1
|
Abdel-Latif M, Saidan S, Morsy BM. Coenzyme Q10 attenuates rat hepatocarcinogenesis via the reduction of CD59 expression and phospholipase D activity. Cell Biochem Funct 2020; 38:490-499. [PMID: 31989689 DOI: 10.1002/cbf.3487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/05/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022]
Abstract
The current study aimed to test the profile of serum lipids, phospholipase D (PLD) activity, and CD59 expression pattern in rat hepatocellular carcinoma (HCC) after therapeutic treatment with Coenzyme Q10 (CoQ10). Three rat groups were allocated as normal control, untreated HCC, and treated HCC (HCC + CoQ10). The levels of serum α-fetoprotein (AFP) and tumour necrosis factor (TNF)-α were assessed using enzyme-linked immunosorbent assay (ELISA), while proliferating cell nuclear antigen (PCNA) was detected using immunohistochemistry (IHC). Serum lipids, classical (CH50), and alternative (APH50) pathways of complement activation, the liver cell HMG-CoA reductase (HMGCR), and PLD activities were assayed colorimetrically. The protein expression of CD59, scavenger receptor class B type 1 (SRB1), B cell lymphoma-2 (Bcl2), and cleaved Caspase-3 (Casp-3) were detected using western blotting, while the level of serum CD59 (sCD59) was assessed using dot-blot. CoQ10 reduced the cell proliferation, histological alterations, and the levels of AFP and TNF-α but increased lipids, CH50, and sCD59 in serum. In the liver cell, CoQ10 decreased and increased PLD and HMGCR enzyme activities, respectively. In addition, reduction of liver CD59, Bcl2, and SRB1 vs increased cleaved Casp-3 expressions was observed. Statistical correlation indicated an inverse relationship between CH50 and each of CD59 expression and PLD activity after treatment with CoQ10. In conclusion, CoQ10 could protect against rat HCC through increased lipids and the reduction of CD59 expression and PLD activity. SIGNIFICANCE OF THE STUDY: To our knowledge, this study is the first to describe the attenuating effect of antitumour natural product like Coenzyme Q10 (CoQ10) via the reduction of CD59 expression and phospholipase D (PLD) activity. This illustrates the important role of CD59 and PLD in relation to lipids in cancer prevention.
Collapse
Affiliation(s)
- Mahmoud Abdel-Latif
- Immunity Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Suzan Saidan
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Basant M Morsy
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Mahajan SD, Aalinkeel R, Parikh NU, Jacob A, Cwiklinski K, Sandhu P, Le K, Loftus AW, Schwartz SA, Quigg RJ, Alexander JJ. Immunomodulatory Role of Complement Proteins in the Neuropathology Associated with Opiate Abuse and HIV-1 Co-Morbidity. Immunol Invest 2018; 46:816-832. [PMID: 29058550 DOI: 10.1080/08820139.2017.1371891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The complement system which is a critical mediator of innate immunity plays diverse roles in the neuropathogenesis of HIV-1 infection such as clearing HIV-1 and promoting productive HIV-1 replication. In the development of HIV-1 associated neurological disorders (HAND), there may be an imbalance between complement activation and regulation, which may contribute to the neuronal damage as a consequence of HIV-1 infection. It is well recognized that opiate abuse exacerbates HIV-1 neuropathology, however, little is known about the role of complement proteins in opiate induced neuromodulation, specifically in the presence of co-morbidity such as HIV-1 infection. Complement levels are significantly increased in the HIV-1-infected brain, thus HIV-induced complement synthesis may represent an important mechanism for the pathogenesis of AIDS in the brain, but remains underexplored. Anti-HIV-1 antibodies are able to initiate complement activation in HIV-1 infected CNS cells such as microglia and astrocytes during the course of disease progression; however, this complement activation fails to clear and eradicate HIV-1 from infected cells. In addition, the antiretroviral agents used for HIV therapy cause dysregulation of lipid metabolism, endothelial, and adipocyte cell function, and activation of pro-inflammatory cytokines. We speculate that both HIV-1 and opiates trigger a cytokine-mediated pro-inflammatory stimulus that modulates the complement cascade to exacerbate the virus-induced neurological damage. We examined the expression levels of C1q, SC5b-9, C5L2, C5aR, C3aR, and C9 key members of the complement cascade both in vivo in post mortem brain frontal cortex tissue from patients with HAND who used/did not use heroin, and in vitro using human microglial cultures treated with HIV tat and/or heroin. We observed significant expression of C1q and SC5b-9 by immunofluorescence staining in both the brain cortical and hippocampal region in HAND patients who abused heroin. Additionally, we observed increased gene expression of C5aR, C3aR, and C9 in the brain tissue of both HIV-1 infected patients with HAND who abused and did not abuse heroin, as compared to HIV negative controls. Our results show a significant increase in the expression of complement proteins C9, C5L2, C5aR, and C3aR in HIV transfected microglia and an additional increase in the levels of these complement proteins in heroin-treated HIV transfected microglia. This study highlights the a) potential roles of complement proteins in the pathogenesis of HIV-1-related neurodegenerative disorders; b) the combined effect of an opiate, like heroin, and HIV viral protein like HIV tat on complement proteins in normal human microglial cells and HIV transfected microglial cells. In the context of HAND, targeting selective steps in the complement cascade could help ameliorating the HIV burden in the CNS, thus investigations of complement-related therapeutic approaches for the treatment of HAND are warranted.
Collapse
Affiliation(s)
- Supriya D Mahajan
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Ravikumar Aalinkeel
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Neil U Parikh
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Alexander Jacob
- b Division of Nephrology , UB Clinical and Translational Research Center , Buffalo , NY , USA
| | - Katherine Cwiklinski
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Prateet Sandhu
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Kevin Le
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Alexander W Loftus
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Stanley A Schwartz
- a SUNY University at Buffalo , Department of Medicine, Division of Allergy, Immunology & Rheumatology , Buffalo , NY , USA
| | - Richard J Quigg
- b Division of Nephrology , UB Clinical and Translational Research Center , Buffalo , NY , USA
| | - Jessy J Alexander
- b Division of Nephrology , UB Clinical and Translational Research Center , Buffalo , NY , USA
| |
Collapse
|
3
|
Arvaniti M, Jensen MM, Soni N, Wang H, Klein AB, Thiriet N, Pinborg LH, Muldoon PP, Wienecke J, Imad Damaj M, Kohlmeier KA, Gondré-Lewis MC, Mikkelsen JD, Thomsen MS. Functional interaction between Lypd6 and nicotinic acetylcholine receptors. J Neurochem 2016; 138:806-20. [PMID: 27344019 PMCID: PMC5017906 DOI: 10.1111/jnc.13718] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain.
Collapse
Affiliation(s)
- Maria Arvaniti
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Majbrit M Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Neeraj Soni
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hong Wang
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Anders B Klein
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Thiriet
- Laboratory of Experimental and Clinical Neurosciences, University of Poitiers, Poitiers, France
| | - Lars H Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sport & Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kristi A Kohlmeier
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Morten S Thomsen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
4
|
Das T, Hoarau JJ, Bandjee MCJ, Maquart M, Gasque P. Multifaceted innate immune responses engaged by astrocytes, microglia and resident dendritic cells against Chikungunya neuroinfection. J Gen Virol 2014; 96:294-310. [PMID: 25351727 DOI: 10.1099/vir.0.071175-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chikungunya virus (CHIKV) has recently affected millions of people in the Indian Ocean, with rare cases of encephalopathy and encephalitis occurring in neonates. In the study described herein, the capacity of mouse brain cells to control infection through innate immune antiviral responses was assessed. In vitro, CHIKV principally infected a subpopulation of mouse GFAP+ primary astrocytes. Oligodendrocytes and neurons could also be infected. An innate immune response was engaged by CHIKV-infected astrocytes with elevated expression of mRNAs for IFN-α-β, inflammatory cytokines (e.g. IL-1β, IL-12, IL-10, IL-24) and proapoptotic factors (e.g. TNF-α, FasL, Lymphotoxin B). Programmed cell death through the intrinsic caspase-9 pathway was observed by immunofluorescence in infected astrocytes and neurons but not in oligodendrocytes. Interestingly, microglia did not replicate CHIKV but responded by elevated mitogen-activated protein kinase (MAPK) activity. Intracerebroventricular injection of CHIKV in neonate mice led to the infection of astrocytes. The astrogliosis response was accompanied by a dendritic CD206+ cell mobilization restricted to the site of infection. The results of this study support the paradigm that a multifaceted innate immune response can be mobilized by both professional immune and glial cells to control CHIKV neuroinfection events in neonates.
Collapse
Affiliation(s)
- Trina Das
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Jean Jacques Hoarau
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Marie Christine Jaffar Bandjee
- Virology laboratory, CHU Félix Guyon of la Réunion, St Denis, Reunion Island.,Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| | - Marianne Maquart
- CIRAD and CYROI, St Denis, Reunion Island.,CRVOI, St Denis, Reunion Island
| | - Philippe Gasque
- Immunopathology and Infection Research Grouping (IRG, GRI EA4517), University of la Reunion, CHU and CYROI, St Denis, Reunion Island
| |
Collapse
|
5
|
Zhang H, Verkman AS. Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59. J Autoimmun 2014; 53:67-77. [PMID: 24698947 DOI: 10.1016/j.jaut.2014.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
Spinal cord pathology with inflammatory, demyelinating lesions spanning three or more vertebral segments is a characteristic feature of neuromyelitis optica (NMO). NMO pathogenesis is thought to involve binding of immunoglobulin G anti-aquaporin-4 autoantibodies (NMO-IgG) to astrocytes, causing complement-dependent cytotoxicity (CDC) and secondary inflammation, demyelination and neuron loss. We investigated the involvement of CD59, a glycophosphoinositol (GPI)-anchored membrane protein on astrocytes that inhibits formation of the terminal C5b-9 membrane attack complex. CD59 inhibition by a neutralizing monoclonal antibody greatly increased NMO-IgG-dependent CDC in murine astrocyte cultures and ex vivo spinal cord slice cultures. Greatly increased NMO pathology was also found in spinal cord slice cultures from CD59 knockout mice, and in vivo following intracerebral injection of NMO-IgG and human complement. Intrathecal injection (at L5-L6) of small amounts of NMO-IgG and human complement in CD59-deficient mice produced robust, longitudinally extensive white matter lesions in lumbar spinal cord. Pathology was most severe at day 2 after injection, showing loss of AQP4 and GFAP, C5b-9 deposition, microglial activation, granulocyte infiltration, and demyelination. Hind limb motor function was remarkably impaired as well. There was partial remyelination and recovery of motor function by day 5. Our results implicate CD59 as an important modulator of the immune response in NMO, and provide a novel animal model of NMO that closely recapitulates human NMO pathology. Up-regulation of CD59 on astrocytes may have therapeutic benefit in NMO.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, CA, USA
| | - A S Verkman
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Zhang H, Bennett JL, Verkman AS. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 2011; 70:943-54. [PMID: 22069219 DOI: 10.1002/ana.22551] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/09/2011] [Accepted: 07/15/2011] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Neuromyelitis optica (NMO) is a neuroinflammatory disease of spinal cord and optic nerve associated with serum autoantibodies (NMO-immunoglobulin G [IgG]) against astrocyte water channel aquaporin-4 (AQP4). Recent studies suggest that AQP4 autoantibodies are pathogenic. The objectives of this study were to establish an ex vivo spinal cord slice model in which NMO-IgG exposure produces lesions with characteristic NMO pathology, and to test the involvement of specific inflammatory cell types and soluble factors. METHODS Vibratome-cut transverse spinal cord slices were cultured on transwell porous supports. After 7 days in culture, spinal cord slices were exposed to NMO-IgG and complement for 1 to 3 days. In some studies inflammatory cells or factors were added. Slices were examined for glial fibrillary acidic protein (GFAP), AQP4, and myelin immunoreactivity. RESULTS Spinal cord cellular structure, including astrocytes, microglia, neurons, and myelin, was preserved in culture. NMO-IgG bound strongly to astrocytes in the spinal cord slices. Slices exposed to NMO-IgG and complement showed marked loss of GFAP, AQP4, and myelin. Lesions were not seen in the absence of complement or in spinal cord slices from AQP4 null mice. In cultures treated with submaximal NMO-IgG, the severity of NMO lesions was increased with inclusion of neutrophils, natural killer cells, or macrophages, or the soluble factors tumor necrosis factor α (TNFα), interleukin-6 (IL-6), IL-1β, or interferon-γ. Lesions were also produced in ex vivo optic nerve and hippocampal slice cultures. INTERPRETATION These results provide evidence for AQP4, complement- and NMO-IgG-dependent NMO pathogenesis in spinal cord, and implicate the involvement of specific immune cells and cytokines. Our ex vivo model allows for direct manipulation of putative effectors of NMO disease pathogenesis in a disease-relevant tissue.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Physiology, University of California at San Francisco, San Francisco, CA 94143-0521, USA
| | | | | |
Collapse
|
7
|
|
8
|
|
9
|
Mocco J, Sughrue ME, Ducruet AF, Komotar RJ, Sosunov SA, Connolly ES. The complement system: a potential target for stroke therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 586:189-201. [PMID: 16893073 DOI: 10.1007/0-387-34134-x_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- J Mocco
- Department of Neurological Surgery, Columbia University, College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
10
|
Small CI, Lyles GA, Breen KC. Lipopolysaccharide stimulates the secretion of the amyloid precursor protein via a protein kinase C-mediated pathway. Neurobiol Dis 2005; 19:400-6. [PMID: 16023582 DOI: 10.1016/j.nbd.2005.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/11/2005] [Accepted: 01/20/2005] [Indexed: 11/26/2022] Open
Abstract
The processing of the amyloid precursor protein (APP) by the secretase family of protease enzymes can be influenced by a variety of diverse factors, including elements of the immune response. In this study, we have investigated the effect of the pro-inflammatory lipopolysaccharide (LPS) on APP processing in rat glial cell cultures derived from both cortex and cerebellum. LPS activation of the cells, as monitored by the induction of the pro-inflammatory nitric oxide synthase (iNOS) enzyme, elicited no change in the overall cellular expression levels of APP, although there was a marked concentration-related increase in the secretion of the soluble APPs following both short- (4 h) and long-term (18 h) drug treatment times. The stimulation of APPs secretion was blocked by the protein kinase C (PKC) inhibitor GF109203x, suggesting that LPS may act via a PKC-mediated pathway to increase APPs secretion.
Collapse
Affiliation(s)
- Claire I Small
- Alzheimer's Disease Research Centre, Division of Pathology and Neurosciences, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, UK
| | | | | |
Collapse
|
11
|
Hodgetts SI, Grounds MD. Complement and myoblast transfer therapy: donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5. Immunol Cell Biol 2001; 79:231-9. [PMID: 11380675 DOI: 10.1046/j.1440-1711.2001.01006.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myoblast transfer therapy (MTT) is a potential cell therapy for myopathies such as Duchenne Muscular Dystrophy and involves the injection of cultured muscle precursor cells ('myoblasts') isolated from normal donor skeletal muscles into dystrophic host muscle. The failure of donor myoblast survival following MTT is widely accepted as being due to the immune response of the host. The role of complement as one possible mechanism for the initial, very rapid death of myoblasts following MTT was investigated. Donor male myoblasts were injected into the tibialis anterior (TA) muscles of female host mice that were: (i) untreated; (ii) depleted of C3 complement (24 h prior to MTT) using cobra venom factor (CVF); and/or (iii) deficient in C5 complement. Quantification of surviving male donor myoblast DNA was performed using the Y-chromosome specific (Y1) probe on slot blots for samples taken at 0 h, 1 h, 24 h, 1 week and 3 weeks after MTT. Peripheral depletion of C3 was confirmed using double immunodiffusion, and local depletion of C3 in host TA muscles was confirmed by immunostaining of muscle samples. Cobra venom factor treatment significantly increased the initial survival of donor myoblasts, but there was a marked decline in myoblast numbers after 1 h and little long-term benefit by 3 weeks. Strain specific variation in the immediate survival of donor male myoblasts following MTT in untreated C57BL/10Sn, DBA-1 and DBA-2 (C5-deficient) female hosts was observed. Cobra venom factor depletion of C3 increased initial donor male myoblast survival (approximately twofold at 0 h) in C57BL/10Sn and DBA-1 host mice and approximately threefold in DBA-2 hosts at 0 h and 1 h after MTT. The rapid and extensive number (approximately 90%) of donor male myoblasts in untreated DBA-2 mice (that lack C5) indicates that activation of the membrane attack complex (MAC) plays no role in this massive initial cell death. The observation that myoblast survival was increased in all mice treated with CVF suggests that CVF may indirectly enhance donor myoblast survival by a mechanism possibly involving activated C3 fragments.
Collapse
Affiliation(s)
- S I Hodgetts
- Department of Anatomy and Human Biology, University of Western Australia, Crawley, Western Australia, Australia.
| | | |
Collapse
|
12
|
Abstract
The expression of the murine complement regulatory protein, Crry, in the CNS remains largely unexplored. In this study, we examined murine astrocytes and microglia purified from neonatal brain and sections of adult murine brain for the expression of Crry. Using RT-PCR, immunohistochemistry, in situ hybridization, flow cytometry, and Western blot analysis, we demonstrated that astrocytes and microglia express Crry protein and RNA. Crry expression is greater on microglia than astrocytes and, as determined by Western blot analysis, each cell type expresses a Crry protein of different molecular weight. Interestingly, neuronal expression of Crry was seen only at the RNA level. These data demonstrate Crry expression by astrocytes, microglia, and neurons in the murine CNS and suggest that Crry may play an important role in protecting the CNS against complement-mediated damage.
Collapse
Affiliation(s)
- N Davoust
- Department of Microbiology and the Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
13
|
Scolding NJ, Morgan BP, Compston DA. The expression of complement regulatory proteins by adult human oligodendrocytes. J Neuroimmunol 1998; 84:69-75. [PMID: 9600710 DOI: 10.1016/s0165-5728(97)00241-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multiple sclerosis, infiltrating T lymphocytes and perivascular microglia may initiate demyelinating lesions, but a role for antibody and complement in the ensuing inflammatory damage to myelin and oligodendrocytes is likely. In most tissues, ubiquitously expressed complement regulatory proteins prevent autologous destruction, protecting host cells from the powerful cytolytic activity of activated complement. We have studied the surface expression of a comprehensive range of complement regulatory proteins by live adult human oligodendrocytes in vitro. Only DAF of the activation pathway regulators was expressed, not CR1 or MCP. Of the membrane attack pathway regulatory proteins, HRF was not expressed, while substantial heterogeneity of CD59 expression by oligodendrocytes was found. Clusterin expression was not found. A relative deficiency of protective complement regulatory proteins on human oligodendrocytes may contribute to their selective damage in multiple sclerosis.
Collapse
Affiliation(s)
- N J Scolding
- University of Cambridge Neurology Unit, Addenbrooke's Hospital, UK.
| | | | | |
Collapse
|
14
|
Gasque P, Jones J, Singhrao SK, Morgan B. Identification of an astrocyte cell population from human brain that expresses perforin, a cytotoxic protein implicated in immune defense. J Exp Med 1998; 187:451-60. [PMID: 9463395 PMCID: PMC2212151 DOI: 10.1084/jem.187.4.451] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1997] [Revised: 12/01/1997] [Indexed: 02/06/2023] Open
Abstract
The brain is an immunoprivileged organ isolated from the peripheral immune system. However, it has been shown that resident cells, notably astrocytes and microglia, can express numerous innate immune molecules, providing the capacity to generate a local antipathogen system. Perforin is a cytolytic protein present in the granules of cytotoxic T lymphocytes and natural killer cells. Expression in cells other than those of the hemopoetic lineage has not been described. We report here that fetal astrocytes in culture (passages 2 to 15), astrocytoma, and adult astrocytes expressed perforin. Reverse transcriptase polymerase chain reaction followed by Southern blot was carried out using multiple specific primers and all cDNAs were cloned and sequenced. Human fetal astrocyte perforin cDNA sequence was approximately 100% identical to the reported perforin cDNA cloned from T cells. Western blot analysis using monoclonal and polyclonal antiperforin peptide antibodies revealed a protein of 65 kD in both human fetal astrocyte and rat natural killer cell lysates (n = 4). Immunostaining followed by FACS(R) and confocal and electron microscopy analysis revealed that perforin was expressed by 40-50% of glial fibrillary acidic protein positive cells present in the fetal brain culture (n = 11). Perforin was not localized to granules in astrocytes but was present throughout the cytoplasm, probably in association with the endoplasmic reticulum. Perforin was not detected in normal adult brain tissue but was present in and around areas of inflammation (white and grey matter) in multiple sclerosis and neurodegenerative brains. Perforin-positive cells were identified as reactive astrocytes. These findings demonstrate that perforin expression is not unique to lymphoid cells and suggest that perforin produced by a subpopulation of astrocytes plays a role in inflammation in the brain.
Collapse
Affiliation(s)
- P Gasque
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, CF4 4XX, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Rushmere NK, Tomlinson S, Morgan BP. Expression of rat CD59: functional analysis confirms lack of species selectivity and reveals that glycosylation is not required for function. Immunology 1997; 90:640-6. [PMID: 9176120 PMCID: PMC1456686 DOI: 10.1046/j.1365-2567.1997.00200.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study reports the expression and functional characterization of the rat analogue of the human complement regulatory molecule CD59. We here describe the expression in chinese hamster ovary (CHO) cells of rat CD59 and a modified rat CD59 in which an N-glycosylation site at Asn-16 has been deleted by point mutation. The complement-inhibiting capacity of these two forms of rat CD59 has been analysed and compared. Expressed rat CD59 efficiently inhibited complement lysis of CHO cells when rat serum was used as a source of complement and also inhibited lysis by complement from all other species tested, confirming that rat CD59 displayed little or no species restriction of activity. Blocking of expressed rat CD59 with a monoclonal antibody abrogated the inhibition of lysis for all sources of complement, confirming that the expressed molecule was responsible for the protection. The glycosylation mutant had a much reduced molecular weight on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (12,000 MW as compared with 20,000-28,000 MW for unmutated), confirming that it was unglycosylated. However, the glycosylation mutant had complement-inhibitory activity which was at least as potent as that of the unmutated molecule, demonstrating that the large, N-linked carbohydrate moiety was not required for function.
Collapse
Affiliation(s)
- N K Rushmere
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK
| | | | | |
Collapse
|
16
|
Morgan BP, Gasque P. Expression of complement in the brain: role in health and disease. IMMUNOLOGY TODAY 1996; 17:461-6. [PMID: 8908810 DOI: 10.1016/0167-5699(96)20028-f] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- B P Morgan
- Dept of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK.
| | | |
Collapse
|