1
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Lundtoft C, Sjöwall C, Rantapää‐Dahlqvist S, Bengtsson AA, Jönsen A, Pucholt P, Wu YL, Lundström E, Eloranta M, Gunnarsson I, Baecklund E, Jonsson R, Hammenfors D, Forsblad‐d'Elia H, Eriksson P, Mandl T, Bucher S, Norheim KB, Auglaend Johnsen SJ, Omdal R, Kvarnström M, Wahren‐Herlenius M, Truedsson L, Nilsson B, Kozyrev SV, Bianchi M, Lindblad‐Toh K, Yu C, Nordmark G, Sandling JK, Svenungsson E, Leonard D, Rönnblom L. Strong Association of Combined Genetic Deficiencies in the Classical Complement Pathway With Risk of Systemic Lupus Erythematosus and Primary Sjögren's Syndrome. Arthritis Rheumatol 2022; 74:1842-1850. [PMID: 35729719 PMCID: PMC9828039 DOI: 10.1002/art.42270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Complete genetic deficiency of the complement component C2 is a strong risk factor for monogenic systemic lupus erythematosus (SLE), but whether heterozygous C2 deficiency adds to the risk of SLE or primary Sjögren's syndrome (SS) has not been studied systematically. This study was undertaken to investigate potential associations of heterozygous C2 deficiency and C4 copy number variation with clinical manifestations in patients with SLE and patients with primary SS. METHODS The presence of the common 28-bp C2 deletion rs9332736 and C4 copy number variation was examined in Scandinavian patients who had received a diagnosis of SLE (n = 958) or primary SS (n = 911) and in 2,262 healthy controls through the use of DNA sequencing. The concentration of complement proteins in plasma and classical complement function were analyzed in a subgroup of SLE patients. RESULTS Heterozygous C2 deficiency-when present in combination with a low C4A copy number-substantially increased the risk of SLE (odds ratio [OR] 10.2 [95% confidence interval (95% CI) 3.5-37.0]) and the risk of primary SS (OR 13.0 [95% CI 4.5-48.4]) when compared to individuals with 2 C4A copies and normal C2. For patients heterozygous for rs9332736 with 1 C4A copy, the median age at diagnosis was 7 years earlier in patients with SLE and 12 years earlier in patients with primary SS when compared to patients with normal C2. Reduced C2 levels in plasma (P = 2 × 10-9 ) and impaired function of the classical complement pathway (P = 0.03) were detected in SLE patients with heterozygous C2 deficiency. Finally, in a primary SS patient homozygous for C2 deficiency, we observed low levels of anti-Scl-70, which suggests a risk of developing systemic sclerosis or potential overlap between primary SS and other systemic autoimmune diseases. CONCLUSION We demonstrate that a genetic pattern involving partial deficiencies of C2 and C4A in the classical complement pathway is a strong risk factor for SLE and for primary SS. Our results emphasize the central role of the complement system in the pathogenesis of both SLE and primary SS.
Collapse
Affiliation(s)
- Christian Lundtoft
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
- Present address:
Olink Proteomics
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | | | - Anders A. Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, and Skåne University HospitalLundSweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, and Skåne University HospitalLundSweden
| | - Pascal Pucholt
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Yee Ling Wu
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, and the Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinois
| | - Emeli Lundström
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | | | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Eva Baecklund
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Helena Forsblad‐d'Elia
- Department of Rheumatology and Inflammation ResearchSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Per Eriksson
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Thomas Mandl
- Division of Rheumatology, Department of Clinical Sciences MalmöLund University, and NovartisMalmöSweden
| | - Sara Bucher
- Department of Rheumatology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Katrine B. Norheim
- Department of Rheumatology, Stavanger University Hospital, Stavanger, Norway, and the Institute of Clinical Science, University of BergenBergenNorway
| | | | - Roald Omdal
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway, and the Department of RheumatologyStavanger University HospitalStavangerNorway
| | - Marika Kvarnström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, and the Academic Specialist Center, Center for Rheumatology, Stockholm Health ServicesStockholmSweden
| | - Marie Wahren‐Herlenius
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, and Broegelmann Research Laboratory, Department of Clinical Science, University of BergenBergenNorway
| | - Lennart Truedsson
- Department of Microbiology, Immunology, and GlycobiologyLund University HospitalLundSweden
| | - Bo Nilsson
- Department of Immunology, Genetics, and PathologyUppsala UniversityUppsalaSweden
| | - Sergey V. Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Kerstin Lindblad‐Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, and Broad Institute of MIT and HarvardCambridgeMassachusetts
| | | | - Chack‐Yung Yu
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's HospitalColumbusOhio
| | - Gunnel Nordmark
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | | | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Dag Leonard
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| | - Lars Rönnblom
- Department of Medical Sciences, RheumatologyUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Sharma M, Vignesh P, Tiewsoh K, Rawat A. Revisiting the complement system in systemic lupus erythematosus. Expert Rev Clin Immunol 2020; 16:397-408. [PMID: 32228236 DOI: 10.1080/1744666x.2020.1745063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease, characterized by the production of autoantibodies. Numerous mechanisms contribute to the pathogenesis and autoimmunity in SLE. One of the most important mechanisms is the defective function of the early complement components that are involved in clearing the immune-complexes and apoptotic debris. Major evidence supporting this hypothesis is the development of severe lupus in individuals with monogenic defects in any one of the early complement components such as C1q, C1 s, C1 r, C2, or C4.Areas covered: In this review, we discuss hereditary defects in classical complement components and their clinical manifestations, acquired defects of complements in lupus, the role of complements in the pathogenesis of antiphospholipid antibody syndrome and lupus nephritis, and laboratory assessment of complement components and their functions. Articles from the last 20 years were retrieved from PubMed for this purpose.Expert opinion: Complements have a dual role in the pathogenesis of SLE. On one hand, deficiency of complement components predisposes to lupus, while, on the other, excess complement activation plays a role in the organ damage. Understanding the intricacies of the role of complements in SLE can pave way for the development of targeted therapies.
Collapse
Affiliation(s)
- Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karalanglin Tiewsoh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Dellepiane RM, Baselli LA, Cazzaniga M, Lougaris V, Macor P, Giordano M, Gualtierotti R, Cugno M. Hereditary Deficiency of the Second Component of Complement: Early Diagnosis and 21-Year Follow-Up of a Family. ACTA ACUST UNITED AC 2020; 56:medicina56030120. [PMID: 32164349 PMCID: PMC7143546 DOI: 10.3390/medicina56030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022]
Abstract
Complement deficiencies are rare and often underdiagnosed primary immunodeficiencies that may be associated with invasive bacterial diseases. Serious infections with encapsulated organisms (mainly Streptococcus pneumoniae, but also Neisseria meningitides and Haemophilus influenzae type B) are frequent in patients with a deficiency of the second component of complement (C2), but no data are available on long-term follow-up. This study aimed to evaluate the long-term clinical outcome and the importance of an early diagnosis and subsequent infection prophylaxis in C2 deficiency. Here, we report the 21-year follow-up of a whole family which was tested for complement parameters, genetic analysis and biochemical measurements, due to recurrent pneumococcal meningitis in the elder brother. The two sons were diagnosed with homozygous type 1 C2 deficiency, while their parents were heterozygous with normal complement parameters. For the two brothers, a recommended vaccination program and antibiotic prophylaxis were prescribed. During the long-term follow-up, no severe/invasive infections were observed in either patient. At the age of 16, the younger brother developed progressive hypogammaglobulinemia of all three classes, IgA, IgM and IgG. A next generation sequencing panel excluded the presence of gene defects related to primary antibody deficiencies. Our data show that early diagnosis, use of vaccinations and antibiotic prophylaxis may allow a normal life in hereditary C2 deficiency, which can be characterized using functional and genetic methods. Moreover, a periodical check of immunoglobulin serum levels could be useful to detect a possible hypogammaglobulinemia.
Collapse
Affiliation(s)
- Rosa Maria Dellepiane
- Department of Pediatrics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy; (R.M.D.); (L.A.B.); (M.C.)
| | - Lucia Augusta Baselli
- Department of Pediatrics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy; (R.M.D.); (L.A.B.); (M.C.)
| | - Marco Cazzaniga
- Department of Pediatrics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy; (R.M.D.); (L.A.B.); (M.C.)
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and Spedali Civili di Brescia, 25121 Brescia, Italy;
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34123 Trieste, Italy;
| | - Mara Giordano
- Department of Health Sciences, Laboratory of Genetics, University of Eastern Piedmont and Interdisciplinary Research Center of Autoimmune Diseases, 28100 Novara, Italy;
| | - Roberta Gualtierotti
- Internal Medicine, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Massimo Cugno
- Internal Medicine, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Correspondence: ; Tel.: +390255035340
| |
Collapse
|
5
|
Lintner KE, Wu YL, Yang Y, Spencer CH, Hauptmann G, Hebert LA, Atkinson JP, Yu CY. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases. Front Immunol 2016; 7:36. [PMID: 26913032 PMCID: PMC4753731 DOI: 10.3389/fimmu.2016.00036] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 01/06/2023] Open
Abstract
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases.
Collapse
Affiliation(s)
- Katherine E Lintner
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Yee Ling Wu
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Yan Yang
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Charles H Spencer
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Georges Hauptmann
- Laboratoire d'Immuno-Rhumatologie Moleculaire, INSERM UMR_S 1109, LabEx Transplantex, Faculté de Médecine, Université de Strasbourg , Strasbourg , France
| | - Lee A Hebert
- Division of Nephrology, College of Medicine, The Ohio State University , Columbus, OH , USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine , St. Louis, MO , USA
| | - C Yung Yu
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| |
Collapse
|
6
|
Antolín SC, Del Rey Cerros MJ, Sierra EM, Miñarro DO, Clemente J, Martínez LA, Peña PV, Panete MJC, Pérez PM, Paz-Artal E. Frequency in Spanish population of familial complement factor 2 type I deficits and associated HLA haplotypes. Hum Immunol 2006; 66:1093-8. [PMID: 16386652 DOI: 10.1016/j.humimm.2005.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 07/22/2005] [Accepted: 07/26/2005] [Indexed: 11/18/2022]
Abstract
We present two familial cases of complement factor 2 (C2) type I deficiency. Probands had experienced severe pyogenic bacteria infections in childhood and had undetectable levels of C2 and very low level of CH50. Both children were homozygous for the deletion of 28 bp in exon 6 of the C2 gene. Human leukocyte antigen (HLA) typing in family 1 had the commonly reported associations, but family 2 demonstrated a new association of the mutated C2 gene to HLA-A*3101, -Cw*0602, -B*1801, and -DRB1*0901. In addition, for the first time, the frequency of the 28-bp deletion of C2 and its HLA haplotypic associations have been analyzed in a sample of the Spanish population containing 790 haplotypes and 105 phenotypes. Cw*0602 is frequently found in Spanish haplotypes linked to the C2 mutated gene instead of the commonly reported -Cw*1203. The presence of heterozygous or homozygous individuals for the C2 deletion with low levels of IgD in both families supports the existence of a putative dominant susceptibility gene for IgD deficiency in haplotype HLA-B18, -S042, and -DR2. The frequency of the C2 28-bp deletion in heterozygosis is 1.4% (gene frequency 0.007) in Spanish healthy controls, similar to that reported in other white populations.
Collapse
Affiliation(s)
- S Calleja Antolín
- Servicio de Inmunología, Hospital Universitario Doce de Octubre, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 2001; 76:227-324. [PMID: 11079100 DOI: 10.1016/s0065-2776(01)76021-x] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
MESH Headings
- Adolescent
- Adult
- Alleles
- Animals
- Antibody Formation
- Antigen-Antibody Complex/immunology
- Antigen-Antibody Complex/metabolism
- Apoptosis/immunology
- Autoantibodies/immunology
- Autoantigens/immunology
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Bias
- Carrier Proteins/genetics
- Child
- Child, Preschool
- Collectins
- Complement Activation
- Complement C1 Inactivator Proteins/deficiency
- Complement C1 Inactivator Proteins/genetics
- Complement C1q/deficiency
- Complement C1q/genetics
- Complement C1q/immunology
- Complement System Proteins/deficiency
- Complement System Proteins/genetics
- Complement System Proteins/physiology
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Genotype
- Guinea Pigs
- Humans
- Infant
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/etiology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Male
- Mice
- Mice, Inbred MRL lpr
- Mice, Knockout
- Mice, Mutant Strains
- Middle Aged
- Models, Immunological
- Polymorphism, Genetic
- Receptors, Complement/chemistry
- Receptors, Complement/genetics
Collapse
Affiliation(s)
- M C Pickering
- Rheumatology Section, Imperial College School of Medicine, London, England
| | | | | | | | | |
Collapse
|
8
|
Yu CY. Molecular genetics of the human MHC complement gene cluster. EXPERIMENTAL AND CLINICAL IMMUNOGENETICS 2000; 15:213-30. [PMID: 10072631 DOI: 10.1159/000019075] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human major histocompatibility complex (MHC) complement gene cluster (MCGC) is a highly variable region that is characterized by polymorphisms, variations in gene size and gene number, and associations with diseases. Deficiencies in complement C2 are either due to abolition of C2 protein synthesis by mini-deletions that caused frameshift mutations, or blocked secretion of the C2 protein by single amino acid substitutions. One, two or three C4 genes may be present in a human MCGC haplotype and these genes may code for C4A, C4B, or both. Deficiencies of C4A or C4B proteins are attributed to the expression of identical C4 isotypes or allotypes from the C4 loci, the absence or deletion of a C4 gene, 2-bp insertion at exon 29 or 1-bp deletion at exon 20 that caused frameshift mutations. The C4 genes are either 21 or 14.6 kb in size due to the presence of endogenous retrovirus HERV-K(C4) in the intron 9 of long C4 genes. A deletion or duplication of a C4 gene is always accompanied by its neighboring genes, RP at the 5' region, and CYP21 and TNX at the 3' region. These four genes form a genetic unit termed the RCCX module. In an RCCX bimodular structure, the pseudogene CYP21A, and partially duplicated gene segments TNXA and RP2 are present between the two C4 loci. The RCCX modular variations in gene number and gene size contributed to unequal crossovers and exchanges of polymorphic sequences/mutations, resulting in the homogenization of C4 polymorphisms and acquisitions of deleterious mutations in RP1, C4A, C4B, CYP21B and TNXB genes. RD, SKI2W, DOM3Z and RP1 are the four novel genes found between Bf and C4. RD and Ski2w proteins may be related to RNA splicing, RNA turnover and regulation of translation. The functions of Dom3z and RP1 are being investigated. The complete genomic DNA sequence between C2 and TNX is now available. This should facilitate a complete documentation of polymorphisms, mutations and disease associations for the MCGC.
Collapse
Affiliation(s)
- C Y Yu
- Children's Hospital Research Foundation, and Department of Pediatrics, The Ohio State University, Columbus, Ohio,
| |
Collapse
|
9
|
Jaatinen T, Ruuskanen O, Truedsson L, Lokki ML. Homozygous deletion of the CYP21A-TNXA-RP2-C4B gene region conferring C4B deficiency associated with recurrent respiratory infections. Hum Immunol 1999; 60:707-14. [PMID: 10439316 DOI: 10.1016/s0198-8859(99)00047-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The central class III region of the human major histocompatibility complex contains highly polymorphic genes that are associated with immune disorders and may serve as susceptibility factors for viral infections. Many HLA haplotype specific rearrangements, duplications, conversions and deletions, occur frequently in the C4 gene region. Genetic deficiencies of complement components are associated with recurrent occurrence of bacterial infections. We have studied the complement profile and the class III genes 5'-RP1-C4A-CYP21A-TNXA-RP2-C4B-CYP21B-TNXB -3' in a 4-year-old Caucasian patient. He has suffered from several pneumonias caused by respiratory viruses, eight acute otitis media, prolonged respiratory infections and urinary tract infection. Complement C4 was constantly low, but the other complement components, from C1 to C9, C1INH, factor B and properdin, were within normal limits. Immunological evaluation gave normal lymphocyte numbers and functions with the exception of subnormal T cell response to pokeweed mitogen. Molecular studies of the C4 gene region in the patient revealed homozygous deletion of CYP21A-TNXA-RP2-C4B generating total deficiency of C4B and the flanking 5' region up to C4A, and in the father a missing CYP21A gene. Further investigations are needed to elucidate the relationship between C4B deficiency and susceptibility to infections.
Collapse
Affiliation(s)
- T Jaatinen
- Tissue Typing Laboratory, Finnish Red Cross Blood Transfusion Service, Helsinki, Finland
| | | | | | | |
Collapse
|