1
|
Protein kinase C delta phosphorylates ecdysone receptor B1 to promote gene expression and apoptosis under 20-hydroxyecdysone regulation. Proc Natl Acad Sci U S A 2017; 114:E7121-E7130. [PMID: 28790182 DOI: 10.1073/pnas.1704999114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptor EcRB1, which is activated by the insect steroid hormone 20-hydroxyecdysone (20E), is reportedly phosphorylated by a protein kinase after 20E induction. However, the protein kinase has not been identified, and the significance of EcRB1 phosphorylation is unclear. In this study, we identified a protein kinase C δ (PKCδ) isoform (the E isoform) that phosphorylates EcRB1 in the lepidopteran Helicoverpa armigera, a serious agricultural pest worldwide, to promote apoptotic gene expression and apoptosis during metamorphosis. Through activation of the EcRB1/USP1 transcription complex by 20E, PKCδ expression was up-regulated in several tissues during the metamorphic stage. Knockdown of PKCδ caused failure to transition from larvae to pupae, prevented tissues from undergoing programmed cell death (PCD), and down-regulated the expression of the transcription factor Brz-7 and the apoptosis executors caspase-3 and caspase-6 The threonine residue at position 1343 of PKCδ was phosphorylated and was critical for its proapoptotic function. Overexpression of the PKCδ catalytic domain was localized to the nuclei in HaEpi cells, which increased caspase-3 activity and apoptosis. PKCδ directly phosphorylated a threonine residue at position 468 in the amino acid sequence of EcRB1. The phosphorylation of EcRB1 was critical for its heterodimeric interaction with the USP1 protein and for binding to the ecdysone response element. The data suggested that 20E up-regulates PKCδ expression to regulate EcRB1 phosphorylation for EcRB1/USP1 transcription complex formation, apoptotic gene transcription, and apoptosis.
Collapse
|
2
|
Flaven-Pouchon J, Farine JP, Ewer J, Ferveur JF. Regulation of cuticular hydrocarbon profile maturation by Drosophila tanning hormone, bursicon, and its interaction with desaturase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:87-96. [PMID: 27794461 DOI: 10.1016/j.ibmb.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Shortly after emergence the exoskeleton (cuticle) of adult insects is rapidly expanded, hardened (sclerotized), and pigmented (melanized). In parallel with this process, the oenocytes, which are large polyploid cells located below the abdominal epidermis, secrete onto the cuticle a cocktail of cuticular hydrocarbons (CHs) and waxes. These improve the waterproofing of the cuticle, and also provide important chemosensory and pheromonal cues linked with gender, age, and species differentiation. The hardening and pigmentation of the new cuticle are controlled by the neurohormone, bursicon, and its receptor, encoded by the DLGR2 receptor, rickets (rk); by contrast, little is known about the timecourse of changes in CH profile and about the role of bursicon in this process. Here we show in Drosophila that rk function is also required for the normal maturation of the fly's CH profile, with flies mutant for rk function showing dramatically elevated levels of CHs. Interestingly, this effect is mostly abrogated by mutations in the Δ9 desaturase encoded by the desaturase1 gene, which introduces a first double bond into elongated fatty-acid chains, suggesting that desaturase1 acts downstream of rk. In addition, flies mutant for rk showed changes in the absolute and relative levels of specific 7-monoenes (in males) and 7,11-dienes (in females). The fact that these differences in CH amounts were obtained using extractions of very different durations suggests that the particular CH profile of flies mutant for rk is not simply due to their unsclerotized cuticle but that bursicon may be involved in the process of CH biosynthesis itself.
Collapse
Affiliation(s)
- Justin Flaven-Pouchon
- Centro Interdiciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaíso, Chile
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne-Franche-Comté 6, Bd Gabriel, F-21000 Dijon, France
| | - John Ewer
- Centro Interdiciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaíso, Chile.
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne-Franche-Comté 6, Bd Gabriel, F-21000 Dijon, France.
| |
Collapse
|
3
|
Wang J, Wang S, Li S. Sumoylation modulates 20-hydroxyecdysone signaling by maintaining USP protein levels in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:80-88. [PMID: 25240618 DOI: 10.1016/j.ibmb.2014.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The nuclear receptor complex for the insect steroid hormone, 20-hydroxyecdysone (20E), is a heterodimer of EcR and USP. It has been shown that Drosophila EcR and USP can be sumoylated in mammalian cells, but it is unknown whether EcR-USP sumoylation naturally occurs in Drosophila. In Drosophila cells, USP, but not EcR, was sumoylated by Smt3, the only Drosophila SUMO protein. The presence of EcR enhanced USP sumoylation, which is further enhanced by 20E treatment. In addition to the Lys20 sumoylation site, five potential acceptor lysine residues in USP were predicted and verified. Mutation of the USP sumoylation sites or reduction of smt3 expression by RNAi attenuated 20E-induced reporter activity. Moreover, in the salivary glands, reducing smt3 expression by RNAi decreased 20E-induced reporter activity, gene expression, and autolysosome formation. Importantly, at least partially, the smt3 RNAi-mediated reduction in 20E signaling resulted from decreased protein levels of USP. In conclusion, sumoylation modulates 20E signaling by maintaining USP protein levels in Drosophila.
Collapse
Affiliation(s)
- Jiawan Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sheng Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; Division of Neuropathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Ren J, Li XR, Liu PC, Cai MJ, Liu W, Wang JX, Zhao XF. G-protein αq participates in the steroid hormone 20-hydroxyecdysone nongenomic signal transduction. J Steroid Biochem Mol Biol 2014; 144 Pt B:313-23. [PMID: 25125388 DOI: 10.1016/j.jsbmb.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
Abstract
The nuclear receptor-mediated genomic pathways of the animal steroid hormones are well known. However, the cell membrane receptor-mediated nongenomic pathways of the animal steroid hormones are little understood. In this study, we report the participation of a G-protein alpha q (Gαq)(1) subunit in the 20E nongenomic pathway in the cell membrane and regulating gene expression during molting and metamorphosis in a lepidopteran insect, Helicoverpa armigera. 20E-induced phosphorylation of Gαq was detected using two-dimensional electrophoresis techniques. Knockdown of Gαq by injecting double-stranded RNA suppressed the development of larvae, delayed metamorphosis, and inhibited 20E-induced gene expression. Gαq was distributed throughout the cell, and migrated toward the plasma membrane upon 20E induction. Gαq was necessary in the 20E-induced intracellular Ca(2+) release and extracellular Ca(2+) influx. The protein kinase C (PKC) inhibitor could repress 20E-induced phosphorylation of cyclin-dependent kinase 10 (CDK10) and transcription factor ultraspiracle (USP1). PKC inhibitor could repress the Gαq phosphorylation and membrane trafficking. These results suggest that Gαq participates in 20E signaling in the cell membrane at the pre-genomic stage by modulating the increase of the intracellular Ca(2+) and phosphorylation of CDK10 and USP1 in 20E transcription complex to regulate gene transcription.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiang-Ru Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Peng-Cheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|
5
|
Liu W, Cai MJ, Zheng CC, Wang JX, Zhao XF. Phospholipase Cγ1 connects the cell membrane pathway to the nuclear receptor pathway in insect steroid hormone signaling. J Biol Chem 2014; 289:13026-41. [PMID: 24692553 DOI: 10.1074/jbc.m113.547018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In addition to the classical nuclear receptor pathway, there is a nongenomic pathway in the cell membrane that regulates gene expression in animal steroid hormone signaling; however, this mechanism is unclear. Here, we report that the insect steroid hormone 20-hydroxyecdysone (20E) regulates calcium influx via phospholipase Cγ1 (PLCG1) to modulate the protein kinase C phosphorylation of the transcription factor ultraspiracle (USP1) in the lepidopteran insect Helicoverpa armigera. The PLCG1 mRNA levels are increased during the molting and metamorphic stages. The depletion of PLCG1 by RNA interference can block 20E-enhanced pupation, cause larvae death and pupation defects, and repress 20E-induced gene expression. 20E may induce the tyrosine phosphorylation of PLCG1 at the cytosolic tyrosine kinase (Src) homology 2 domains and then determine the migration of PLCG1 toward the plasma membrane. The G-protein-coupled receptor (GPCR) inhibitor suramin, Src family kinase inhibitor PP2, and the depletions of ecdysone-responsible GPCR (ErGPCR) and Gαq restrain the 20E-induced tyrosine phosphorylation of PLCG1. PLCG1 participates in the 20E-induced Ca(2+) influx. The inhibition of GPCR, PLC, inositol 1,4,5-trisphosphate receptor, and calcium channels represses the 20E-induced Ca(2+) influx. Through calcium signaling, PLCG1 mediates the transcriptional activation driven by the ecdysone-response element. Through PLCG1 and calcium signaling, 20E regulates PKC phosphorylation of USP1 at Ser-21 to determine its ecdysone-response element binding activity. These results suggest that 20E activates PLCG1 via the ErGPCR and Src family kinases to regulate Ca(2+) influx and PKC phosphorylation of USP1 to subsequently modulate gene transcription for metamorphosis.
Collapse
Affiliation(s)
- Wen Liu
- From the Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | |
Collapse
|
6
|
Molecular Cloning, Characterization, and Expression Pattern of the Ultraspiracle Gene Homolog (RXR/USP) from the Hemimetabolous Insect Periplaneta americana (Dictyoptera, Blattidae) During Vitellogenesis. Mol Biotechnol 2013; 56:126-35. [DOI: 10.1007/s12033-013-9688-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Wang S, Wang J, Sun Y, Song Q, Li S. PKC-mediated USP phosphorylation at Ser35 modulates 20-hydroxyecdysone signaling in Drosophila. J Proteome Res 2012; 11:6187-96. [PMID: 23136906 DOI: 10.1021/pr3008804] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nuclear receptor complex of the steroid hormone, 20-hydroxyecdysone (20E), is a heterodimer composed of EcR and USP. Our previous studies in Drosophila suggest that PKC modulates 20E signaling by phosphorylating EcR-USP. However, the exact phosphorylation sites in EcR and USP have not been identified. Using LC-MS/MS analysis, we first identified Ser35 of USP as a PKC phosphorylation site. Mutation of USP Ser35 to Ala35 in S2 cells not only eliminated USP phosphorylation, but also attenuated the 20E-induced luciferase activity, mimicking the treatment with a PKC-specific inhibitor chelerythrine chloride in Kc cells. In the larval salivary glands (SG), inhibition of PKC activity with the binary GAL4/UAS system reduced USP phosphorylation and down-regulated the 20E primary-response genes, E75B and Br-C, and RNAi knockdown of Rack1 had stronger inhibitory effects than overexpression of PKCi. Moreover, RNAi knockdown of four PKC isozyme genes expressed in the SG exhibited a variety of inhibitory effects on USP phosphorylation and expression of E75B and Br-C, with the strongest inhibitory effects occurring when aPKC was knocked down by RNAi. Taken together, we conclude that PKC-mediated USP phosphorylation at Ser35 modulates 20E signaling in Drosophila.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
8
|
Wong YH, Arellano SM, Zhang H, Ravasi T, Qian PY. Dependency on de novo protein synthesis and proteomic changes during metamorphosis of the marine bryozoan Bugula neritina. Proteome Sci 2010; 8:25. [PMID: 20497544 PMCID: PMC2890537 DOI: 10.1186/1477-5956-8-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/24/2010] [Indexed: 11/12/2022] Open
Abstract
Background Metamorphosis in the bryozoan Bugula neritina (Linne) includes an initial phase of rapid morphological rearrangement followed by a gradual phase of morphogenesis. We hypothesized that the first phase may be independent of de novo synthesis of proteins and, instead, involves post-translational modifications of existing proteins, providing a simple mechanism to quickly initiate metamorphosis. To test our hypothesis, we challenged B. neritina larvae with transcription and translation inhibitors. Furthermore, we employed 2D gel electrophoresis to characterize changes in the phosphoproteome and proteome during early metamorphosis. Differentially expressed proteins were identified by liquid chromatography tandem mass spectrometry and their gene expression patterns were profiled using semi-quantitative real time PCR. Results When larvae were incubated with transcription and translation inhibitors, metamorphosis initiated through the first phase but did not complete. We found a significant down-regulation of 60 protein spots and the percentage of phosphoprotein spots decreased from 15% in the larval stage to12% during early metamorphosis. Two proteins--the mitochondrial processing peptidase beta subunit and severin--were abundantly expressed and phosphorylated in the larval stage, but down-regulated during metamorphosis. MPPbeta and severin were also down-regulated on the gene expression level. Conclusions The initial morphogenetic changes that led to attachment of B. neritina did not depend on de novo protein synthesis, but the subsequent gradual morphogenesis did. This is the first time that the mitochondrial processing peptidase beta subunit or severin have been shown to be down-regulated on both gene and protein expression levels during the metamorphosis of B. neritina. Future studies employing immunohistochemistry to reveal the expression locality of these two proteins during metamorphosis should provide further evidence of the involvement of these two proteins in the morphogenetic rearrangement of B. neritina.
Collapse
Affiliation(s)
- Yue Him Wong
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR.
| | | | | | | | | |
Collapse
|
9
|
Abstract
The molting process in arthropods is regulated by steroid hormones acting via nuclear receptor proteins. The most common molting hormone is the ecdysteroid, 20-hydroxyecdysone. The receptors of 20-hydroxyecdysone have also been identified in many arthropod species, and the amino acid sequences determined. The functional molting hormone receptors consist of two members of the nuclear receptor superfamily, namely the ecdysone receptor and the ultraspiracle, although the ecdysone receptor may be functional, in some instances, without the ultraspiracle. Generally, the ecdysone receptor/ultraspiracle heterodimer binds to a number of ecdysone response elements, sequence motifs that reside in the promoter of various ecdysteroid-responsive genes. In the ensuing transcriptional induction, the ecdysone receptor/ultraspiracle complex binds to 20-hydroxyecdysone or to a cognate ligand that, in turn, leads to the release of a corepressor and the recruitment of coactivators. 3D structures of the ligand-binding domains of the ecdysone receptor and the ultraspiracle have been solved for a few insect species. Ecdysone agonists bind to ecdysone receptors specifically, and ligand-ecdysone receptor binding is enhanced in the presence of the ultraspiracle in insects. The basic mode of ecdysteroid receptor action is highly conserved, but substantial functional differences exist among the receptors of individual species. Even though the transcriptional effects are apparently similar for ecdysteroids and nonsteroidal compounds such as diacylhydrazines, the binding shapes are different between them. The compounds having the strongest binding affinity to receptors ordinarily have strong molting hormone activity. The ability of the ecdysone receptor/ultraspiracle complex to manifest the effects of small lipophilic agonists has led to their use as gene switches for medical and agricultural applications.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
10
|
Horigane M, Ogihara K, Nakajima Y, Taylor D. Isolation and expression of the retinoid X receptor from last instar nymphs and adult females of the soft tick Ornithodoros moubata (Acari: Argasidae). Gen Comp Endocrinol 2008; 156:298-311. [PMID: 18342313 DOI: 10.1016/j.ygcen.2008.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/20/2007] [Accepted: 01/29/2008] [Indexed: 11/30/2022]
Abstract
Retinoid X receptors (RXR) exist broadly from invertebrates to vertebrates, and play essential roles in physiological processes of these organisms. In arthropods, RXRs form a complex with the ecdysteroid receptor (EcR) and ecdysteroids to mediate the regulation of ecdysis and reproduction. Compared to EcR, RXR and its homologue ultraspiracle (USP) are much less well understood. Therefore, we identified RXR of the soft tick Ornithodoros moubata (OmRXR) and used real-time PCR to examine the expression of OmRXR. This is the first report of RXR from a soft tick. OmRXR showed higher homology to hard tick, crustacean and vertebrate RXRs than insect RXRs and USPs. OmRXR expression was observed during molting in the last instar nymphs coinciding with EcR expression and increases in ecdysteroid titers. Tick vitellogenesis normally occurs soon after engorgement and OmRXR expression coinciding with EcR expression and ecdysteroid titers in engorged females occurred before vitellogenin (Vg) synthesis and egg maturation. The ecdysteroid/EcR/RXR complex appears to be important in the regulation of molting and vitellogenesis of soft ticks.
Collapse
Affiliation(s)
- Mari Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
11
|
Sun Y, An S, Henrich VC, Sun X, Song Q. Proteomic Identification of PKC-Mediated Expression of 20E-Induced Protein in Drosophila melanogaster. J Proteome Res 2007; 6:4478-88. [DOI: 10.1021/pr0705183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaning Sun
- Division of Plant Sciences, 1-31 Agriculture Building, University of Missouri, Columbia, Missouri 65211, Center for Biotechnology, Genomics, and Health Research, 3703 MHRA Building, University of North Carolina, Greensboro, North Carolina 27402, and Laboratory of Experimental Gerontology, National Institute on Aging, 6200 Seaforth Street, Baltimore, Maryland 21224
| | - Shiheng An
- Division of Plant Sciences, 1-31 Agriculture Building, University of Missouri, Columbia, Missouri 65211, Center for Biotechnology, Genomics, and Health Research, 3703 MHRA Building, University of North Carolina, Greensboro, North Carolina 27402, and Laboratory of Experimental Gerontology, National Institute on Aging, 6200 Seaforth Street, Baltimore, Maryland 21224
| | - Vincent C. Henrich
- Division of Plant Sciences, 1-31 Agriculture Building, University of Missouri, Columbia, Missouri 65211, Center for Biotechnology, Genomics, and Health Research, 3703 MHRA Building, University of North Carolina, Greensboro, North Carolina 27402, and Laboratory of Experimental Gerontology, National Institute on Aging, 6200 Seaforth Street, Baltimore, Maryland 21224
| | - Xiaoping Sun
- Division of Plant Sciences, 1-31 Agriculture Building, University of Missouri, Columbia, Missouri 65211, Center for Biotechnology, Genomics, and Health Research, 3703 MHRA Building, University of North Carolina, Greensboro, North Carolina 27402, and Laboratory of Experimental Gerontology, National Institute on Aging, 6200 Seaforth Street, Baltimore, Maryland 21224
| | - Qisheng Song
- Division of Plant Sciences, 1-31 Agriculture Building, University of Missouri, Columbia, Missouri 65211, Center for Biotechnology, Genomics, and Health Research, 3703 MHRA Building, University of North Carolina, Greensboro, North Carolina 27402, and Laboratory of Experimental Gerontology, National Institute on Aging, 6200 Seaforth Street, Baltimore, Maryland 21224
| |
Collapse
|
12
|
Jones D, Jones G. Farnesoid secretions of dipteran ring glands: what we do know and what we can know. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:771-98. [PMID: 17628277 DOI: 10.1016/j.ibmb.2007.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 05/16/2023]
Abstract
Harnessing of the Drosophila genetic system toward ascertaining the molecular endocrinology of higher dipteran (cyclorrhaphan) larval development has been a goal for over 70 years, beginning with the data left to us by pioneer researchers from the classical endocrine era. The results of their experiments evidence numerous ring gland activities that are parsimoniously explained as arising from secretions of the larval corpora allatal cells. Utilization of those data toward an understanding of molecular endocrinology of cyclorrhaphan metamorphosis has not yet achieved its hoped for fruition, in part due to a perceived difficulty in identifying larval targets of the molecule "methyl epoxyfarnesoate" (=juvenile hormone III). However, as is reviewed here, it is important to maintain a conceptual distinction between "the target of JH III"Versus "the target(s) of products secreted by the larval corpora allatal cells of ring glands." Recent advances have been made on the identity, regulation and reception of ring gland farnesoid products. When these advances are evaluated together with the above data from the classical endocrine era, there is a new opportunity to frame experimental hypotheses so as to discern underlying mechanisms on cyclorrhaphan larval-pupal metamorphosis that have been heretofore intractable. This paper reconsiders a number of evidenced physiological targets of secretions of corpora allatal cells of the larval ring gland, and places them in the context of more recent biochemical and molecular advances in the field.
Collapse
Affiliation(s)
- Davy Jones
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|
13
|
Sun X, Song Q. PKC-mediated USP phosphorylation is required for 20E-induced gene expression in the salivary glands of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:116-27. [PMID: 16783823 DOI: 10.1002/arch.20130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ecdysone receptor (EcR) and its heterodimer, ultraspiracle protein (USP), are ligand-dependent transcriptional factors that mediate the action of molting hormone 20-hydroxyecdysone. The activities of transcriptional factors are subjected to regulation not only by transcriptional/translational mechanisms, but also by posttranslational mechanisms such as phosphorylation. Protein kinase consensus recognition sequence analysis of Drosophila EcR and USP reveals multiple phosphorylation sites for protein kinase C (PKC) and casein kinase II (CKII) on EcR and USP sequence. By using specific protein kinase inhibitors, we have shown that PKC, not CKII, is responsible for USP phosphorylation. Inhibition of PKC activity by protein kinase inhibitors blocked USP phosphorylation, resulting in inhibition of 20E-induced gene expression at both transcriptional and translational levels. The composite data suggest that PKC-mediated USP phosphorylation is required for 20E-induced gene expression in the salivary glands of Drosophila melanogaster.
Collapse
Affiliation(s)
- Xiaoping Sun
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
14
|
Kethidi DR, Li Y, Palli SR. Protein kinase C mediated phosphorylation blocks juvenile hormone action. Mol Cell Endocrinol 2006; 247:127-34. [PMID: 16448742 DOI: 10.1016/j.mce.2005.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 10/19/2005] [Accepted: 12/07/2005] [Indexed: 11/26/2022]
Abstract
Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Although the biological actions of JH are well documented, the molecular mechanisms underlying JH action are poorly understood. We studied the molecular basis of JH action using a JH response element (JHRE) identified in the promoter region of JH esterase gene cloned from Choristoneura fumiferana, which is responsive to JH and 20-hydroxyecdysone (20E). In Drosophila melanogaster L57 cells, the JHRE-regulated reporter gene was induced by JH I, JH III, methoprene, and hydroprene. Nuclear proteins isolated from L57 cells bound to the JHRE and exposure of these proteins to ATP resulted in a reduction in their DNA binding. Either JH III or calf intestinal alkaline phosphatase (CIAP) was able to restore the binding of nuclear proteins to the DNA. In addition, protein kinase C inhibitors increased and protein kinase C activators reduced the binding of nuclear proteins to the JHRE. In transactivation assays, protein kinase C inhibitors induced the luciferase gene placed under the control of a minimal promoter and the JHRE. These data suggest that protein kinase C mediated phosphorylation prevents binding of nuclear proteins to juvenile hormone responsive promoters resulting in suppression of JH action.
Collapse
Affiliation(s)
- Damu R Kethidi
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
15
|
Quan GX, Krell PJ, Arif BM, Feng Q. Receptor of activated C kinase 1 (RACK1) is necessary for the 20-hydroxyecdysone-induced expression of the transcription factor CHR3 in the spruce budworm Choristoneura fumiferana. INSECT MOLECULAR BIOLOGY 2006; 15:79-87. [PMID: 16469071 DOI: 10.1111/j.1365-2583.2006.00611.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
To initiate moulting and metamorphosis, 20-hydroxyecdysone (20E) binds to its nuclear receptors and the ligand-receptor complex then mediates changes in gene expression. Phosphorylation of the receptors is required for their function. The intracellular signal transduction pathway that is involved in receptor phosphorylation remains elusive. This study provides evidence that the receptor of activated C kinase 1 (RACK1) and protein kinase C (PKC) signal transduction cascade is involved in the 20E-induced expression of the moult-associated transcription factor CHR3. A cDNA clone encoding a receptor of activated C kinase 1 was isolated from Choristoneura fumiferana (CfRACK1). This single copy gene coded a 36 kDa protein and was expressed ubiquitously in all of the developmental stages and the tissues tested, including the midgut, epidermis, fat body, head, Malpighian tubules, ovary and testis of larvae. High levels of the transcripts were also detected in a midgut-derived CF-203 cell line. We noticed that the green fluorescence protein-fused CfRACK1 protein was distributed in the cytosol surrounding the nuclei in stably transformed cells. Interference of CfRACK1 mRNA suppressed the 20E-induced expression of the transcription factor CHR3. Dequalinium-14; 1,1'-decamethylenebis-4-aminoquinaldinium diiodide (DECA), an inhibitor of RACK1 binding to protein kinase C, blocked the 20E-induced expression of CHR3 and accumulation of the ecdysone receptor (EcR) in the nuclei. All of these data together suggest that 20E-induced expression of CHR3 may involve phosphorylation of the ecdysone receptor component through the PKC/RACK1 signal transduction cascade, which facilitates the import of the receptor into the nuclei of cells.
Collapse
Affiliation(s)
- G X Quan
- Great Lakes Forestry Centre, Canadian Forest Service, Sault Ste. Marie, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Ogura T, Minakuchi C, Nakagawa Y, Smagghe G, Miyagawa H. Molecular cloning, expression analysis and functional confirmation of ecdysone receptor and ultraspiracle from the Colorado potato beetle Leptinotarsa decemlineata. FEBS J 2005; 272:4114-28. [PMID: 16098194 DOI: 10.1111/j.1742-4658.2005.04823.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
cDNA cloning of ecdysone receptor (EcR) and ultraspiracle (USP) of the coleopteran Colorado potato beetle Leptinotarsa decemlineata (LdEcR and LdUSP) was conducted. Amino-acid sequences of the proteins deduced from cDNA sequences showed striking homology to those of other insects, especially the coleopteran yellow mealworm Tenebrio molitor. Northern hybridization analysis showed a 12.4-kb message for the LdEcR A-isoform, a 10.5-kb message for the LdEcR B1-isoform and a 5.7-kb message for the LdUSP, in fat body, gut, integument, testis and ovaries. In developmental profile studies, expression of both the LdEcR and LdUSP transcript in integument changed dramatically. In gel mobility shift assays, in vitro translated LdEcR alone bound weakly to the pal1 ecdysone response element, although LdUSP alone did not, and this binding was dramatically enhanced by the addition of LdUSP. LdEcR/LdUSP complex also showed significant binding to an ecdysone agonist, ponasterone A (K(D) = 2.8 nm), while LdEcR alone showed only weak binding (K(D) = 73.4 nm), and LdUSP alone did not show any binding. The receptor-binding affinity of various ecdysone agonists to LdEcR/LdUSP was not correlated to their larvicidal activity to L. decemlineata. From these results, it was suggested that multiple factors including the receptor binding affinity are related to the determination of the larvicidal activity of nonsteroidal ecdysone agonists in L. decemlineata.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Cloning, Molecular
- Coleoptera
- DNA, Complementary
- Electrophoresis, Polyacrylamide Gel
- Ligands
- Molecular Sequence Data
- Protein Binding
- Protein Biosynthesis
- RNA, Messenger/genetics
- Receptors, Steroid/agonists
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Takehiko Ogura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
17
|
Siaussat D, Bozzolan F, Queguiner I, Porcheron P, Debernard S. Cell cycle profiles of EcR, USP, HR3 and B cyclin mRNAs associated to 20E-induced G2 arrest of Plodia interpunctella imaginal wing cells. INSECT MOLECULAR BIOLOGY 2005; 14:151-161. [PMID: 15796748 DOI: 10.1111/j.1365-2583.2004.00540.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using the IAL-PID2 cell line established from pupally committed imaginal wing discs of Plodia interpunctella, we have investigated the dynamics of cellular and molecular events involved in the G2/M arrest. We have first cloned a cDNA sequence named PIUSP-2 that likely encodes a homologue of the Ultraspiracle-2 isoform of Manduca sexta. When the IAL-PID2 cells were exposed to a 8 h 20E treatment applied at different times of the cell cycle, an optimal period of sensitivity of cells to 20E, in inducing G2 arrest, was determined at the S/G2 transition. Using cDNA probes specifically designed from Plodia B cyclin (PcycB), ecdysone receptor B1-isoform (PIEcR-B1) and HR3 transcription factor (PHR3), we provide evidence that the 20E-induced G2 arrest was correlated to a high induction of PHR3, PIEcR-B1, PIUSP-2 mRNAs at the S/G2 transition and a decrease in PcycB mRNA level at the end of G2 phase.
Collapse
Affiliation(s)
- D Siaussat
- Laboratoire de Physiologie Cellulaire des Invertébrés, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | |
Collapse
|
18
|
Song Q, Sun X, Jin XY. 20E-regulated USP expression and phosphorylation in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1211-1218. [PMID: 14599493 DOI: 10.1016/j.ibmb.2003.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The developmental profiles of ultraspiracle protein (USP) in the tissues of Drosophila melanogaster were investigated using a USP specific monoclonal antibody (mAb) as a probe. Western blot analysis revealed four USP mAb reactive bands (p46, p48, p54 and p56), each with tissue- and stage-specific expression patterns. The p54 and p56 were expressed in nearly all larval and prepupal tissues tested with fluctuations in abundance. However, the p46 and p48 were detected exclusively in the midgut of prepupae and shown to be the proteolytic products of p54 and p56. A lambda protein phosphatase assay demonstrated that the p56 is the phosphorylated form of p54. The expression and phosphorylation of the p54 USP is regulated by 20E. Protein kinase consensus recognition sequence analysis revealed 10 putative phosphorylation sites in Drosophila USP, with seven sites for protein kinase C (PKC) and three sites for casein kinase II (CKII). The fact that seven out of 10 putative phosphorylation sites reside in the ligand- and DNA-binding domains suggests that phosphorylation may play important role in regulating USP function. Identification of the in vivo USP phosphorylation sites and signal transduction pathways that regulate the specific USP phosphorylation is currently underway.
Collapse
Affiliation(s)
- Q Song
- Department of Entomology, University of Missouri, 1-87 Agriculture Building, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
19
|
Sun X, Song Q, Barrett B. Effects of ecdysone agonists on the expression of EcR, USP and other specific proteins in the ovaries of the codling moth (Cydia pomonella L.). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:829-840. [PMID: 12878229 DOI: 10.1016/s0965-1748(03)00082-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tebufenozide and methoxyfenozide have been previously shown to significantly reduce fecundity and cause vitellogenin accumulation in hemolymph of the codling moth Cydia pomonella L. In the present study, the effects of these ecdysone agonists, tebufenozide and methoxyfenozide, on the expression of ecdysone receptor (EcR), ultraspiracle protein (USP) and other proteins in the ovaries of C. pomonella L., were investigated at both the translational and/or transcriptional levels with an aim to elucidate the mechanisms by which the fecundity was reduced. Western and Northern blot analyses revealed that the expression of a 65 kDa (p65) EcR, and 60 and 64 kDa (p60 and p64) USP proteins were enhanced by tebufenozide and methoxyfenozide at both transcriptional and translational levels. Northern blot analysis indicated that the p65 EcR protein is encoded by EcRB1 transcript and that the p60 and p64 USP bands were the products of USP-1 transcript. Immunoprecipitation assays demonstrated that both the p60 and p64 USP coprecipitated with the p65 EcR and that p64 was a dominant USP to form complex with EcR. In addition, several other specific proteins were also identified and their expressions affected by the agonists. The data suggest that the ecdysone agonists regulate, via the EcR/USP complex, the expression of these specific proteins that might eventually lead to the inhibition of fecundity in the codling moth.
Collapse
Affiliation(s)
- X Sun
- Department of Entomology, University of Missouri, 1-87 Agriculture Building, Columbia, MO 65211, USA
| | | | | |
Collapse
|
20
|
Minakuchi C, Nakagawa Y, Kiuchi M, Seino A, Tomita S, Kamimura M. Molecular cloning and expression analysis of ultraspiracle (USP) from the rice stem borer Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:41-49. [PMID: 12459199 DOI: 10.1016/s0965-1748(02)00165-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
cDNA for ultraspiracle (USP) from the lepidopteran rice stem borer Chilo suppressalis was cloned using PCR techniques. The deduced amino acid sequence of C. suppressalis USP (CsUSP) was very similar to those of other lepidopteran USPs, especially to the Manduca sexta USP-2 isoform. Northern hybridization analysis detected a 6.5-kb message in the epidermis, fat body, and midgut of wandering larvae. CsUSP mRNA expression in the epidermis varied little during the last larval instar. Gel mobility shift assays showed that in vitro translated C. suppressalis ecdysone receptor (CsEcR) and CsUSP proteins bound to the Pal1 or Drosophila melanogaster hsp27 ecdysone response element as a heterodimer. In a ligand-receptor binding assay, [(3)H]ponasterone A ([(3)H]PoA) did not bind to individual CsEcR or CsUSP protein, but bound strongly to the CsEcR/CsUSP complex. [(3)H]PoA binding to CsEcR/CsUSP complex was competed by 20-hydroxyecdysone and a non-steroidal ecdysteroid agonist, RH-5992, but not by cholesterol, indicating that compounds with molting hormone activity against C. suppressalis can bind specifically to the CsEcR/CsUSP complex.
Collapse
Affiliation(s)
- Chieka Minakuchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Lafont R, Dinan L. Practical uses for ecdysteroids in mammals including humans: an update. JOURNAL OF INSECT SCIENCE (ONLINE) 2003. [PMID: 15844229 DOI: 10.1673/031.003.0701] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Ecdysteroids are widely used as inducers for gene-switch systems based on insect ecdysteroid receptors and genes of interest placed under the control of ecdysteroid-response elements. We review here these systems, which are currently mainly used in vitro with cultured cells in order to analyse the role of a wide array of genes, but which are expected to represent the basis for future gene therapy strategies. Such developments raise several questions, which are addressed in detail. First, the metabolic fate of ecdysteroids in mammals, including humans, is only poorly known, and the rapid catabolism of ecdysteroids may impede their use as in vivo inducers. A second set of questions arose in fact much earlier with the pioneering "heterophylic" studies of Burdette in the early sixties on the pharmacological effects of ecdysteroids on mammals. These and subsequent studies showed a wide range of effects, most of them being beneficial for the organism (e.g. hypoglycaemic, hypocholesterolaemic, anabolic). These effects are reviewed and critically analysed, and some hypotheses are proposed to explain the putative mechanisms involved. All of these pharmacological effects have led to the development of a wide array of ecdysteroid-containing preparations, which are primarily used for their anabolic and/or "adaptogenic" properties on humans (or horses or dogs). In the same way, increasing numbers of patents have been deposited concerning various beneficial effects of ecdysteroids in many medical or cosmetic domains, which make ecdysteroids very attractive candidates for several practical uses. It may be questioned whether all these pharmacological actions are compatible with the development of ecdysteroid-inducible gene switches for gene therapy, and also if ecdysteroids should be classified among doping substances.
Collapse
Affiliation(s)
- R Lafont
- Université Pierre et Marie Curie, Institut de Biologie Intégrative, Laboratoire d'Endocrinologie Moléculaire et Evolution, 7 Quai Saint Bernard, Case Courrier No 29, 75252 Paris Cedex 05, France.
| | | |
Collapse
|
22
|
|
23
|
Royer V, Fraichard S, Bouhin H. A novel putative insect chitinase with multiple catalytic domains: hormonal regulation during metamorphosis. Biochem J 2002; 366:921-8. [PMID: 12059786 PMCID: PMC1222823 DOI: 10.1042/bj20011764] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2001] [Revised: 05/07/2002] [Accepted: 06/11/2002] [Indexed: 11/17/2022]
Abstract
We have used differential display to identify genes that are regulated by juvenile hormone in the epidermis of the beetle Tenebrio molitor. One of the genes encodes T. molitor chitinase 5 (TmChit5), a chitinase possessing an unusual structure. Sequence analysis of TmChit5 identified five 'chitinase units' of approx. 480 amino acids with similarity to chitinase family 18. These units are separated by less conserved regions containing putative PEST (rich in proline, glutamic acid, serine and threonine) sequences, putative chitin-binding domains and mucin domains. Northern-blot analysis identified a single transcript of approx. 9 kb, whose abundance correlated with that of 20-hydroxyecdysone during metamorphosis. Injection of pupae with 20-hydroxyecdysone alone, or in combination with cycloheximide, indicated that TmChit5 expression is directly induced by the hormone. Further experiments indicated that methoprene (a juvenile hormone analogue) indirectly induced TmChit5 mRNA expression. On the basis of the present results and previous studies, we propose a molecular mechanism for cuticle digestion during the moulting process.
Collapse
Affiliation(s)
- Véronique Royer
- Unité Mixte de Recherche CNRS 5548, Développement-Communication Chimique, Université de Bourgogne, 21000 Dijon, France
| | | | | |
Collapse
|
24
|
Zhou S, Zhang J, Hirai M, Chinzei Y, Kayser H, Wyatt GR, Walker VK. A locust DNA-binding protein involved in gene regulation by juvenile hormone. Mol Cell Endocrinol 2002; 190:177-85. [PMID: 11997191 DOI: 10.1016/s0303-7207(01)00602-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although juvenile hormone (JH) has essential roles in insect development and reproduction, the molecular mechanisms of gene regulation by JH remain an enigma. In Locusta migratoria, the partially palindromic 15-nt sequence, GAGGTTCGAG(A)/(T)CCT(T)/(C), found upstream of a JH-induced gene, jhp21, was designated as a putative juvenile hormone response element (JHRE). When JH-deprived adult female locusts were treated with the active JH analog, methoprene, a fat body nuclear factor that bound specifically to JHRE appeared after 24 h. Binding exhibited a preference for an inverted repeat with GAGGTTC in the left half-site, a single nucleotide spacer, and a right half-site in which some variation is acceptable. Binding to JHRE was abolished by phosphorylation catalyzed by a C-type protein kinase present in the nuclear extracts. The DNA-binding protein is thus believed to be a transcription factor, which is brought to an active state through the action of JH and then participates in the regulation of certain JH-dependent genes.
Collapse
Affiliation(s)
- S Zhou
- Department of Biology, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | | | | | | | | | |
Collapse
|
25
|
Durica DS, Wu X, Anilkumar G, Hopkins PM, Chung ACK. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Mol Cell Endocrinol 2002; 189:59-76. [PMID: 12039065 DOI: 10.1016/s0303-7207(01)00740-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here complete coding sequences for the Uca pugilator homologs of the ecdysteroid (UpEcR) and retinoid-X receptors (UpRXR). Library screenings recovered cDNA clones containing a unique amino terminal open-reading frame (A/B domain) for each gene, most similar to insect B1 EcR and USP1/RXR isoforms. Splicing variants in the UpRXR ligand-binding domain were also identified, in a region critical for folding of Drosophila and lepidopteran USP. UpEcR and UpRXR proteins were able to associate, and both are required for binding to an ecdysteroid HRE; these interactions were not hormone-dependent. Ribonuclease protection assays (RPA) were conducted using A/B domain and 'common' (C or E) domain probes on RNA isolated from various stages of regenerating limb buds and ovaries. For several of the limb bud and ovarian stages examined, the relative level of A/B domain sequence protected was significantly less than common domain suggesting alternative amino terminal isoforms other than those isolated through cloning. This is the first report of UpEcR and UpRXR transcription during ovarian maturation, implicating the ovary as a potential target for hormonal control in Crustacea.
Collapse
Affiliation(s)
- David S Durica
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| | | | | | | | | |
Collapse
|
26
|
Hannan GN, Hill RJ. LcUSP, an ultraspiracle gene from the sheep blowfly, Lucilia cuprina: cDNA cloning, developmental expression of RNA and confirmation of function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:771-781. [PMID: 11378412 DOI: 10.1016/s0965-1748(00)00182-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA sequence corresponding to most of the DNA-binding domain of a Lucilia cuprina ultraspiracle protein (LcUSP) was amplified by PCR from genomic DNA and cloned. This cloned fragment was used to screen a L. cuprina cDNA library and to isolate a full-length LcUSP encoding sequence within a 3800-bp cDNA clone. The conceptually translated amino acid sequence of this open reading frame (467 amino acids) was used in alignment comparisons and phylogenetic analyses to reveal that LcUSP most closely resembles DmUSP relative to other known insect nuclear hormone receptors. An antisense RNA probe specific for the 5' end of Lcusp was used in ribonuclease protection assays to detect significant levels of Lcusp RNA throughout L. cuprina development. Highest levels were detected in embryos, late third instar larvae, pupae and adult females. This pattern parallels the pattern of expression observed for Dmusp RNAs during Drosophila melanogaster development. Finally, the LcUSP sequence was engineered for expression in mammalian cells and we now report that the cloned LcUSP is functional in vivo and can act as a partner for a chimeric L. cuprina ecdysone receptor to form an ecdysteroid-dependent transcription factor in mammalian cells.
Collapse
Affiliation(s)
- G N Hannan
- CSIRO Molecular Science, Sydney Laboratory, PO Box 184, North Ryde, NSW 2113, Australia.
| | | |
Collapse
|
27
|
Riddiford LM, Cherbas P, Truman JW. Ecdysone receptors and their biological actions. VITAMINS AND HORMONES 2001; 60:1-73. [PMID: 11037621 DOI: 10.1016/s0083-6729(00)60016-x] [Citation(s) in RCA: 370] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- L M Riddiford
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | |
Collapse
|
28
|
Langelan RE, Fisher JE, Hiruma K, Palli SR, Riddiford LM. Patterns of MHR3 expression in the epidermis during a larval molt of the tobacco hornworm Manduca sexta. Dev Biol 2000; 227:481-94. [PMID: 11071768 DOI: 10.1006/dbio.2000.9895] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MHR3, an ecdysone-induced transcription factor, was shown to appear in the abdominal epidermis of the tobacco hornworm Manduca sexta in a pattern-specific manner as the 20-hydroxyecdysone (20E) titer rises for the larval molt. The crochet epidermis that forms the hooked setae on the proleg is first to show MHR3 mRNA and protein followed sequentially by the spiracle, the dorsal intrasegmental annuli, the interannular regions, and finally the trichogen and tormogen cells. The protein appears in the nuclei about 8 h before the onset of cuticle formation, is present during the outgrowth of the setae, and disappears after epicuticle formation. In vitro studies showed that MHR3 mRNA induction in the crochet epidermis by 20E was more sensitive (EC(50) = 10(-6) M; 50% induction by 2 h exposure to 4 x 10(-6) M 20E) and did not require protein synthesis for maximal accumulation compared to the dorsal epidermis. The ecdysone receptor complex is present in both tissues at the outset of the molt and therefore is not a determining factor in these responses. Thus, in addition to the ecdysone receptor complex, region-specific factors govern both sensitivity and timing of responsiveness of MHR3 to 20E to ensure that this transcription factor will be present when needed for its differentiative role.
Collapse
Affiliation(s)
- R E Langelan
- Department of Zoology, University of Washington, Seattle, Washington, 98195-1800, USA
| | | | | | | | | |
Collapse
|