in cancer cells.
Collapse
Affiliation(s)
- Mara Esposito
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Philippe Giron
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Laboratory of Molecular and Medical Oncology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - M Angeles Ceregido
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,GlaxoSmithKline, Avenue Pascal, 2-4-6, 1300, Wavre, Belgium
| | - Rogier Schepers
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-KU Leuven Center for Cancer Biology, Campus Gasthuisberg, Herestraat, 49-B912, Leuven, Belgium
| | - Luis C Ramos Paez
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Ablynx NV, Technologiepark 21, Zwijnaarde, 9052, Ghent, Belgium
| | - Esther La Monaca
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jacques De Greve
- Laboratory of Molecular and Medical Oncology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Olivier Coux
- CNRS-CRBM, 1919 Route de Mende, 34293, Montpellier, France
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Gustavo J Gutierrez
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,Galapagos NV, Generaal De Wittelaan L11 A3, 2800, Mechelen, Belgium.
| |
Collapse
|
9
|
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-34 years of age and the most frequent cause of death from solid tumors in this age group. In addition, the incidence of these tumors has significantly increased over the last few decades. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors (NSGCTs). NSGCTs can be further divided into embryonal carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells (PGCs). Many discovered biomarkers including HMGA1, GPR30, Aurora-B, estrogen receptor β, and others have given further advantage to discriminate between histological subgroups and could represent useful molecular therapeutic targets.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to:Dr. Paolo Chieffi, Dipartimento di Psicologia, Università della Campania, Viale Ellittico, 3181100 Caserta, Italy. E-mail:
| |
Collapse
|
10
|
Chieffi P, De Martino M, Esposito F. New Anti-Cancer Strategies in Testicular Germ Cell Tumors. Recent Pat Anticancer Drug Discov 2019; 14:53-59. [DOI: 10.2174/1574892814666190111120023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022]
Abstract
Background: The most common solid malignancy of young men aged 20 to 34 years is testicular germ cell tumor. In addition, the incidence of these tumors has significantly increased throughout the last years. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors, which take in yolk sac tumor, embryonal cell carcinoma, choriocarcinoma, and teratoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells. </P><P> Objectives: The study is focused on different molecular mechanisms strongly involved in testicular germ cell line tumors underlying new strategies to treat this human neoplasia.Methods:Bibliographic data from peer-reviewed research, patent and clinical trial literature, and around eighty papers and patents have been included in this review.Results:Our study reveals that several biomarkers are usefully utilized to discriminate among different histotypes. Moreover, we found new patents regarding testicular germ cell tumor treatments such as the expression of claudin 6, monoclonal antibody (Brentuximab Vedotin), immune checkpoint blockade (ICB) with the FDA-approved drugs pembrolizumab and nivolumab or the oncolytic virus Pelareorep, the combination of selective inhibitors of Aurora kinase.Conclusion:Finally, the pathogenesis of testicular germ cell tumor needs to be deeply understood so that it will improve data on stem cells, tumorigenesis and disease tumor management by more selective treatment.
Collapse
Affiliation(s)
- Paolo Chieffi
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Marco De Martino
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Francesco Esposito
- Institute of Endocrinology and Experimental Oncology of the CNR c / o Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery of Naples, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
11
|
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871:179-191. [PMID: 30611728 DOI: 10.1016/j.bbcan.2018.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
12
|
Ciucci A, Ferrandina G, Mascilini F, Filippetti F, Scambia G, Zannoni GF, Gallo D. Estrogen receptor β: Potential target for therapy in adult granulosa cell tumors? Gynecol Oncol 2018; 150:158-165. [DOI: 10.1016/j.ygyno.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
13
|
Abstract
A critical step for maintenance of genetic stability is chromosome segregation, which requires a high coordination of cellular processes. Loss of mitotic regulation is a possible cause of aneuploidy in human epithelial malignancy and it is thought to create an abnormal nuclear morphology in cancer cells. Serine/threonine protein kinase Aurora B gene plays a regulatory role from G2 to cytokinesis, encompassing key cell cycle events such as centrosome duplication, chromosome bi-orientation, and segregation. The overexpression of Aurora B has been observed in several tumour types, and has been linked with a poor prognosis for cancer patients. Therapeutic inhibition of Aurora kinase showed great promise as a probable anticancer regime because of its important role during cell division.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
- Address correspondence to:Dr. Paolo Chieffi, Dipartimento di Psicologia, Università della Campania, Viale Ellittico, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
14
|
Chieffi P. An Overview on Predictive Biomarkers of Testicular Germ Cell Tumors. J Cell Physiol 2016; 232:276-280. [DOI: 10.1002/jcp.25482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia; Seconda Università di Napoli; Caserta Italy
| |
Collapse
|
15
|
Dogan A, Solass W, Tempfer CB. Cytoreductive surgery followed by hyperthermic intraperitoneal chemotherapy for recurrent adult granulosa cell tumor: A case report. Gynecol Oncol Rep 2016; 16:21-3. [PMID: 27331130 PMCID: PMC4899517 DOI: 10.1016/j.gore.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 11/28/2022] Open
Abstract
Background Adult granulosa cell tumor of the ovary (AGCT) is a rare functional sex-cord-stromal ovarian neoplasm characterized by low malignant potential and late relapse. Evidence-based management options for women with recurrent AGCT are limited. Case report We present the case of a 60-year-old woman with the fifth recurrence of AGCT initially diagnosed 19 years ago. After initial surgery in 1996, the patient underwent four additional surgical interventions for recurrent disease in 2005 (abdominal wall), 2009 (abdominal wall), 2010 (paravesical), and 2011 (paravesical). In 2011, she underwent pelvic irradiation with 50.5 Gray. In 2015, another recurrence was diagnosed based on an increase of serum inhibin and a tumor seen on CT scan in the right upper abdomen. The patient underwent cytoreductive surgery (CRS) with complete cytoreduction followed by hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin 50 mg/m2 and doxorubicin 15 mg/m2. No intra- or post-operative complications occurred. Final histology revealed recurrent AGCT with 6 cm in the largest diameter. Subsequently, antihormonal treatment with anastrozole 1.5 mg per day was prescribed. With a follow-up of six months, the patient is well and alive. Conclusion CRS and HIPEC are a reasonable treatment option for selected women with recurrent AGCT limited to the abdomen. AGCT accounts for < 5% of ovarian neoplasms. AGCT has a good prognosis with overall survival rates of 87% and 76% after 5 and 10 years. A third of patients with AGCT experience recurrence with a median time interval of 12 years. Surgery, chemotherapy, and hormonal therapy are available for recurrent AGCT. CRS and HIPEC are feasible and potentially effective in recurrent AGCT.
Collapse
Affiliation(s)
- Askin Dogan
- Department of Obstetrics and Gynecology, Ruhr University Bochum, Bochum, Germany
| | - Wiebke Solass
- Institute of Pathology, Medical School Hannover, Hannover, Germany
| | - Clemens B Tempfer
- Department of Obstetrics and Gynecology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Tempfer CB, Solass W, Dogan A, Hefler LA, Reymond MA. Hyperthermic intraperitoneal chemotherapy for women with granulosa cell tumors of the ovary: a systematic review of the literature. Pleura Peritoneum 2016; 1:15-22. [PMID: 30911605 DOI: 10.1515/pp-2016-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
Abstract
Background: Adult and juvenile granulosa cell tumors of the ovary are rare functional sex-cord-stromal ovarian neoplasms characterized by low malignant potential and late relapse. Evidence-based management options for primary and recurrent juvenile (JGCT) and adult (AGCT) granulosa cell tumors are limited and treatment options have not been standardized. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) may be an option to treat these women effectively. Methods: Systematic literature review using PubMed and the Cochrane Central Register of Controlled Trials. Results: No reports of HIPEC among women with a first diagnosis of AGCT were identified. We identified 5 reports on the safety and therapeutic efficacy of CRS and HIPEC in 19 patients with recurrent AGCT and one patient with JGCT. The pooled rate of complete cytoreduction was 95 % (18/19) with 16 % (3/19) severe morbidity and no procedure-related mortality. The median time of follow-up was 30 (range, 3 to 72) months, during which 6/19 (31 %) patients experienced a recurrence and two patients (10 %) died of the disease. Conclusion: CRS and HIPEC are a safe and potentially effective treatment option for selected women with recurrent AGCT limited to the abdomen.
Collapse
Affiliation(s)
- Clemens B Tempfer
- Department of Obstetrics and Gynecology, Ruhr University Bochum, Marienhospital Herne, Hoelkeskampring 40, 44625 Herne, Germany
| | - Wiebke Solass
- Department of Pathology, University of Hannover, Hannover, Germany
| | - Askin Dogan
- Department of Obstetrics and Gynecology, Ruhr University Bochum, Marienhospital Herne, Herne, Germany
| | - Lukas A Hefler
- Department of Obstetrics and Gynecology, Krankenhaus der Barmherzigen Schwestern, Linz, Austria
| | | |
Collapse
|
17
|
Boscia F, Passaro C, Gigantino V, Perdonà S, Franco R, Portella G, Chieffi S, Chieffi P. High levels of GPR30 protein in human testicular carcinoma in situ and seminomas correlate with low levels of estrogen receptor-beta and indicate a switch in estrogen responsiveness. J Cell Physiol 2015; 230:1290-7. [PMID: 25413376 DOI: 10.1002/jcp.24864] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/04/2014] [Indexed: 02/03/2023]
Abstract
The G protein-coupled estrogen receptor (GPR30) is suggested to be involved in non-nuclear estrogen signalling and is expressed in a variety of hormone dependent cancer entities. It is well established that oestrogens are involved in pathological germ cell proliferation including testicular germ cell tumours. This study was performed to further elucidate the role of this receptor and the possible correlation with the estrogen receptor β in human testicular carcinoma in situ (CIS), seminomas and in GC1 and TCam-2 germ cell lines; in addition, a Tissue Micro-Array was built using the most representative areas from 25 cases of human testicular seminomas and 20 cases of CIS. The expression of ERβ and GPR30 were observed by using Western blot analysis in combination with immunocytochemistry and immunofluorescence analyses. Here, we show that down regulation of ERβ associates with GPR30 over-expression both in human testicular CIS and seminomas. In addition, we show that 17β-oestradiol induces the ERK1/2 activation and increases c-Fos expression through GPR30 associated with ERβ down-regulation in TCam-2 cell line. The present results suggest that exposure to oestrogens or oestrogen-mimics, in some as of yet undefined manner, diminishes the ERβ-mediated growth restraint in CIS and in human testicular seminoma, probably due to ERβ down-regulation associated to GPR30 increased expression indicating that GPR30 could be a potential therapeutic target to design specific inhibitors.
Collapse
Affiliation(s)
- Francesca Boscia
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università di Napoli "Federico II,", Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chieffi P, Chieffi S. Molecular biomarkers as potential targets for therapeutic strategies in human testicular germ cell tumors: an overview. J Cell Physiol 2013; 228:1641-6. [PMID: 23359388 DOI: 10.1002/jcp.24328] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022]
Abstract
Testicular germ cell tumors (TGCTs), the most common malignancy in males between 15 and 34 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs can be subdivided into seminoma and non-seminoma germ cell tumors (NSGCTs), including embryonal cell carcinoma, choriocarcinoma, yolk sac tumor, and teratoma. Seminomas and NSGCTs do not only present distinctive clinical features, but they also show significant differences as far as therapy and prognosis are concerned. Seminomas are highly sensitive to both radiation and chemotherapy, with a good prognosis, non-seminomas are sensitive to platinum-based combination chemotherapy and are less susceptible to radiation, with the exception of teratomas. The different therapeutic outcome might be explained by inherent properties of the cells from which testicular neoplasia originate. The unique treatment sensitivity of TGCTs is unexplained so far, but it is likely to be related to intrinsic molecular characteristics of the PGCs/gonocytes, from which these tumors originate. Many discovered bio-markers including OCT3/4, SOX2, SOX17, HMGA1, HMGA2, PATZ1, GPR30, Aurora B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups. In addition, therapeutic approaches for the treatment of TGCTs have been proposed: humanized antibodies against receptors/surface molecules on cancer cells, inhibitors of serine-threonine, and tyrosine kinases, and others. The mini-review will be an overview on the molecular alterations identified in TGCTs and on novel targeted antineoplastic strategies that might help to treat chemotherapy resistant TGCTs.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, II Università di Napoli, Caserta, Italy.
| | | |
Collapse
|
19
|
Chieffi P, Chieffi S, Franco R, Sinisi AA. Recent advances in the biology of germ cell tumors: implications for the diagnosis and treatment. J Endocrinol Invest 2012; 35:1015-20. [PMID: 23143673 DOI: 10.3275/8716] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Testicular germ cell tumors (TGCT), are the most frequent solid malignant tumors in men 20-40 yr of age, and the most frequent cause of death from solid tumors in this age group. TGCT can be subdivided into seminoma and nonseminoma germ cell tumors (NSGCT), including embryonal cell carcinoma, choriocarcinoma, yolk sac tumor, and teratoma. Seminomas and NSGCT do not only present distinctive clinical features, but they also show significant differences as far as therapy and prognosis are concerned. Many novel markers have given further advantages to discriminate between histological subgroups. In addition, therapeutic approaches for the treatment of TGCT have been proposed: humanized antibodies against receptors/surface molecules on cancer cells, inhibitors of serine-threonine, and tyrosine kinases, and others. The review will focus on the recent advances in the research of molecular alterations identified in TGCT and on novel targeted anti-neoplastic strategies that might help to treat chemotherapy-resistant TGCT.
Collapse
Affiliation(s)
- P Chieffi
- Department of Psychology, Second University of Naples, Caserta, Italy.
| | | | | | | |
Collapse
|
20
|
Immunohistochemical expression and prognostic significance of oestrogen receptor-alpha, oestrogen receptor-beta, and progesterone receptor in stage 1 adult-type granulosa cell tumour of the ovary. Pathology 2012; 44:611-6. [DOI: 10.1097/pat.0b013e328359d636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Stewart CJR, Doherty D, Guppy R, Louwen K, Leung YC. β-Catenin and E-cadherin expression in stage I adult-type granulosa cell tumour of the ovary: correlation with tumour morphology and clinical outcome. Histopathology 2012; 62:257-66. [DOI: 10.1111/j.1365-2559.2012.04334.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Esposito F, Boscia F, Gigantino V, Tornincasa M, Fusco A, Franco R, Chieffi P. The high-mobility group A1-estrogen receptor β nuclear interaction is impaired in human testicular seminomas. J Cell Physiol 2012; 227:3749-55. [DOI: 10.1002/jcp.24087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Tanaka T, Kato T, Ohmichi M. Granulosa cell tumor of the ovary after long-term use of tamoxifen and toremifene. J Obstet Gynaecol Res 2012; 38:1379-84. [PMID: 22612286 DOI: 10.1111/j.1447-0756.2012.01878.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The relation between the use of tamoxifen and gynecologic tumors has been documented. In this case, a 58-year-old postmenopausal woman had been treated with tamoxifen for 5 years followed by toremifene for 1.5 years due to the presence of stage II estrogen receptor-positive breast cancer. The patient was found to have a stage Ic granulosa cell tumor of the ovary despite undergoing annual gynecologic examinations. This report presents a case of granulosa cell tumor of the ovary after the long-term use of tamoxifen and toremifene.
Collapse
Affiliation(s)
- Tomohito Tanaka
- Department of Obstetrics and Gynecology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Osaka, Japan.
| | | | | |
Collapse
|
24
|
Kristiansen W, Andreassen K, Karlsson R, Aschim E, Bremnes R, Dahl O, Fosså S, Klepp O, Langberg C, Solberg A, Tretli S, Adami HO, Wiklund F, Grotmol T, Haugen T. Gene variations in sex hormone pathways and the risk of testicular germ cell tumour: a case–parent triad study in a Norwegian–Swedish population. Hum Reprod 2012; 27:1525-35. [DOI: 10.1093/humrep/des075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
25
|
Esposito F, Boscia F, Franco R, Tornincasa M, Fusco A, Kitazawa S, Looijenga LH, Chieffi P. Down-regulation of oestrogen receptor-β associates with transcriptional co-regulator PATZ1 delocalization in human testicular seminomas. J Pathol 2011; 224:110-20. [PMID: 21381029 DOI: 10.1002/path.2846] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/26/2010] [Accepted: 12/18/2010] [Indexed: 11/07/2022]
Abstract
Oestrogen exposure has been linked to a risk for the development of testicular germ cell cancers. The effects of oestrogen are now known to be mediated by oestrogen receptor-α (ERα) and ERβ subtypes, but only ERβ has been found in human germ cells of normal testis. However, its expression was markedly diminished in seminomas, embryonal cell carcinomas and mixed germ cell tumours, but remains high in teratomas. PATZ1 is a recently discovered zinc finger protein that, due to the presence of the POZ domain, acts as a transcriptional repressor affecting the basal activity of different promoters. We have previously described that PATZ1 plays a crucial role in normal male gametogenesis and that its up-regulation and mislocalization could be associated with the development of testicular germ cell tumours. Here we show that ERβ interacts with PATZ1 in normal germ cells, while down-regulation of ERβ associates with transcriptional co-regulator PATZ1 delocalization in human testicular seminomas. In addition, we show that the translocation of PATZ1 from the cytoplasm into the nucleus is regulated by cAMP, which also induces increased expression and nuclear localization of ERβ, while this effect is counteracted by using the anti-oestrogen ICI 182-780.
Collapse
Affiliation(s)
- Francesco Esposito
- Dipartimento di Medicina Sperimentale, II Università di Napoli, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ellmann S, Sticht H, Thiel F, Beckmann MW, Strick R, Strissel PL. Estrogen and progesterone receptors: from molecular structures to clinical targets. Cell Mol Life Sci 2009; 66:2405-26. [PMID: 19333551 PMCID: PMC11115849 DOI: 10.1007/s00018-009-0017-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/19/2009] [Accepted: 03/06/2009] [Indexed: 01/24/2023]
Abstract
Research involving estrogen and progesterone receptors (ER and PR) have greatly contributed to our understanding of cell signaling and transcriptional regulation. In addition to the classical ER and PR nuclear actions, new signaling pathways have recently been identified due to ER and PR association with cell membranes and signal transduction proteins. Bio-informatics has unveiled how ER and PR recognize their ligands, selective modulators and co-factors, which has helped to implement them as key targets in the treatment of benign and malignant tumors. Knowledge regarding ER and PR is vast and complex; therefore, this review will focus on their isoforms, signaling pathways, co-activators and co-repressors, which lead to target gene regulation. Moreover it will highlight ER and PR involvement in benign and malignant diseases as well as pharmacological substances influencing cell signaling and provide established and new structural insights into the mechanism of activation and inhibition of these receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Computational Biology
- Estradiol/chemistry
- Estradiol/metabolism
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Progesterone/chemistry
- Progesterone/metabolism
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/classification
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/classification
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/antagonists & inhibitors
- Selective Estrogen Receptor Modulators/chemistry
- Selective Estrogen Receptor Modulators/metabolism
- Sequence Alignment
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Stephan Ellmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Heinrich Sticht
- Department of Bioinformatics, Institute of Biochemistry, University of Erlangen-Nuremberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Falk Thiel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Reiner Strick
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Pamela L. Strissel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| |
Collapse
|
27
|
Imai M, Muraki M, Takamatsu K, Saito H, Seiki M, Takahashi Y. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line. BMC Cancer 2008; 8:319. [PMID: 18980698 PMCID: PMC2584659 DOI: 10.1186/1471-2407-8-319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/04/2008] [Indexed: 12/20/2022] Open
Abstract
Background Granulosa cell tumours (GCTs) are frequently seen in menopausal women and are relatively indolent. Although the physiological properties of normal granulosa cells have been studied extensively, little is known about the molecular mechanism of GCT progression. Here, we characterise the unique behavioural properties of a granulosa tumour cell line, KGN cells, for the molecular analysis of GCT progression. Methods Population doubling was carried out to examine the proliferation capacity of KGN cells. Moreover, the invasive capacity of these cells was determined using the in vitro invasion assay. The expression level of tumour markers in KGN cells at different passages was then determined by Western blot analysis. Finally, the growth and metastasis of KGN cells injected subcutaneously (s.c.) into nude mice was observed 3 months after injection. Results During in vitro culture, the advanced passage KGN cells grew 2-fold faster than the early passage cells, as determined by the population doubling assay. Moreover, we found that the advanced passage cells were 2-fold more invasive than the early passage cells. The expression pattern of tumour markers, such as p53, osteopontin, BAX and BAG-1, supported the notion that with passage, KGN cells became more aggressive. Strikingly, KGN cells at both early and advanced passages metastasized to the bowel when injected s.c. into nude mice. In addition, more tumour nodules were formed when the advanced passage cells were implanted. Conclusion KGN cells cultured in vitro acquire an aggressive phenotype, which was confirmed by the analysis of cellular activities and the expression of biomarkers. Interestingly, KGN cells injected s.c. are metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanism of metastasis in vivo.
Collapse
Affiliation(s)
- Misa Imai
- Division of Reproductive Medicine, Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, Tokyo 157-8535, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Pathak S, Kedia-Mokashi N, Saxena M, D'Souza R, Maitra A, Parte P, Gill-Sharma M, Balasinor N. Effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 locus-specific DNA methylation in rat spermatozoa and its association with embryo loss. Fertil Steril 2008; 91:2253-63. [PMID: 18778817 DOI: 10.1016/j.fertnstert.2008.07.1709] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/13/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To determine the effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 imprinting control region (Igf2-H19 ICR)-specific DNA methylation in rat spermatozoa and analyze its association with postimplantation loss. DESIGN Experimental prospective study. SETTING Animal research and academic research facility. SUBJECT(S) Male and female 75-day-old Holtzman rats. INTERVENTION(S) Global and Igf2-H19 ICR-specific DNA methylation was analyzed in an epididymal sperm sample in control and tamoxifen-treated rats at a dose of 0.4 mg tamoxifen/kg/day. DNA methylation status was correlated to postimplantation loss in females mated with tamoxifen-treated males. MAIN OUTCOME MEASURE(S) Global sperm DNA methylation level, methylation status of Igf2-H19 ICR in sperm, postimplantation loss. RESULT(S) Tamoxifen treatment significantly reduced methylation at Igf2-H19 ICR in epididymal sperm. However, the global methylation level was not altered. A mating experiment confirmed a significant increase in postimplantation loss upon tamoxifen treatment and showed significant correlation with methylation at Igf2-H19 ICR. CONCLUSION(S) Reduced DNA methylation at Igf2-H19 ICR in rat spermatozoa upon tamoxifen treatment indicated a role of estrogen-associated signaling in the acquisition of paternal-specific imprints during spermatogenesis. In addition, association between DNA methylation and postimplantation loss suggests that errors in paternal imprints at Igf2-H19 ICR could affect embryo development.
Collapse
Affiliation(s)
- Shilpa Pathak
- National Institute for Research in Reproductive Health, Indian Council for Medical Research, Mumbai, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Expression of CD56 isoforms in primary and relapsed adult granulosa cell tumors of the ovary. Diagn Pathol 2008; 3:29. [PMID: 18613980 PMCID: PMC2474830 DOI: 10.1186/1746-1596-3-29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adult granulosa cell tumors of the ovary (GCTs) are sex cord stromal tumors of unpredictable behaviour. Up to now, the prediction of the relapsing/malignant potential remains difficult. CD56 (NCAM) in GCTs was previously described in only two studies. However, the expression of its isoforms was not examined. METHODS 30 GCTs (16 primaries, 14 relapses) were investigated immunohistochemically with antibodies against Pan-CD56 (CD56Pan) and the isoform with 140/180 kDa length (CD56140/180 kDa). The reaction was assessed with respect to percentage of positive cells and intensity of staining. RESULTS In all GCTs, CD56Pan was expressed, but differences were found between primaries and relapses. The percentage of CD56Pan positive tumor cells was lower in relapses, whereas CD56140/180 kDa showed a higher staining intensity in the latter. CONCLUSION Expression of CD56 is an additional sensitive and helpful immunohistochemical tool for histopathologists diagnosing a GCT. It does not seem possible to provide a validly individual risk assessment. However, the different expression of CD56 isoforms might indicate important changes in the course to a more malignant behaviour.
Collapse
|
30
|
Lee YK, Park NH, Kim JW, Song YS, Kang SB, Lee HP. Characteristics of recurrence in adult-type granulosa cell tumor. Int J Gynecol Cancer 2008; 18:642-7. [PMID: 17868338 DOI: 10.1111/j.1525-1438.2007.01065.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Granulosa cell tumor (GCT) of the ovary is a very rare neoplasm, which is characterized by an indolent clinical course. Thus, the clinical characteristics, optimal treatment, and follow-up protocols are not well established. The goal of this study is to evaluate clinical findings, prognostic factors, and recurrent features of GCT in Korean patients. Between 1987 and 2005, 42 cases of GCT were diagnosed in our institution. There were 35 cases showing adult-type GCT, which were available for evaluation. All charts were reviewed, and the clinical data along with treatment results were retrospectively studied. Statistical analyses were performed for risk factors of recurrence and disease-free survival. GCT accounted for 3% of all ovarian malignancies in our institution during the study period. The median age was 45 years (range, 24-68 years). Abdominal and hormone-related symptoms were the main causes of first presentation. There were eight cases of recurrence including two cases of disease-related deaths during the median follow-up period of 177 months (range, 8-212 months). Factors affecting the recurrence involved residual tumor and stage, but residual tumor was the only significant factor of recurrence in multivariate analysis. The median time to relapse was 75 months (range, 55-137 months), and the liver was the most common extra-pelvic metastatic site followed by the intestine. Continuous long-term follow-up with pelvic and whole-abdominal surveillance is absolutely required. Active management including complete tumorectomy is the most important treatment modality in both primary surgeries and recurrent cases.
Collapse
Affiliation(s)
- Y-K Lee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Strissel PL, Swiatek J, Oppelt P, Renner SP, Beckmann MW, Strick R. Transcriptional analysis of steroid hormone receptors in smooth muscle uterine leiomyoma tumors of postmenopausal patients. J Steroid Biochem Mol Biol 2007; 107:42-7. [PMID: 17646097 DOI: 10.1016/j.jsbmb.2007.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/20/2007] [Indexed: 11/28/2022]
Abstract
Smooth muscle tumors are histologically separated into benign leiomyomas and malignant leiomyosarcomas. Uterine leiomyomas represent benign clonal tumors often arising within the smooth muscle tissue of the human uterus. Uterine leiomyomas develop after the start of the menstrual cycle, become symptomatic during middle age, and in most postmenopausal patients tumor regression occurs. Rarely, leiomyomas progress to leiomyosarcomas, where many sarcomas have markedly reduced or no steroid hormone receptors, thus, evolve to a hormone non-responsive state. Premenopausal leiomyomas are known to express higher levels of estrogen receptor-alpha (ERalpha), estrogen receptor-beta (ERbeta) and progesterone receptor (PGR) than control myometrium, whereas postmenopausal leiomyomas have not been so well characterized molecularly. In this present investigation, ERbeta, ERalpha and PGR gene expression were assessed in leiomyomas and in matched adjacent myometrium from a cohort of 14 postmenopausal patients using semi-quantitative Realtime PCR and RT-PCR. The mean average results showed that ERbeta was 2.5-fold statistically significantly over expressed in postmenopausal leiomyomas compared to patient matched myometrium (p=0.038), whereas ERalpha and PGR were not significantly differently expressed. These results showed that up-regulation of ERbeta occurred at the transcriptional level in postmenopausal leiomyomas. Quantitation of steroid hormone receptors from benign uterine tumors may be important for a more tailored therapy. In addition, a role for steroid hormones, specifically ERbeta, is discussed in terms of benign tumor regression or tumor maintenance in postmenopausal leiomyomas.
Collapse
Affiliation(s)
- Pamela L Strissel
- University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine at the University of Erlangen-Nuremberg, University Street 21-23, D-91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Farinola MA, Gown AM, Judson K, Ronnett BM, Barry TS, Movahedi-Lankarani S, Vang R. Estrogen Receptor α and Progesterone Receptor Expression in Ovarian Adult Granulosa Cell Tumors and Sertoli-Leydig Cell Tumors. Int J Gynecol Pathol 2007; 26:375-82. [PMID: 17885486 DOI: 10.1097/pgp.0b013e31805c0d99] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The biologic role that estrogen receptor (ER) and progesterone receptor (PR) play in ovarian sex cord-stromal tumors is poorly understood. Furthermore, immunohistochemical data on these hormone receptors in this group of neoplasms are limited and conflicting, with many reports suggesting that expression of ERalpha and/or PR is either infrequent or present at low levels in granulosa and Sertoli cell tumors. Immunohistochemical staining for ERalpha and PR was performed in 69 ovarian sex cord-stromal tumors: 41 adult granulosa cell tumors and 28 Sertoli-Leydig cell tumors. Extent of expression was scored based on the percentage of positive cells: 0, 5% or less; 1+, 6% to 25%; 2+, 26% to 50%; 3+, 51% to 75%; and 4+, 76% to 100%. Estrogen receptor alpha and PR were frequently expressed in adult granulosa cell tumors (66% and 98%, respectively) and Sertoli-Leydig cell tumors (79% and 86%, respectively). Diffuse (3+ or 4+) expression of PR was more common in adult granulosa cell tumors (68% vs. 36%; P = 0.013), whereas diffuse (3+ or 4+) expression of ERalpha was more frequent in Sertoli-Leydig cell tumors (50% vs. 20%; P = 0.010). In cases positive for both markers, adult granulosa cell tumors exhibited a focal (1+ or 2+) ERalpha/diffuse (3+ or 4+) PR coordinate profile more commonly than Sertoli-Leydig cell tumors (52% vs. 18%; P = 0.02), whereas Sertoli-Leydig cell tumors displayed a diffuse (3+ or 4+) ERalpha/focal (1+ or 2+) PR profile more frequently than adult granulosa cell tumors (36% vs. 0%; P = 0.0007). We conclude that expression of hormone receptors (based only on frequency of immunostaining) does not allow for distinction from other tumors in the differential diagnosis that are known to be frequently positive for ERalpha and PR such as endometrioid neoplasms. Most adult granulosa cell tumors and Sertoli-Leydig cell tumors share overlapping patterns of expression of ERalpha and PR with each other, but a subset of cases in each tumor category exhibits unique ERalpha/PR immunoprofiles (eg, focal ERalpha/diffuse PR in adult granulosa cell tumors and diffuse ERalpha/focal PR in Sertoli-Leydig cell tumors). These patterns of expression of ERalpha and PR may aid our understanding of the biologic differences between granulosa and Sertoli cell tumors.
Collapse
Affiliation(s)
- Maryam A Farinola
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cell differentiation, proliferation, apoptosis, and cell motility are induced and regulated by a host of growth factors, vitamins, and hormones. The mode of function of these modifiers of biological response, the signaling pathways that they activate, and the interacting pathways that can influence the biological outcome have been the focus of attention. Especially recognized and discussed in this review is the deregulation of their function, leading to abnormalities in cell proliferation, alteration of intercellular adhesive cohesion, remodeling of the extracellular matrix, and invasive behavior and metastatic deposition that are so characteristic of tumor development and progression, which strongly underscores the concept of molecular progression of cancer constructed on the basis of the relationship between genetic changes and the biological events associated with cancer progression. The molecular changes associated with hormone- and vitamin-driven responses and the deregulation of the expression and function of their target genes seem to correlate with specific biological events linked with cancer invasion and progression, and these findings could lead to the establishment of new markers of progression and to the development of new strategies for patient management. The scope of this work has been restricted by design and is dictated by the field of interest of the author's laboratory, but it is hoped that this field would be regarded adequately to reflect the wide genre of scientific interest in this field of human disease.
Collapse
Affiliation(s)
- G V Sherbet
- School of Electrical, Electronic, and Computer Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne NE7 6RU, United Kingdom
| |
Collapse
|
34
|
Affiliation(s)
- H Fox
- University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Vang R, Herrmann ME, Tavassoli FA. Comparative Immunohistochemical Analysis of Granulosa and Sertoli Components in Ovarian Sex Cord-Stromal Tumors with Mixed Differentiation: Potential Implications for Derivation of Sertoli Differentiation in Ovarian Tumors. Int J Gynecol Pathol 2004; 23:151-61. [PMID: 15084844 DOI: 10.1097/00004347-200404000-00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Granulosa cell tumors of the ovary occasionally show admixed Sertoli components, just as tumors that are predominantly Sertoli or Sertoli-Leydig cell tumors can contain minor granulosa elements. Although the immunoprofiles of pure granulosa cell tumors and pure Sertoli cell tumors have been characterized, little is known regarding what immunophenotypic relationships exist between the granulosa and Sertoli components in ovarian sex cord-stromal tumors that contain both elements. Furthermore, it is not completely understood why sex cord-stromal tumors of the ovary with female-type (granulosa) differentiation can produce male-type (Sertoli) differentiation. To better understand why simultaneous differentiation into female-type and male-type components occurs, eight tumors with mixed differentiation were stained with a panel of antibodies to androgen receptor (AR), calretinin, CD10, CD99, estrogen receptor, inhibin, Ki-67, low molecular weight cytokeratin, pancytokeratin, progesterone receptor, p53, and vimentin. Immunohistochemical composite scores were determined separately for the matched pairs of granulosa and Sertoli components in each case. Differences between both components were statistically analyzed using the Wilcoxon signed rank test. AR and vimentin expression showed a difference at the 10% statistical significance level (p < 0.1), demonstrating higher levels of expression in the granulosa components. The differences between the granulosa and Sertoli components in expression of CD99, inhibin, or pancytokeratin were not statistically significant (p > 0.1, each). Statistical calculations could not be made for calretinin, CD10, estrogen receptor, Ki-67, low molecular weight cytokeratin, progesterone receptor, or p53, although the overall mean levels of expression of CD10 and low molecular weight cytokeratin were substantially higher in the Sertoli components. Not surprisingly, the granulosa and Sertoli components of ovarian sex cord-stromal tumors with mixed differentiation show overlapping immunophenotypic profiles consistent with derivation from a common lineage rather than reflecting a composite tumor. However, because components of a sex cord-stromal tumor simultaneously differentiate along granulosa or Sertoli lines, they seem to show preferential expression of certain antigens. CD10 and low molecular weight cytokeratin are more often associated with Sertoli cell differentiation, whereas AR and vimentin expression seem to reflect granulosa differentiation.
Collapse
Affiliation(s)
- Russell Vang
- Armed Forces Institute of Pathology, Department of Gynecologic & Breast Pathology, Washington DC, USA
| | | | | |
Collapse
|