1
|
Hungerford AJ, Bakos HW, Aitken RJ. Addition of Vitamin C Mitigates the Loss of Antioxidant Capacity, Vitality and DNA Integrity in Cryopreserved Human Semen Samples. Antioxidants (Basel) 2024; 13:247. [PMID: 38397845 PMCID: PMC10885938 DOI: 10.3390/antiox13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Cryopreservation of human spermatozoa is a necessity for males suffering from infertility who cannot produce fresh semen for insemination. However, current ART cryopreservation protocols are associated with losses of sperm motility, vitality and DNA integrity, which are thought to be linked to the induction of oxidative damage and the toxic properties of commercial cryoprotectants (CPAs). Preventing or mitigating these losses would be hugely beneficial to sperm survival during ART. Therefore, in this in vitro investigation, lipid peroxidation, production of reactive oxygen species, movement characteristics, antioxidant capacity, vitality, and DNA integrity were examined in semen samples both pre- and post-cryopreservation with CPA supplementation. The findings revealed a 50% reduction in antioxidant capacity with CPA addition, which was accompanied by significant increases in generation of reactive oxygen species and formation of lipid aldehydes. These changes were, in turn, correlated with reductions in sperm viability, motility and DNA integrity. Antioxidant supplementation generated bell-shaped dose-response curves with both resveratrol and vitamin C, emphasising the vulnerability of these cells to both oxidative and reductive stress. At the optimal dose, vitamin C was able to significantly enhance vitality and reduce DNA damage recorded in cryopreserved human spermatozoa. An improvement in sperm motility did not reach statistical significance, possibly because additional pathophysiological mechanisms limit the potential effectiveness of antioxidants in rescuing this aspect of sperm function. The vulnerability of human spermatozoa to reductive stress and the complex nature of sperm cryoinjury will present major challenges in creating the next generation of cryoprotective media.
Collapse
Affiliation(s)
- Alena J. Hungerford
- School of Environmental and Life Sciences, College of Engineering, Science and Environmental Science, University of Newcastle, Callaghan, NSW 2308, Australia; (A.J.H.); (H.W.B.)
| | - Hassan W. Bakos
- School of Environmental and Life Sciences, College of Engineering, Science and Environmental Science, University of Newcastle, Callaghan, NSW 2308, Australia; (A.J.H.); (H.W.B.)
- Memphasys Ltd., Sydney, NSW 2140, Australia
| | - Robert J. Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and Environmental Science, University of Newcastle, Callaghan, NSW 2308, Australia; (A.J.H.); (H.W.B.)
- Memphasys Ltd., Sydney, NSW 2140, Australia
| |
Collapse
|
2
|
Optimum calcium concentration: a crucial factor in regulating sperm motility in vitro. Cell Biochem Biophys 2015; 70:1177-83. [PMID: 24880438 DOI: 10.1007/s12013-014-0038-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sperm motility can be maintained in vitro by incubation in a defined medium under specific conditions. In most studies, the exact role of various constituents of epididymal fluid, including calcium, has remained obscure. Most of the culture media have included millimolar concentrations of calcium, but previous reports have indicated that millimolar calcium inhibits sperm motility. In this present study, we sought the optimum concentration of extracellular calcium required for optimum sperm motility. This study showed that extracellular calcium has a concentration-dependent biphasic role in motility regulation. It promoted motility and velocity at lower (10 µM) concentration whereas notably inhibited it at higher concentrations. When external membrane-bound calcium was removed by ethylene glycol tetraacetic acid, motility decreased considerably. To confirm the motility-inhibiting role of calcium above 10 µM, a sperm motility-stimulating protein (MSP) recently reported from our laboratory was used which at 0.9 μM induces motility in 60-70 % cells. Calcium at 10 µM had no appreciable effect on the motility-promoting activity of the MSP but depressed the activity above 10 µM. Thus, our present results emphasize the biphasic role of extracellular calcium and the importance of its optimum concentration in different buffers and media used for sperm motility initiation.
Collapse
|
3
|
Loux SC, Macías-Garcia B, González-Fernández L, Canesin HD, Varner DD, Hinrichs K. Regulation of axonemal motility in demembranated equine sperm. Biol Reprod 2014; 91:152. [PMID: 25339104 DOI: 10.1095/biolreprod.114.122804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Equine in vitro fertilization is not yet successful because equine sperm do not effectively capacitate in vitro. Results of previous studies suggest that this may be due to failure of induction of hyperactivated motility in equine sperm under standard capacitating conditions. To evaluate factors directly affecting axonemal motility in equine sperm, we developed a demembranated sperm model and analyzed motility parameters in this model under different conditions using computer-assisted sperm analysis. Treatment of ejaculated equine sperm with 0.02% Triton X-100 for 30 sec maximized both permeabilization and total motility after reactivation. The presence of ATP was required for motility of demembranated sperm after reactivation, but cAMP was not. The calculated intracellular pH of intact equine sperm was 7.14 ± 0.07. Demembranated sperm showed maximal total motility at pH 7. Neither increasing pH nor increasing calcium levels, nor any interaction of the two, induced hyperactivated motility in demembranated equine sperm. Motility of demembranated sperm was maintained at free calcium concentrations as low as 27 pM, and calcium arrested sperm motility at much lower concentrations than those reported in other species. Calcium arrest of sperm motility was not accompanied by flagellar curvature, suggesting a failure of calcium to induce the tonic bend seen in other species and thought to support hyperactivated motility. This indicated an absence, or difference in calcium sensitivity, of the related asymmetric doublet-sliding proteins. These studies show a difference in response to calcium of the equine sperm axoneme to that reported in other species that may be related to the failure of equine sperm to penetrate oocytes in vitro under standard capacitating conditions. Further work is needed to determine the factors that stimulate hyperactivated motility at the axonemal level in equine sperm.
Collapse
Affiliation(s)
- Shavahn C Loux
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Beatríz Macías-Garcia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Lauro González-Fernández
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Heloisa DeSiqueira Canesin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
4
|
Cordero-Martínez J, Aguirre-Alvarado C, Wong C, Rodríguez-Páez L. Effect of oxamic analogues on functional mice sperm parameters. Syst Biol Reprod Med 2014; 60:189-98. [PMID: 24654556 DOI: 10.3109/19396368.2014.902144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study evaluates the effect of oxamate derivatives (N-ethyl, N-propyl, N-butyl oxamates) on functional murine sperm parameters, towards a new male non-hormonal contraceptive. These derivatives are selective inhibitors of lactate dehydrogenase-C4 (LDH-C4). LDH-C4 is a sperm-specific enzyme that plays an important role in ATP production for maintaining progressive motility as well as to induce capacitation and hyperactivation. The results demonstrate that all oxamate derivatives selectively inhibited LDH-C4 in mouse sperm extracts. The IC(50) values for hexokinase and glyceraldehyde-3-phosphate dehydrogenase were at least an order of magnitude greater than LDH-C4 IC(50) values. Prodrugs of oxamate derivatives assayed on sperm cells diminished normal sperm motility parameters, acrosome reaction, and cell viability in a concentration dependent manner. Also, we performed in vivo studies to determine the potential toxicity and possible contraceptive ability of these inhibitors. Mouse sperm were more sensitive to the N-butyl oxamate ethyl ester (NBOXet). Furthermore, results showed that NBOXet was of a low toxicity substance that diminished the total and progressive motility as well as the kinematic parameters of sperm cells. Data from in vitro and in vivo studies showed that N-butyl oxamate and its prodrug, are selective inhibitors of sperm LDH-C4, has low toxicity, and inhibits sperm progressive motility, offering some of the desirable characteristics of a male contraceptive: effect, low toxicity, and selectivity.
Collapse
Affiliation(s)
- Joaquín Cordero-Martínez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional , México
| | | | | | | |
Collapse
|
5
|
Ishijima S, Mohri H, Overstreet JW, Yudin AI. Hyperactivation of monkey spermatozoa is triggered by Ca2+ and completed by cAMP. Mol Reprod Dev 2007; 73:1129-39. [PMID: 16804884 DOI: 10.1002/mrd.20420] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Digital image analysis of the flagellar movements of cynomolgus macaque spermatozoa hyperactivated by caffeine and cAMP was carried out to understand the change in flagellar movements during hyperactivation. The degree of flagellar bending increased remarkably after hyperactivation, especially at the base of the midpiece. Mainly two beating patterns were seen in the hyperactivated monkey sperm flagella: remarkably asymmetrical flagellar bends of large amplitude and relatively symmetrical flagellar bends of large amplitude. The asymmetrical bends were often seen in the early stage of hyperactivation, whereas the symmetrical bends executed nonprogressive, figure-of-eight movement. Beat frequency of the hyperactivated spermatozoa significantly decreased while wavelength of flagellar waves roughly doubled. To determine the conditions under which the axonemes of hyperactivated sperm flagella have asymmetrical or symmetrical bends, the plasma membranes of monkey spermatozoa were extracted with Triton X-100 and motility was reactivated with MgATP(2-) under various conditions. The asymmetrical flagellar bends were brought about by Ca(2+), whereas the symmetrical flagellar bends resulted from low levels of Ca(2+) and high levels of cAMP. Under these conditions, beat frequency and wavelength of flagellar waves of demembranated, reactivated spermatozoa were similar to those of the hyperactivated spermatozoa. These results suggest that during hyperactivation of monkey spermatozoa intracellular Ca(2+) concentrations first rise, and then decrease while cAMP concentrations increase simultaneously.
Collapse
Affiliation(s)
- Sumio Ishijima
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, O-okayama, Tokyo, Japan.
| | | | | | | |
Collapse
|
6
|
Zuccarelli MD, Ingermann RL. Calcium-induced quiescence of sperm motility in the bluegill (Lepomis macrochirus). ACTA ACUST UNITED AC 2007; 307:590-9. [PMID: 17724674 DOI: 10.1002/jez.414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Before dilution in hypoosmotic media sperm of freshwater fish are maintained quiescent by a range of factors including osmolality, K+ and pH, and the onset of motility is generally associated with an increase in cytoplasmic Ca2+. In contrast, Ca2+ in conjunction with osmolality was found to inhibit motility of intact bluegill sperm. Consistent with seminal plasma composition, 0.16 mmol/L Ca2+ and greater, in conjunction with an osmotic concentration of 290 mOsm/kg, inhibited the onset of bluegill sperm motility; sperm diluted in saline at 290 mOsm/kg without Ca2+ became motile. Cations Mn2+ and Sr2+, in conjunction with osmolality, had an inhibitory effect on initiation of sperm motility similar to that of Ca2+. Sperm motility was inhibited by Ca2+ channel blockers nimodipine and nifedipine, the mitochondrial Ca2+ uniporter inhibitor ruthenium red and the calmodulin inhibitors W-7 and trifluoperazine dihydrochloride. These results provide evidence that elevated cytoplasmic Ca2+ inhibits sperm motility and yet low levels permit or promote motility. This study demonstrates a unique inhibitory action of Ca2+ on the motility of intact fish sperm at physiologically relevant levels.
Collapse
Affiliation(s)
- Micah D Zuccarelli
- Department of Biological Sciences, Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
7
|
Ignotz GG, Suarez SS. Calcium/Calmodulin and Calmodulin Kinase II Stimulate Hyperactivation in Demembranated Bovine Sperm1. Biol Reprod 2005; 73:519-26. [PMID: 15878888 DOI: 10.1095/biolreprod.105.040733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hyperactivated motility is observed among sperm in the mammalian oviduct near the time of ovulation. It is characterized by high-amplitude, asymmetrical flagellar beating and assists sperm in penetrating the cumulus oophorus and zona pellucida. Elevated intracellular Ca2+ is required for the initiation of hyperactivated motility, suggesting that calmodulin (CALM) and Ca2+/CALM-stimulated pathways are involved. A demembranated sperm model was used to investigate the role of CALM in promoting hyperactivation. Ejaculated bovine sperm were demembranated and immobilized by brief exposure to Triton X-100. Motility was restored by addition of reactivation medium containing MgATP and Ca2+, and hyperactivation was observed as free Ca2+ was increased from 50 nM to 1 microM. However, when 2.5 mM Ca2+ was added to the demembranation medium to extract flagellar CALM, motility was not reactivated unless exogenous CALM was readded. The inclusion of anti-CALM IgG in the reactivation medium reduced the proportion hyperactivated in 1 microM Ca2+ to 5%. Neither control IgG, the CALM antagonist W-7, nor a peptide directed against the CALM-binding domain of myosin light chain kinase (MYLK2) inhibited hyperactivation. However, when sperm were reactivated in the presence of CALM kinase II (CAMK2) inhibiting peptides, hyperactivation was reduced by 75%. Furthermore, an inhibitor of CAMK2, KN-93, inhibited hyperactivation without impairing normal motility of intact sperm. CALM and CAMK2 were immunolocalized to the acrosomal region and flagellum. These results indicate that hyperactivation is stimulated by a Ca2+/CALM pathway involving CAMK2.
Collapse
Affiliation(s)
- George G Ignotz
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
8
|
Williams KM, Ford WCL. Effects of Ca-ATPase inhibitors on the intracellular calcium activity and motility of human spermatozoa. ACTA ACUST UNITED AC 2003; 26:366-75. [PMID: 14636222 DOI: 10.1111/j.1365-2605.2003.00438.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although evidence suggests that high intracellular calcium activity ([Ca2+]i) inhibits sperm motility, data concerning [Ca2+]i within, or slightly above, the physiological range are sparse, particularly in mammalian sperm. We investigated inhibitors of the sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA) and the plasma membrane Ca-ATPase with the objective of increasing the intracellular calcium ion activity in human spermatozoa to study its effect on motility and other functions. Thapsigargin (20 micromol/L) increased [Ca2+]i from 140 +/- 7 nmol/L over an approximately 2-min period to reach a plateau of 530 +/- 84 nmol/L (mean +/- SEM, n = 3, p < 0.05). In sperm suspended in calcium-free medium thapsigargin increased [Ca2+]i from 13 +/- 3.3 to 35 +/- 7.5 nmol/L (p < 0.01), consistent with the release of calcium from intracellular stores. Cyclopiazonic acid (60 micromol/L) caused a transient decrease in [Ca2+]i. Quercetin, (200 micromol/L) caused a rapid increase in [Ca2+]i to 1280 +/- 90 nmol/L, after which [Ca2+]i fell quickly at first but then more slowly. Thapsigargin (20 micromol/L) caused approximately 70% of sperm to acrosome react in < or = 5 min, but once acrosome reacted, many sperm died over the next 30 min. Lower concentrations of thapsigargin caused fewer acrosome reactions but were less toxic. Both thapsigargin and quercetin caused rapid dose-dependent decreases in sperm motility. The results are consistent with high [Ca2+]i in the range observed in caput epididymal or cryopreserved spermatozoa inhibiting motility, but might be confounded by other events following the acrosome reaction.
Collapse
Affiliation(s)
- K M Williams
- Division of Obstetrics and Gynaecology, University of Bristol, St Michael's Hospital, Bristol, UK
| | | |
Collapse
|
9
|
Ho HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev Biol 2002; 250:208-17. [PMID: 12297107 DOI: 10.1006/dbio.2002.0797] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperactivated motility, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization in vivo. It is characterized by high-amplitude flagellar waves and, usually, highly asymmetrical flagellar beating. It had been suggested, but not tested, that Ca2+ and cAMP switch on hyperactivation by directly affecting the flagellar axoneme. In this study, the direct affects of these agents on the axoneme were tested by using detergent-demembranated bull sperm. As confirmed by TEM, treatment of sperm with 0.2% Triton X-100 disrupted the plasma, acrosomal, and inner mitochondrial membranes, leaving axonemes intact. In the presence of 2 mM ATP, the percentage of reactivated sperm that were hyperactivated increased to 80% when free Ca2+ was increased from 50 to 400 nM. The effect of the Ca2+ in this range was to increase beat asymmetry by increasing the curvature of the principal bend. No additional increases were observed above 400 nM free Ca2+, but motility was suppressed at 1 mM. The ability of Ca2+ to produce hyperactivation depended on ATP availability, such that more ATP was required to produce the high amplitude flagellar bends characteristic of hyperactivated motility than to produce activated motility. Cyclic AMP was not required for reactivation, nor for hyperactivation. Production of hyperactivated motility also required an alkaline environment (pH 7.9-8.5). These results suggest that, provided sufficient ATP is present and pH is sufficiently alkaline, Ca2+ switches on hyperactivation by enabling curvature of the principal bends to increase.
Collapse
Affiliation(s)
- Han-Chen Ho
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
10
|
Abstract
This article describes andrology research, inspired by Professor Michael Hull, to develop sperm function tests and to understand the basic causes of male infertility. No generally acceptable sperm function test has yet been devised. Computer-assisted semen analysis (CASA) proved of limited value in predicting the outcome of in vitro fertilization (IVF) although it was more useful in donor insemination. High intracellular Ca2+ activity, [Ca2+]i, is involved in decreasing motility in cryopreserved sperm. Capacitative calcium entry after depletion of intracellular stores may generate the sustained increase in [Ca2+]i that initiates the acrosome reaction. Our data support the presence of Ca2+ stores as thapsigargin increased [Ca2+]i in sperm in Ca2+ -free medium. Recent observations indicate that cAMP enhances capacitative calcium entry, acting upstream of emptying of the store. Excess reactive oxygen species (ROS) is an important cause of sperm pathology but at low concentrations ROS regulate capacitation. Our evidence shows that ROS are produced by leucocytes present in sperm suspensions. We have been unable to demonstrate that human sperm produce ROS. The relationship between ROS production and lipid peroxidation indicates that sperm from some men are resistant to lipid peroxidation, possibly because of better antioxidant defences. We conclude that the future of andrology lies in the identification of the basic causes of infertility and not in more detailed descriptions of the properties of semen.
Collapse
Affiliation(s)
- W Chris L Ford
- University Division of Obstetrics and Gynaecology, St Michael's Hospital, Southwell Street, Bristol BS2 8EG, UK
| |
Collapse
|