1
|
Zheng PY, Geng XR, Hong JY, Yang G, Liu JQ, Mo LH, Feng Y, Zhang YY, Liu T, Ran P, Liu ZG, Yang PC. Regulating Bcl2L12 expression in mast cells inhibits food allergy. Am J Cancer Res 2019; 9:4982-4992. [PMID: 31410196 PMCID: PMC6691383 DOI: 10.7150/thno.34001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: Mast cells play a crucial role in allergic diseases. Yet, the regulation of mast cell bioactivities is not fully understood. This study aims to elucidate the role of B cell lymphoma 2 like protein 12 (Bcl2L12), one of the anti-apoptosis proteins, in regulating mast cell apoptosis. Methods: A food allergy (FA) mouse model was developed to establish mast cell over population in the intestinal tissue. Either compound 48/80 (C48/80) or specific antigens were used to activate mast cells in the intestinal mucosa. Results: After treating with C48/80, apoptosis was induced in mast cells of the intestine of naive control mice, but not in FA mice. The expression of Fas ligand (FasL) was lower in the mast cells of FA mice. Interleukin (IL)-5 was responsible for the suppression of FasL by upregulating the expression of Bcl2L12 in mast cells. Bcl2L12 prevented c-Myc, the major transcription factor of FasL, from binding the FasL promoter to inhibit the expression of FasL in mast cells. Inhibition of Bcl2L12 restored the apoptosis machinery of mast cells in the FA mouse intestine. Conclusions: The apoptosis machinery in mast cells is impaired in an allergic environment. Inhibition of Bcl2L12 restores the apoptosis machinery in mast cells in the FA mouse intestine.
Collapse
|
2
|
Ma TY, Wu JY, Gao XK, Wang JY, Zhan XL, Li WS. Molecular cloning, functional identification and expressional analyses of FasL in Tilapia, Oreochromis niloticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:448-460. [PMID: 24950416 DOI: 10.1016/j.dci.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/01/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
FasL is the most extensively studied apoptosis ligand. In 2000, tilapia FasL was identified using anti-human FasL monoclonal antibody by Evans's research group. Recently, a tilapia FasL-like protein of smaller molecule weight was predicted in Genbank (XM_003445156.2). Based on several clues drawn from previous studies, we cast doubt on the authenticity of the formerly identified tilapia FasL. Conversely, using reverse transcription polymerase chain reaction (RT-PCR), the existence of the predicted FasL-like was verified at the mRNA level (The Genbank accession number of the FasL mRNA sequence we cloned is KM008610). Through multiple alignments, this FasL-like protein was found to be highly similar to the FasL of the Japanese flounder. Moreover, we artificially expressed the functional region of the predicted protein and later confirmed its apoptosis-inducing activity using a methyl thiazolyl tetrazolium (MTT) assay, Annexin-V/Propidium iodide (PI) double staining, and DNA fragment detection. Supported by these evidences, we suggest that the predicted protein is the authentic tilapia FasL. To advance this research further, tilapia FasL mRNA and its protein across different tissues were quantified. High expression levels were identified in the tilapia immune system and sites where active cell turnover conservatively occurs. In this regard, FasL may assume an active role in the immune system and cell homeostasis maintenance in tilapia, similar to that shown in other species. In addition, because the distribution pattern of FasL mRNA did not synchronize with that of the protein, post-transcriptional expression regulation is suggested. Such regulation may be dominated by potential adenylate- and uridylate-rich elements (AREs) featuring AUUUA repeats found in the 3' untranslated region (UTR) of tilapia FasL mRNA.
Collapse
Affiliation(s)
- Tai-yang Ma
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin-ying Wu
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Xiao-ke Gao
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jing-yuan Wang
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xu-liang Zhan
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-sheng Li
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
3
|
Berent-Maoz B, Salemi S, Mankuta D, Simon HU, Levi-Schaffer F. Human mast cells express intracellular TRAIL. Cell Immunol 2010; 262:80-3. [PMID: 20189551 DOI: 10.1016/j.cellimm.2010.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 11/16/2022]
Abstract
Recently we demonstrated that human mast cells (MC) express functional TRAIL death receptors. Here we assessed the expression of TRAIL on both mRNA and protein level in cord blood derived MC (CBMC) and HMC-1. The TRAIL release either spontaneous or induced by LPS, IFN-gamma and IgE-dependent activation, was evaluated as well. The protein location was restricted to the intracellular compartment in CBMC, but not in HMC-1. The intracellular TRAIL was not localized inside the granules. The treatment with IFN-gamma and LPS up-regulated intracellular TRAIL expression in CBMC, but did not induce its release. These in vitro data show that human MC can produce and express intracellular TRAIL whose location could not be altered by different stimuli.
Collapse
Affiliation(s)
- Beata Berent-Maoz
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
4
|
Ozdemir O. Might mast cells have a role in neoplastic angiogenesis of canine melanomas? Vet Dermatol 2006; 17:284-6; discussion 289. [PMID: 16827673 DOI: 10.1111/j.1365-3164.2006.00524.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Abstract
Mast cell (MC) is so widely recognized as a critical effector in allergic disorders that it can be difficult to think of MC in any other context. Indeed, MCs are multifunctional and recently shown that MCs can also act as antigen presenters as well as effector elements of human immune system. First observations of their possible role as anti-tumor cells in peri- or intra-tumoral tissue were mentioned five decades ago and a high content of MCs is considered as a favorable prognosis, consistent with this study. Believers of this hypothesis assumed them to be inhibitors of tumor development through their pro-apoptotic and -necrolytic granules e.g., granzymes and TNF-alpha. However, some still postulate them to be enhancers of tumor development through their effects on angiogenesis due to mostly tryptase. There are also some data suggesting increased MC density causes tumor development and indicates bad prognosis. Furthermore, since MC-associated mediators have shown to influence various aspects of tumor biology, the net effect of MCs on the development/progression of tumors has been difficult to evaluate. For instance, chymase induces apoptosis in targets; yet, tryptase, another MC protease, is a well-known mitogen. MCs with these various enzyme expression patterns may mediate different functions and the predominant MC type in tissues may be determined by the environmental needs. The coexistence of tryptase-expressing MCs (MC(T)) and chymase and tryptase-expressing MCs (MC(TC)) in physiological conditions reflects a naturally occurring balance that contributes to tissue homeostasis. We have recently discussed the role and relevance of MC serine proteases in different bone marrow diseases.
Collapse
|
6
|
Hiatt K, Ingram DA, Huddleston H, Spandau DF, Kapur R, Clapp DW. Loss of the nf1 tumor suppressor gene decreases fas antigen expression in myeloid cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1471-9. [PMID: 15039234 PMCID: PMC1615352 DOI: 10.1016/s0002-9440(10)63233-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic loss of surface Fas antigen expression leads to reduced apoptosis of myeloid and lymphoid progenitor cells, and a propensity to develop autoimmunity and myeloid leukemia in mouse models. Oncogenic p21(ras) decreases surface Fas antigen expression and renders fibroblasts resistant to Fas mediated apoptosis. Neurofibromin, which is encoded by NF1, is a GTPase activating protein that negatively regulates p21(ras) activity. NF1 loss leads to deregulation of p21(ras)-effector pathways, which control myeloid cell survival. Heterozygous inactivation of Nf1 increases mast cell numbers in Nf1 +/- mice, and enhances mast cell survival in response to c-kit ligand (kit-L). Here, we show that Nf1-deficient mast cells have reduced surface Fas antigen expression in response to kit-L and are resistant to Fas ligand-mediated apoptosis. Using genetic intercrosses between Nf1 +/- and class I (A)-PI-3K-deficient mice, we demonstrate that hyperactivation of the p21(ras)-class I(A) PI-3K pathway is the mechanism for this phenotype. Finally, we demonstrate that mast cells from both Fas antigen-deficient mice and Nf1 +/- mice are resistant to apoptosis following kit-L withdrawal in vivo. Thus, therapies designed to decrease p21(ras) activity and up-regulate Fas antigen expression may limit the pathological accumulation of myeloid cells in disease states where p21(ras) is hyperactivated.
Collapse
Affiliation(s)
- Kelly Hiatt
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
7
|
Ehrmann J, Kolek A, Kod'ousek R, Zapletalová J, Lísová S, Murray PG, Drábek J, Kolár Z. Immunohistochemical study of the apoptotic mechanisms in the intestinal mucosa during children's coeliac disease. Virchows Arch 2003; 442:453-61. [PMID: 12698366 DOI: 10.1007/s00428-003-0794-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Accepted: 02/12/2003] [Indexed: 10/25/2022]
Abstract
Mechanisms leading to morphological changes of the small intestine during coeliac disease (CD) are not yet completely recognized; however, two main processes have been suggested recently: remodeling of mucosa by matrix metalloproteinases, and mucosal atrophy by apoptosis. The aim of this study was analysis of the expression of proteins regulating apoptosis in the small intestine of children with active CD (ACD) and potential CD (PCD). Jejunal biopsies of 43 children with PCD and untreated ACD and 21 control samples were analyzed by means of standard indirect immunohistochemical technique for Fas, Fas ligand (Fas-L), tissue transglutaminase (tTG), Bcl-2, and glutathione S-transferase (GST) expression. We found significantly lower numbers of Fas-expressing enterocytes in the ACD patients than in PCD patients and controls. Similarly, the number of Fas-positive mucosal lymphocytes was decreased in ACD when compared with PCD. The number of Fas-L- and tTG-expressing enterocytes and mucosal lymphocytes was higher in both PCD and ACD. On the other hand, the number of Bcl-2-positive mucosal lymphocytes in PCD as well as ACD was significantly lower. The expression of tTG in extracellular matrix was significantly higher in PCD and ACD when compared with controls. Our results showed that Fas and/or Fas-L, Bcl-2, and tTG may be involved in apoptotic pathways leading to mucosal atrophy in children with CD. tTG changes are in agreement with the presumed role of this protein in the pathogenesis of CD.
Collapse
Affiliation(s)
- Jirí Ehrmann
- Laboratory of Molecular Pathology & Institute of Pathology, Palacký University, Hnevotínská 3 77515, Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2002; 2:773-86. [PMID: 12360215 DOI: 10.1038/nri914] [Citation(s) in RCA: 434] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mast cells and basophils are important effector cells in T helper 2 (T(H)2)-cell-dependent, immunoglobulin-E-associated allergic disorders and immune responses to parasites. The crosslinking of IgE that is bound to the high-affinity receptor Fc epsilon RI with multivalent antigen results in the aggregation of Fc epsilon RI and the secretion of products that can have effector, immunoregulatory or autocrine effects. This response can be enhanced markedly in cells that have been exposed to high levels of IgE, which results in the increased surface expression of Fc epsilon RI. Moreover, recent work indicates that monomeric IgE (in the absence of crosslinking) can render mast cells resistant to apoptosis induced by growth-factor deprivation in vitro and, under certain circumstances, can induce the release of cytokines. So, the binding of IgE to Fc epsilon RI might influence mast-cell and basophil survival directly or indirectly, and can also regulate cellular function.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Allergy, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | | |
Collapse
|
9
|
Szepietowski JC, Morita A, Tsuji T. Ultraviolet B induces mast cell apoptosis: a hypothetical mechanism of ultraviolet B treatment for uraemic pruritus. Med Hypotheses 2002; 58:167-70. [PMID: 11812197 DOI: 10.1054/mehy.2001.1505] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pathogenesis of uraemic pruritus is unclear, although there is some evidence that an increased number of skin-infiltrating mast cells may play a role. Ultraviolet B reduces itchy sensation of uraemic patients by leading to depletion of cutaneous mast cells. This study presents data that both broad-band and narrow-band ultraviolet B irradiation are able to induce apoptosis in transformed mast cells (murine mastocytoma cell line P815) in a dose-dependent manner at a time point of 24 hours. The positive apoptotic rates were as follows: sham-exposed cells (controls) -- 13.3% +/- 0.6%; with broad-band ultraviolet B irradiation -24.5% +/- 1.1% with 10mJ/cm(2), 57.9% +/- 4.6% with 20mJ/cm(2) and 70.9% +/- 4.5% with 30mJ/cm(2); with narrow-band ultraviolet B irradiation -- 29.6% +/- 2.3% with 100mJ/cm(2), 57.3% +/- 4.1% with 200mJ/cm(2) and 81.5% +/- 1.9% with 300mJ/cm(2). The difference between the number of apoptotic cells in all groups of ultraviolet B-irradiated cells and sham-exposed cells was highly significant (P<0.001). Based on these findings, it is hypothesized that ultraviolet B induced mast cell apoptosis could be an important factor in phototherapy for the diseases dependent on increased number of cutaneous mast cells, including uraemic pruritus.
Collapse
Affiliation(s)
- J C Szepietowski
- Department of Dermatology and Venereology, University of Medicine, Wroclaw, Poland.
| | | | | |
Collapse
|
10
|
Kennedy NJ, Russell JQ, Michail N, Budd RC. Liver damage by infiltrating CD8+ T cells is Fas dependent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6654-62. [PMID: 11714837 DOI: 10.4049/jimmunol.167.11.6654] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ag stimulation of CD8+ lymphocytes in vivo results in their migration to various tissues as well as the activation of a cytolytic program involving perforin, TNF-alpha, and Fas ligand. The liver is one of the main sites for infiltration by activated CD8+ T cells, and this is followed by the death of hepatocytes. The contribution of the various cytolytic components to this process is unclear. Hepatocyte damage by CD8+ T cells was studied using the MHC class I-restricted OVA-specific TCR transgenic mouse (OT-1) to examine the contribution of Fas to hepatocyte death. Activated CD8+ T cells from both OT-1 and Fas-deficient OT-1lpr mice migrated to the liver in similar numbers after OVA administration, but only in OT-1 mice was there evidence of significant hepatocyte damage histologically and by elevation of serum aspartate transaminase. These differences were not the result of inefficient induction of cytolytic activity in OT-1lpr liver T cells, since they were as cytolytic in vitro as OT-1 liver T cells. This was supported by findings of similar high levels of message for perforin, TNF-alpha, and Fas ligand in liver lymphocytes from both mice. These findings demonstrate that following Ag activation, infiltrating liver CD8+ T lymphocytes induce hepatocyte damage in a Fas-dependent manner.
Collapse
Affiliation(s)
- N J Kennedy
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
11
|
Hu CL, Cowan RG, Harman RM, Porter DA, Quirk SM. Apoptosis of bovine granulosa cells after serum withdrawal is mediated by Fas antigen (CD95) and Fas ligand. Biol Reprod 2001; 64:518-26. [PMID: 11159354 DOI: 10.1095/biolreprod64.2.518] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Ovarian follicular atresia occurs by apoptosis of granulosa and theca cells. The Fas antigen (Fas), a cell surface receptor that triggers apoptosis when activated by Fas ligand (FasL), may be involved in this process. A possible role of the Fas pathway in mediating serum withdrawal-induced apoptosis of granulosa cells was examined. Granulosa cells collected from 5- to 10-mm bovine follicles were cultured in DMEM-F12 containing serum for 3 days, deprived of serum, and live cells were counted at various times after serum withdrawal. Cell death increased significantly 6 h after serum withdrawal (21% +/- 7%; P: < 0.05 vs. 0 h) and continued to increase until 24 h (43% +/- 6%). No further increases in cell death were observed through 72 h. Detection of the translocation of phosphatidylserine to the outer surface of the cell membrane by annexin V binding indicated that cells died by apoptosis. Quantitative reverse transcriptase-polymerase chain reaction assays showed no changes in Fas mRNA levels but a 4.7-fold increase in FasL mRNA 3 h after serum withdrawal (P: < 0.05 vs. 0 h). FasL mRNA remained elevated through 24 h and returned to basal levels at 48 h. Immunohistochemical staining showed that both Fas and FasL protein increased on the cell surface within 3 h and remained elevated through 12 h (the last time point tested). Binding of FasL to Fas was blocked with two reagents that bind to the extracellular domain of FasL: an anti-FasL antibody and Fas:Fc, a chimeric protein consisting of the Fc portion of human immunoglobulin G and the extracellular domain of human Fas. Cell death 24 h after serum withdrawal was reduced 55% +/- 10% and 34% +/- 12% by anti-FasL antibody and Fas:Fc, respectively (P: < 0.05 vs. no blocking protein). In conclusion, serum withdrawal-induced apoptosis of bovine granulosa cells is mediated at least partially by Fas/FasL interactions. These results are consistent with a potential role of Fas in an autocrine or paracrine pathway to trigger ovarian follicular atresia.
Collapse
Affiliation(s)
- C L Hu
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
12
|
Yoshikawa H, Nakajima Y, Tasaka K. Enhanced expression of Fas-associated death domain-like IL-1-converting enzyme (FLICE)-inhibitory protein induces resistance to Fas-mediated apoptosis in activated mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6262-9. [PMID: 11086061 DOI: 10.4049/jimmunol.165.11.6262] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells play a critical role in host immune responses and are implicated in the pathogenesis of allergic inflammation. Though mouse mast cell line MC/9 expresses cell surface Fas Ag and is sensitive to Fas-induced apoptosis, activated MC/9 cells are resistant to Fas-induced cell death by cross-linking of FcepsilonRI or FcgammaR. Fas-associated death domain-like IL-1-converting enzyme (FLICE)-inhibitory protein (FLIP), a caspase-8 inhibitor that lacks the cysteine domain, is one of the negative regulators of receptor-mediated apoptosis. In this report, we show that activation of mast cells by cross-linking of FcepsilonRI or FcgammaR can induce enhanced expression of FLIP and consequently a resistance to Fas-induced apoptosis, although the expression level of Fas Ag is not changed. Addition of antisense oligonucleotide for FLIP prevents resistance to Fas-induced apoptosis of activated mast cells, suggesting that endogenous FLIP inhibits Fas-mediated apoptosis in activated mast cells. Thus, the enhanced expression of FLIP in activated mast cells contributes to the resistance to Fas-induced apoptosis, which may result in the development and prolongation of allergic inflammation.
Collapse
Affiliation(s)
- H Yoshikawa
- Department of Parasitology and Immunology, Yamanashi Medical University, Yamanashi, Japan
| | | | | |
Collapse
|
13
|
Yeatman CF, Jacobs-Helber SM, Mirmonsef P, Gillespie SR, Bouton LA, Collins HA, Sawyer ST, Shelburne CP, Ryan JJ. Combined stimulation with the T helper cell type 2 cytokines interleukin (IL)-4 and IL-10 induces mouse mast cell apoptosis. J Exp Med 2000; 192:1093-103. [PMID: 11034599 PMCID: PMC2195863 DOI: 10.1084/jem.192.8.1093] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells are found in connective and mucosal tissues throughout the body. Their activation via immunoglobulin E (IgE)-antigen interactions is promoted by T helper cell type 2 (Th2) cytokines and leads to the sequelae of allergic disease. We now report a mechanism by which Th2 cytokines can regulate mast cell survival. Specifically, we find that interleukin (IL)-4 and IL-10 induce apoptosis in IL-3-dependent bone marrow-derived mast cells and peritoneal mast cells. This process required 6 d of costimulation with IL-3, IL-4, and IL-10, and expression of signal transducer and activator of transcription 6 (Stat6). Apoptosis was coupled with decreased expression of bcl-x(L) and bcl-2. While this process occurred independent of the Fas pathway, culture in IL-3+IL-4+IL-10 greatly sensitized mast cells to Fas-mediated death. Additionally, we found that IgE cross-linkage or stimulation with stem cell factor enhanced the apoptotic abilities of IL-4 and IL-10. Finally, IL-3-independent mastocytomas and mast cell lines were resistant to apoptosis induced by IL-3+IL-4+IL-10. These data offer evidence of Th2 cytokine-mediated homeostasis whereby these cytokines both elicit and limit allergic responses. Dysregulation of this pathway may play a role in allergic disease and mast cell tumor survival.
Collapse
Affiliation(s)
- C F Yeatman
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mincheva-Nilsson L, Nagaeva O, Sundqvist KG, Hammarström ML, Hammarström S, Baranov V. gammadelta T cells of human early pregnancy decidua: evidence for cytotoxic potency. Int Immunol 2000; 12:585-96. [PMID: 10784604 DOI: 10.1093/intimm/12.5.585] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The immune compromise in decidua allows a semiallogeneic fetus to survive without impairing the ability of the maternal immune system to fight infections. Cytotoxic mechanisms are likely to be important in this compromise. Using RT-PCR, immunoflow cytometry and immunoelectron microscopy, the cytotoxic potential of isolated human decidual gammadelta T cells was studied. mRNA for perforin (Pf), granzymes A and B, granulysin and Fas ligand (FasL) was simultaneously expressed in decidual gammadelta T cells. Pf and FasL were not expressed on the cell surface. However, the cells constitutively synthesized Pf and stored it in cytolytic granules. Within the granules Pf mainly resided in the granule core formed by Pf-containing microvesicles. Ultrastructurally, three groups of Pf-containing granules were distinguished. They probably represent different stages of granule maturation in a process where Pf-containing microvesicles first attach to the core cortex and then are translocated across the cortex into the core. Presynthesized FasL was also stored in the core and microvesicles of the cytolytic granules. Upon degranulation by ionomycin/Ca(2+) treatment, FasL was rapidly translocated to the cell surface, demonstrating that its surface expression was not controlled by de novo biosynthesis. Thus decidual gammadelta T cells appear to perform Pf- and FasL-mediated cytotoxicity utilizing a common secretory mechanism based on cytolytic granule exocytosis. The first cytochemical visualization of lipids in the cytolytic granules is provided. These intragranular lipids probably wrap up the core and participate in packaging of the cytotoxic proteins as well as in the killing process. An ultrastructural model of a cytolytic granule is presented.
Collapse
Affiliation(s)
- L Mincheva-Nilsson
- Departments of Clinical Immunology and. Immunology, Umeå University, 90185 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|