1
|
Erarslan-Uysal B, Kunz JB, Rausch T, Richter-Pechańska P, van Belzen IA, Frismantas V, Bornhauser B, Ordoñez-Rueada D, Paulsen M, Benes V, Stanulla M, Schrappe M, Cario G, Escherich G, Bakharevich K, Kirschner-Schwabe R, Eckert C, Loukanov T, Gorenflo M, Waszak SM, Bourquin JP, Muckenthaler MU, Korbel JO, Kulozik AE. Chromatin accessibility landscape of pediatric T-lymphoblastic leukemia and human T-cell precursors. EMBO Mol Med 2020; 12:e12104. [PMID: 32755029 PMCID: PMC7507092 DOI: 10.15252/emmm.202012104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023] Open
Abstract
We aimed at identifying the developmental stage at which leukemic cells of pediatric T-ALLs are arrested and at defining leukemogenic mechanisms based on ATAC-Seq. Chromatin accessibility maps of seven developmental stages of human healthy T cells revealed progressive chromatin condensation during T-cell maturation. Developmental stages were distinguished by 2,823 signature chromatin regions with 95% accuracy. Open chromatin surrounding SAE1 was identified to best distinguish thymic developmental stages suggesting a potential role of SUMOylation in T-cell development. Deconvolution using signature regions revealed that T-ALLs, including those with mature immunophenotypes, resemble the most immature populations, which was confirmed by TF-binding motif profiles. We integrated ATAC-Seq and RNA-Seq and found DAB1, a gene not related to leukemia previously, to be overexpressed, abnormally spliced and hyper-accessible in T-ALLs. DAB1-negative patients formed a distinct subgroup with particularly immature chromatin profiles and hyper-accessible binding sites for SPI1 (PU.1), a TF crucial for normal T-cell maturation. In conclusion, our analyses of chromatin accessibility and TF-binding motifs showed that pediatric T-ALL cells are most similar to immature thymic precursors, indicating an early developmental arrest.
Collapse
Affiliation(s)
- Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ianthe Aem van Belzen
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Viktoras Frismantas
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Diana Ordoñez-Rueada
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kseniya Bakharevich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tsvetomir Loukanov
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology and Congenital Heart Diseases, University of Heidelberg, Heidelberg, Germany
| | - Sebastian M Waszak
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jan O Korbel
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
4
|
Lúdvíksson BR, Ehrhardt RO, Strober W. Role of IL-12 in Intrathymic Negative Selection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Cytokines are central regulatory elements in peripheral lymphocyte differentiation, but their role in T cell ontogeny is poorly defined. In the present study, we evaluated the role of IL-12 in thymocyte selection more directly by determining its role in two models of in vivo negative selection. In initial studies we demonstrated that abundant intrathymic IL-12 synthesis occurs during OVA peptide-induced negative selection of thymocytes in neonatal OVA-TCR transgenic mice, and such synthesis is associated with increased IL-12R β2-chain expression as well as STAT4 intracellular signaling. In further studies, we showed that this form of negative selection was occurring at the αβTCRlowCD4lowCD8low stage and was prevented by the coadministration of anti-IL-12. In addition, the IL-12-dependent thymocyte depletion was occurring through an intrathymic apoptosis mechanism, also prevented by administration of anti-IL-12. Finally, we showed that IL-12 p40−/− mice displayed aberrant negative selection of double positive CD4+CD8+ thymocytes when injected with anti-CD3 mAb. These studies suggest that intact intrathymic IL-12 production is necessary for the negative selection of thymocytes occurring in relation to a high “self” Ag load, possible through its ability to induce the thymocyte maturation and cytokine production necessary for such selection.
Collapse
Affiliation(s)
- Björn R. Lúdvíksson
- Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rolf O. Ehrhardt
- Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|