1
|
An Improvement in Enclosure Design Can Positively Impact Welfare, Reduce Aggressiveness and Stabilise Hierarchy in Captive Galapagos Giant Tortoises. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The interest in the welfare of zoo animals, from both the public and the scientific community, has long been biased towards mammals. However, growing evidence of the complex behavioural repertoires of less charismatic animals, such as reptiles, reveals the necessity to better comply with their welfare needs in captivity. Here, we present the effects of an enclosure change towards a more natural habitat in captive Galapagos tortoises (Chelonoidis spp.) held at ZSL London Zoo. Using behavioural observations, we found that the tortoises habituated to their new enclosure in six days. This represents the first quantification of habituation latency to a new enclosure in a reptile model to our knowledge—which is important information to adapt policies governing animal moves. The tortoises expressed time budgets more similar to those of wild individuals after their transition to the new enclosure. Interestingly, the hierarchy between the individuals was inverted and more stable after this change in environment. The tortoises interacted less often, which led to a decrease in the frequency of agonistic encounters. We also found that higher ambient sound volume was associated with increased likelihood of interactions turning into fights. Taken together, our results demonstrate the potential of appropriate enclosure design to improve reptile welfare.
Collapse
|
2
|
Jensen EL, Quinzin MC, Miller JM, Russello MA, Garrick RC, Edwards DL, Glaberman S, Chiari Y, Poulakakis N, Tapia W, Gibbs JP, Caccone A. A new lineage of Galapagos giant tortoises identified from museum samples. Heredity (Edinb) 2022; 128:261-270. [PMID: 35217806 PMCID: PMC8987048 DOI: 10.1038/s41437-022-00510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.
Collapse
Affiliation(s)
- Evelyn L Jensen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Maud C Quinzin
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua M Miller
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Danielle L Edwards
- Department of Life & Environmental Sciences, University of California, Merced, CA, USA
| | - Scott Glaberman
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Nikos Poulakakis
- Department of Biology, School of Sciences and Engineering, University of Crete, Irakleio, Greece.,The Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Irakleio, Greece
| | - Washington Tapia
- Galapagos Conservancy, 11150 Fairfax Boulevard #408, Fairfax, VA, 22030, USA.,University of Málaga, Campus Teatinos, Apdo. 59, 29080, Málaga, Spain
| | - James P Gibbs
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Zhao Z, Oosthuizen J, Heideman N. How many species does the
Psammobates tentorius
(tent tortoise) species complex (Reptilia, Testudinidae) comprise? A taxonomic solution potentially applicable to species complexes. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongning Zhao
- Department of Zoology and Entomology University of the Free State Bloemfontein South Africa
| | - Jaco Oosthuizen
- School of Pathology University of the Free Bloemfontein South Africa
| | - Neil Heideman
- Department of Zoology and Entomology University of the Free State Bloemfontein South Africa
| |
Collapse
|
4
|
Jensen EL, Gaughran SJ, Garrick RC, Russello MA, Caccone A. Demographic history and patterns of molecular evolution from whole genome sequencing in the radiation of Galapagos giant tortoises. Mol Ecol 2021; 30:6325-6339. [PMID: 34510620 DOI: 10.1111/mec.16176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022]
Abstract
Whole genome sequencing provides deep insights into the evolutionary history of a species, including patterns of diversity, signals of selection, and historical demography. When applied to closely related taxa with a wealth of background knowledge, population genomics provides a comparative context for interpreting population genetic summary statistics and comparing empirical results with the expectations of population genetic theory. The Galapagos giant tortoises (Chelonoidis spp.), an iconic rapid and recent radiation, offer such an opportunity. Here, we sequenced whole genomes from three individuals of the 12 extant lineages of Galapagos giant tortoise and estimate diversity measures and reconstruct changes in coalescent rate over time. We also compare the number of derived alleles in each lineage to infer how synonymous and nonsynonymous mutation accumulation rates correlate with population size and life history traits. Remarkably, we find that patterns of molecular evolution are similar within individuals of the same lineage, but can differ significantly among lineages, reinforcing the evolutionary distinctiveness of the Galapagos giant tortoise species. Notably, differences in mutation accumulation among lineages do not align with simple population genetic predictions, suggesting that the drivers of purifying selection are more complex than is currently appreciated. By integrating results from earlier population genetic and phylogeographic studies with new findings from the analysis of whole genomes, we provide the most in-depth insights to date on the evolution of Galapagos giant tortoises, and identify discrepancies between expectation from population genetic theory and empirical data that warrant further scrutiny.
Collapse
Affiliation(s)
- Evelyn L Jensen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Stephen J Gaughran
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, Mississippi, USA
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Salmonella Infection in Turtles: A Risk for Staff Involved in Wildlife Management? Animals (Basel) 2021; 11:ani11061529. [PMID: 34073932 PMCID: PMC8225080 DOI: 10.3390/ani11061529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The aim of this study was to investigate the occurrence of non-typhoidal Salmonella in the turtles housed in a regional wildlife rescue centre of Apulia, in southern Italy, to assess the presence of Salmonella serovars that may represent a risk for operators involved in wildlife management. Sixty-nine tortoises, of which 36 were males and 33 were females, belonging to different species (Testudo hermanni hermanni, T. h. boettgeri, T. graeca, and T. marginata) were tested. All the turtles were adults (34 between 6 and 10 years of age and 35 more than 10 years of age). Salmonella was statistically detected more frequently in T. hermanni hermanni. No differences of the infection prevalence related to animal gender or age were found. Two different species, S. enterica and S. bongori, three S. enterica subspecies (enterica, diarizonae, salamae), and five different serovars (Hermannswerder, Abony, Ferruch, Richmond, Vancouver) within the group S. enterica subspecies enterica were identified. Two Salmonella types with different combinations were simultaneously found in specimens of T. h. hermanni. Most of the detected Salmonella types may represent a potential risk for operators in wildlife rescue centres. Abstract Monitoring of infections that may be transmitted to humans by animals in wildlife rescue centres is very important in order to protect the staff engaged in rehabilitation practices. Salmonella may be a natural inhabitant of the intestinal tract of turtles, rarely causing disease. This may represent a potential risk for humans, increasing the sanitary risk for operators in wildlife rescue centres. In this paper, the occurrence of non-typhoidal Salmonella among terrestrial turtles housed in a wildlife rescue centre in Southern Italy was investigated, in order to assess the serovars more frequently carried by turtles and identify those that may represent a risk for operators involved in wildlife management. Sixty-nine adult turtles (Testudo hermanni hermanni, T. h. boettgeri, T. graeca, and T. marginata) were tested. Detection and serotyping of Salmonella strains were performed according to ISO 6579-1 and ISO/TR 6579-3:2013, respectively. The distribution of Salmonella spp. was significantly higher in T. hermanni hermanni than in other species, independent of the age and gender of the animals. Two different Salmonella species, S. enterica and S. bongori, three S. enterica subspecies (enterica, diarizonae, salamae), and five different serovars (Hermannswerder, Abony, Ferruch, Richmond, Vancouver) within the group S. enterica subspecies enterica were identified. Different combinations of Salmonella types were simultaneously found in specimens of T. h. hermanni. Most of detected Salmonella types may represent a potential risk for public health. Adopting correct animal husbandry procedures and informing on potential sanitary risks may be useful for minimising the risk of transmission of Salmonella to workers involved in wildlife management.
Collapse
|
6
|
Biello R, Zampiglia M, Corti C, Deli G, Biaggini M, Crestanello B, Delaugerre M, Di Tizio L, Leonetti FL, Casari S, Olivieri O, Pellegrino F, Romano A, Sperone E, Hauffe HC, Trabalza-Marinucci M, Bertorelle G, Canestrelli D. Mapping the geographic origin of captive and confiscated Hermann's tortoises: A genetic toolkit for conservation and forensic analyses. Forensic Sci Int Genet 2020; 51:102447. [PMID: 33401133 DOI: 10.1016/j.fsigen.2020.102447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022]
Abstract
The illegal trade has been threatening tortoise populations worldwide for decades. Nowadays, however, DNA typing and forensic genetic approaches allow us to investigate the geographic origin of confiscated animals and to relocate them into the wild, providing that suitable molecular tools and reference data are available. Here we assess the suitability of a small panel of microsatellite markers to investigate patterns of illegal translocations and to assist forensic genetic applications in the endangered Mediterranean land tortoise Testudo hermanni hermanni. Specific allelic ladders were created for each locus and tested on several reference samples. We used the microsatellite panel to (i) increase our understanding of the population genetic structure in wild populations with new data from previously unsampled geographic areas (overall 461 wild individuals from 28 sampling sites); (ii) detect the presence of non-native individuals in wild populations; and (iii) identify the most likely geographic area of origin of 458 confiscated individuals hosted in Italian seizure and recovery centers. Our analysis initially identified six major genetic clusters corresponding to different geographic macro-areas along the Mediterranean range. Long-distance migrants among wild populations, due to translocations, were found and removed from the reference database. Assignment tests allowed us to allocate approximately 70 % of confiscated individuals of unknown origin to one of the six Mediterranean macro-areas. Most of the assigned tortoises belonged to the genetic cluster corresponding to the area where the respective captivity center was located. However, we also found evidence of long-distance origins of confiscated individuals, especially in centers along the Adriatic coast and facing the Balkan regions, a well-known source of illegally traded individuals. Our results clearly show that the microsatellite panel and the reference dataset can play a beneficial role in reintroduction and repatriation projects when confiscated individuals need to be re-assigned to their respective macro-area of origin before release, and can assist future forensic genetic applications in detecting the illegal trade and possession of Testudo hermanni individuals.
Collapse
Affiliation(s)
- Roberto Biello
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy; Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Mauro Zampiglia
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy; Laboratorio Centrale per la Banca Dati Nazionale del DNA, Dipartimento dell'Amministrazione Penitenziaria, Ministero della Giustizia, via del Casale di San Basilio 168, 00156, Roma, Italy
| | - Claudia Corti
- Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, 50125, Firenze, Italy
| | - Gianluca Deli
- Dipartimento di Medicina Veterinaria, Università di Perugia, Via San Costanzo 4, 06126, Perugia, Italy
| | - Marta Biaggini
- Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, 50125, Firenze, Italy
| | - Barbara Crestanello
- Unità Genetica di Conservazione, Dipartimento di Biodiversità ed Ecologia Molecolare, Centro Ricerca ed Innovazione, Fondazione E. Mach, Via E. Mach 1, 38010, San Michele all'Adige (TN), Italy
| | - Michel Delaugerre
- Conservatoire du littoral, Résidence St Marc, 2, rue Juge Falcone, 20200, Bastia, France
| | - Luciano Di Tizio
- Societas Herpetologica Italica, Sezione Abruzzo-Molise, Via Federico Salomone 112, 66100, Chieti, Italy
| | | | - Stefano Casari
- Unità Genetica di Conservazione, Dipartimento di Biodiversità ed Ecologia Molecolare, Centro Ricerca ed Innovazione, Fondazione E. Mach, Via E. Mach 1, 38010, San Michele all'Adige (TN), Italy
| | - Oliviero Olivieri
- Dipartimento di Medicina Veterinaria, Università di Perugia, Via San Costanzo 4, 06126, Perugia, Italy
| | - Francesco Pellegrino
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| | - Antonio Romano
- MUSE: Museo delle Scienze, Sezione di Zoologia dei Vertebrati, corso del Lavoro e della Scienza 3, 38122, Trento, Italy; CNR-ISAFOM: Consiglio Nazionale delle Ricerche, Istituto per i sistemi agricoli e forestali del Mediterraneo, Via Patacca 85, 80056, Ercolano, NA, Italy
| | - Emilio Sperone
- DiBEST, Università della Calabria, via P. Bucci, 87036, Rende, CS, Italy
| | - Heidi Christine Hauffe
- Unità Genetica di Conservazione, Dipartimento di Biodiversità ed Ecologia Molecolare, Centro Ricerca ed Innovazione, Fondazione E. Mach, Via E. Mach 1, 38010, San Michele all'Adige (TN), Italy
| | | | - Giorgio Bertorelle
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Daniele Canestrelli
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
7
|
Zhao Z, Heideman N, Bester P, Jordaan A, Hofmeyr MD. Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa. BMC Evol Biol 2020; 20:153. [PMID: 33187474 PMCID: PMC7666511 DOI: 10.1186/s12862-020-01717-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world's tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. RESULTS We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63-5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensification of the cold Benguela current, which caused western aridification and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fluctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by different climatic parameters, and that the niches differed substantially among the clades of the northern group but were similar among clades of the southern group. CONCLUSION Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B-Ptr, Ptt-A and Pv-A.
Collapse
Affiliation(s)
- Zhongning Zhao
- Department of Zoology and Entomology, University of the Free State, Biology Building B19, 205 Nelson Mandela Dr, Park West, Bloemfontein, South Africa.
| | - Neil Heideman
- Department of Zoology and Entomology, University of the Free State, Biology Building B19, 205 Nelson Mandela Dr, Park West, Bloemfontein, South Africa
| | - Phillip Bester
- Department of Virology, University of the Free State and National Health Laboratory Service (NHLS), Bloemfontein, South Africa
| | - Adriaan Jordaan
- Department of Zoology and Entomology, University of the Free State, Biology Building B19, 205 Nelson Mandela Dr, Park West, Bloemfontein, South Africa
| | - Margaretha D Hofmeyr
- Department of Biodiversity and Conservation Biology, Chelonian Biodiversity and Conservation, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
8
|
Miller JM, Quinzin MC, Edwards DL, Eaton DAR, Jensen EL, Russello MA, Gibbs JP, Tapia W, Rueda D, Caccone A. Genome-Wide Assessment of Diversity and Divergence Among Extant Galapagos Giant Tortoise Species. J Hered 2019; 109:611-619. [PMID: 29986032 DOI: 10.1093/jhered/esy031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Maud C Quinzin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Danielle L Edwards
- Life and Environmental Sciences, University of California, Merced, Merced, CA
| | - Deren A R Eaton
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Evelyn L Jensen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - James P Gibbs
- College of Environmental Science & Forestry, State University of New York, Syracuse, NY
| | - Washington Tapia
- Galapagos Conservancy, Fairfax, VA.,Galápagos National Park Directorate, Puerto Ayora, Galápagos, Ecuador
| | - Danny Rueda
- Galápagos National Park Directorate, Puerto Ayora, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| |
Collapse
|
9
|
Iwata E, Tohmine K, Jumonji H, Yoshida T, Saito Y, Okuno T, Morino Y, Wada H. Genetic Origin of the Two Galápagos Tortoises in the Ueno Zoo, Japan Based on Mitochondrial DNA Sequences. CURRENT HERPETOLOGY 2019. [DOI: 10.5358/hsj.38.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Emiko Iwata
- 1Seisin Gakuen High School, 4448–5 Miyanaka, Kashima, Ibaraki 314–0031, JAPAN
| | - Kaoru Tohmine
- 1Seisin Gakuen High School, 4448–5 Miyanaka, Kashima, Ibaraki 314–0031, JAPAN
| | - Hideyuki Jumonji
- 1Seisin Gakuen High School, 4448–5 Miyanaka, Kashima, Ibaraki 314–0031, JAPAN
| | - Tetsuya Yoshida
- 2Vivarium, Ueno Zoological Gardens, Taito-ku, Tokyo 110–8711, JAPAN
| | - Yusuke Saito
- 2Vivarium, Ueno Zoological Gardens, Taito-ku, Tokyo 110–8711, JAPAN
| | - Tamaki Okuno
- 3The Japan Association for Galápagos, 2–2–15 Minamiaoyama, Minato-ku, Tokyo 107–0062, JAPAN
| | - Yoshiaki Morino
- 4Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, JAPAN
| | - Hiroshi Wada
- 4Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, JAPAN
| |
Collapse
|
10
|
Jensen EL, Edwards DL, Garrick RC, Miller JM, Gibbs JP, Cayot LJ, Tapia W, Caccone A, Russello MA. Population genomics through time provides insights into the consequences of decline and rapid demographic recovery through head-starting in a Galapagos giant tortoise. Evol Appl 2018; 11:1811-1821. [PMID: 30459831 PMCID: PMC6231475 DOI: 10.1111/eva.12682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
Population genetic theory related to the consequences of rapid population decline is well-developed, but there are very few empirical studies where sampling was conducted before and after a known bottleneck event. Such knowledge is of particular importance for species restoration, given links between genetic diversity and the probability of long-term persistence. To directly evaluate the relationship between current genetic diversity and past demographic events, we collected genome-wide single nucleotide polymorphism data from prebottleneck historical (c.1906) and postbottleneck contemporary (c.2014) samples of Pinzón giant tortoises (Chelonoidis duncanensis; n = 25 and 149 individuals, respectively) endemic to a single island in the Galapagos. Pinzón giant tortoises had a historically large population size that was reduced to just 150-200 individuals in the mid 20th century. Since then, Pinzón's tortoise population has recovered through an ex situ head-start programme in which eggs or pre-emergent individuals were collected from natural nests on the island, reared ex situ in captivity until they were 4-5 years old and subsequently repatriated. We found that the extent and distribution of genetic variation in the historical and contemporary samples were very similar, with the latter group not exhibiting the characteristic genetic patterns of recent population decline. No population structure was detected either spatially or temporally. We estimated an effective population size (N e) of 58 (95% CI = 50-69) for the postbottleneck population; no prebottleneck N e point estimate was attainable (95% CI = 39-infinity) likely due to the sample size being lower than the true N e. Overall, the historical sample provided a valuable benchmark for evaluating the head-start captive breeding programme, revealing high retention of genetic variation and no skew in representation despite the documented bottleneck event. Moreover, this work demonstrates the effectiveness of head-starting in rescuing the Pinzón giant tortoise from almost certain extinction.
Collapse
Affiliation(s)
- Evelyn L. Jensen
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
- Present address:
Department of BiologyQueen's UniversityKingstonOntarioCanada
| | | | - Ryan C. Garrick
- Department of BiologyUniversity of MississippiOxfordMississippi
| | - Joshua M. Miller
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - James P. Gibbs
- College of Environmental Science and ForestryState University of New YorkSyracuseNew York
| | | | - Washington Tapia
- Department of Applied ResearchGalapagos National Park ServicePuerto AyoraEcuador
- Galapagos ConservancySanta CruzEcuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Michael A. Russello
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
11
|
du Plessis SJ, Howard-McCombe J, Melvin ZE, Sheppard EC, Russo IRM, Mootoocurpen R, Goetz M, Young RP, Cole NC, Bruford MW. Genetic diversity and cryptic population re-establishment: management implications for the Bojer’s skink (Gongylomorphus bojerii). CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Gaughran SJ, Quinzin MC, Miller JM, Garrick RC, Edwards DL, Russello MA, Poulakakis N, Ciofi C, Beheregaray LB, Caccone A. Theory, practice, and conservation in the age of genomics: The Galápagos giant tortoise as a case study. Evol Appl 2018; 11:1084-1093. [PMID: 30026799 PMCID: PMC6050186 DOI: 10.1111/eva.12551] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
High-throughput DNA sequencing allows efficient discovery of thousands of single nucleotide polymorphisms (SNPs) in nonmodel species. Population genetic theory predicts that this large number of independent markers should provide detailed insights into population structure, even when only a few individuals are sampled. Still, sampling design can have a strong impact on such inferences. Here, we use simulations and empirical SNP data to investigate the impacts of sampling design on estimating genetic differentiation among populations that represent three species of Galápagos giant tortoises (Chelonoidis spp.). Though microsatellite and mitochondrial DNA analyses have supported the distinctiveness of these species, a recent study called into question how well these markers matched with data from genomic SNPs, thereby questioning decades of studies in nonmodel organisms. Using >20,000 genomewide SNPs from 30 individuals from three Galápagos giant tortoise species, we find distinct structure that matches the relationships described by the traditional genetic markers. Furthermore, we confirm that accurate estimates of genetic differentiation in highly structured natural populations can be obtained using thousands of SNPs and 2-5 individuals, or hundreds of SNPs and 10 individuals, but only if the units of analysis are delineated in a way that is consistent with evolutionary history. We show that the lack of structure in the recent SNP-based study was likely due to unnatural grouping of individuals and erroneous genotype filtering. Our study demonstrates that genomic data enable patterns of genetic differentiation among populations to be elucidated even with few samples per population, and underscores the importance of sampling design. These results have specific implications for studies of population structure in endangered species and subsequent management decisions.
Collapse
Affiliation(s)
| | - Maud C. Quinzin
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Joshua M. Miller
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | | | | | - Michael A. Russello
- Department of BiologyUniversity of British Columbia, Okanagan CampusKelownaBCCanada
| | - Nikos Poulakakis
- Department of BiologySchool of Sciences and EngineeringUniversity of CreteHeraklion, CreteGreece
- Natural History Museum of CreteSchool of Sciences and EngineeringUniversity of CreteHeraklion, CreteGreece
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceSesto Fiorentino (FI)Italy
| | - Luciano B. Beheregaray
- Molecular Ecology LabSchool of Biological SciencesFlinders UniversityAdelaideSAAustralia
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
13
|
Description of a New Galapagos Giant Tortoise Species (Chelonoidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz Island. PLoS One 2015; 10:e0138779. [PMID: 26488886 PMCID: PMC4619298 DOI: 10.1371/journal.pone.0138779] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022] Open
Abstract
The taxonomy of giant Galapagos tortoises (Chelonoidis spp.) is currently based primarily on morphological characters and island of origin. Over the last decade, compelling genetic evidence has accumulated for multiple independent evolutionary lineages, spurring the need for taxonomic revision. On the island of Santa Cruz there is currently a single named species, C. porteri. Recent genetic and morphological studies have shown that, within this taxon, there are two evolutionarily and spatially distinct lineages on the western and eastern sectors of the island, known as the Reserva and Cerro Fatal populations, respectively. Analyses of DNA from natural populations and museum specimens, including the type specimen for C. porteri, confirm the genetic distinctiveness of these two lineages and support elevation of the Cerro Fatal tortoises to the rank of species. In this paper, we identify DNA characters that define this new species, and infer evolutionary relationships relative to other species of Galapagos tortoises.
Collapse
|
14
|
Genetics of a head-start program to guide conservation of an endangered Galápagos tortoise (Chelonoidis ephippium). CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0703-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Garrick RC, Kajdacsi B, Russello MA, Benavides E, Hyseni C, Gibbs JP, Tapia W, Caccone A. Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises. Ecol Evol 2015; 5:676-94. [PMID: 25691990 PMCID: PMC4328771 DOI: 10.1002/ece3.1388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term population history can influence the genetic effects of recent bottlenecks. Therefore, for threatened or endangered species, an understanding of the past is relevant when formulating conservation strategies. Levels of variation at neutral markers have been useful for estimating local effective population sizes (N e ) and inferring whether population sizes increased or decreased over time. Furthermore, analyses of genotypic, allelic frequency, and phylogenetic information can potentially be used to separate historical from recent demographic changes. For 15 populations of Galápagos giant tortoises (Chelonoidis sp.), we used 12 microsatellite loci and DNA sequences from the mitochondrial control region and a nuclear intron, to reconstruct demographic history on shallow (past ∽100 generations, ∽2500 years) and deep (pre-Holocene, >10 thousand years ago) timescales. At the deep timescale, three populations showed strong signals of growth, but with different magnitudes and timing, indicating different underlying causes. Furthermore, estimated historical N e of populations across the archipelago showed no correlation with island age or size, underscoring the complexity of predicting demographic history a priori. At the shallow timescale, all populations carried some signature of a genetic bottleneck, and for 12 populations, point estimates of contemporary N e were very small (i.e., < 50). On the basis of the comparison of these genetic estimates with published census size data, N e generally represented ∽0.16 of the census size. However, the variance in this ratio across populations was considerable. Overall, our data suggest that idiosyncratic and geographically localized forces shaped the demographic history of tortoise populations. Furthermore, from a conservation perspective, the separation of demographic events occurring on shallow versus deep timescales permits the identification of naturally rare versus newly rare populations; this distinction should facilitate prioritization of management action.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - Brittney Kajdacsi
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Michael A Russello
- Department of Biology, University of British ColumbiaOkanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Chaz Hyseni
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - James P Gibbs
- College of Environmental Science and Forestry, State University of New YorkSyracuse, New York, 13210
| | - Washington Tapia
- Department of Applied Research, Galápagos National Park ServicePuerto Ayora, Galápagos, Ecuador
- Biodiver S.A. ConsultoresKm 5 Vía a Baltra, Isla Santa Cruz, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| |
Collapse
|
16
|
Garrick RC, Benavides E, Russello MA, Hyseni C, Edwards DL, Gibbs JP, Tapia W, Ciofi C, Caccone A. Lineage fusion in Galápagos giant tortoises. Mol Ecol 2014; 23:5276-90. [DOI: 10.1111/mec.12919] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Ryan C. Garrick
- Department of Biology; University of Mississippi; Oxford MS 38677 USA
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06520 USA
| | - Michael A. Russello
- Department of Biology; University of British Columbia; Okanagan Campus Kelowna BC V1V 1V7 Canada
| | - Chaz Hyseni
- Department of Biology; University of Mississippi; Oxford MS 38677 USA
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06520 USA
| | - Danielle L. Edwards
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06520 USA
| | - James P. Gibbs
- College of Environmental Science & Forestry; State University of New York; Syracuse NY 13210 USA
| | - Washington Tapia
- Department of Applied Research; Galápagos National Park Service; Puerto Ayora Isla Santa Cruz Galápagos Ecuador
- Biodiver S.A. Consultores; Km 5 Vía a Baltra Isla Santa Cruz Galápagos Ecuador
| | - Claudio Ciofi
- Department of Evolutionary Biology; University of Florence; Via Romana 17 50125 Florence Italy
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT 06520 USA
| |
Collapse
|
17
|
Cryptic structure and niche divergence within threatened Galápagos giant tortoises from southern Isabela Island. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0622-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Tsubono K, Taniguchi Y, Matsuda H, Yamada T, Sugiyama T, Homma K, Kaneko Y, Yamagishi S, Iwaisaki H. Identification of novel genetic markers and evaluation of genetic structure in a population of Japanese crested ibis. Anim Sci J 2013; 85:356-64. [PMID: 24330458 DOI: 10.1111/asj.12155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
Japanese population of the Japanese crested ibis Nipponia nippon was founded by five individuals gifted from the People's Republic of China. In order to exactly evaluate genetic structure, we first performed development of novel genetic makers using 89 microsatellite primer pairs of related species for cross-amplification. Of these, only three primer pairs were useful for the genetic markers. Additionally, we sequenced allelic PCR products of these three markers together with 10 markers previously identified. Most markers showed typical microsatellite repeat units, but two markers were not simple microsatellites. Moreover, over half of the markers did not have the same repeat units as those of the original species. These results suggested that development of novel genetic markers in this population by cross-amplification is not efficient, partly because of low genetic diversity. Furthermore, the cluster analysis by STRUCTURE program using 17 markers showed that the five founders were divided into two clusters. However, the genetic relationships among the founders indicated by the clustering seemed to be questionable, because the analysis relied largely on a small number of triallelic markers, in spite of the addition of the three useful markers. Therefore, more efficient methods for identifying large numbers of single nucleotide polymorphisms are desirable.
Collapse
Affiliation(s)
- Kanako Tsubono
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Loire E, Chiari Y, Bernard A, Cahais V, Romiguier J, Nabholz B, Lourenço JM, Galtier N. Population genomics of the endangered giant Galápagos tortoise. Genome Biol 2013; 14:R136. [PMID: 24342523 PMCID: PMC4053747 DOI: 10.1186/gb-2013-14-12-r136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/16/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The giant Galápagos tortoise, Chelonoidis nigra, is a large-sized terrestrial chelonian of high patrimonial interest. The species recently colonized a small continental archipelago, the Galápagos Islands, where it has been facing novel environmental conditions and limited resource availability. To explore the genomic consequences of this ecological shift, we analyze the transcriptomic variability of five individuals of C. nigra, and compare it to similar data obtained from several continental species of turtles. RESULTS Having clarified the timing of divergence in the Chelonoidis genus, we report in C. nigra a very low level of genetic polymorphism, signatures of a weakened efficacy of purifying selection, and an elevated mutation load in coding and regulatory sequences. These results are consistent with the hypothesis of an extremely low long-term effective population size in this insular species. Functional evolutionary analyses reveal a reduced diversity of immunity genes in C. nigra, in line with the hypothesis of attenuated pathogen diversity in islands, and an increased selective pressure on genes involved in response to stress, potentially related to the climatic instability of its environment and its elongated lifespan. Finally, we detect no population structure or homozygosity excess in our five-individual sample. CONCLUSIONS These results enlighten the molecular evolution of an endangered taxon in a stressful environment and point to island endemic species as a promising model for the study of the deleterious effects on genome evolution of a reduced long-term population size.
Collapse
Affiliation(s)
- Etienne Loire
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| | - Ylenia Chiari
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, 34095 Montpellier, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Aurélien Bernard
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| | - Vincent Cahais
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| | - Jonathan Romiguier
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| | - Benoît Nabholz
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| | - Joao Miguel Lourenço
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| | - Nicolas Galtier
- Université Montpellier 2, CNRS UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| |
Collapse
|
20
|
Perez M, Livoreil B, Mantovani S, Boisselier MC, Crestanello B, Abdelkrim J, Bonillo C, Goutner V, Lambourdiere J, Pierpaoli M, Sterijovski B, Tomovic L, Vilaca ST, Mazzotti S, Bertorelle G. Genetic Variation and Population Structure in the Endangered Hermann's Tortoise: The Roles of Geography and Human-Mediated Processes. J Hered 2013; 105:70-81. [DOI: 10.1093/jhered/est071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Krtinić B, Francuski L, Petrić D, Milankov V. Genetic diversity and differentiation between Palearctic and Nearctic populations of Aedimorphus (=Aedes) vexans (Meigen, 1830) (Diptera, Culicidae). JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2013; 38:154-162. [PMID: 23701620 DOI: 10.1111/j.1948-7134.2013.12021.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetic diversity was studied at allozyme loci in two Palearctic and one Nearctic population of Aedimorphus (=Aedes) vexans, a species of public health and veterinary importance. The population from Serbia was the most polymorphic (P= 35%) with the highest observed heterozygosity (H(o) = 0.027). The lowest observed heterozygosity (H(o) = 0.010) was obtained for the Nearctic population. All analyses based on individual (STRUCTURE analysis) and population level (pairwise F(ST), Nm values, AMOVA, Nei's D value) revealed significant structuring between Nearctic and Palearctic populations, indicating a lack of gene flow and thus, the presence of independent gene pools. Taxon-specific alleles at the diagnostic Ao, Hk-2, Hk-3, Hk-4, Idh-1, and Idh-2 loci were used for identification and separation of Nearctic and Palearctic populations. Population genetics study provided valuable information on the correct distinction of Am. vexans populations and their adaptive potential that could find a future use in the studies of vector competence and development of vector-control strategies.
Collapse
|
22
|
Effects of road proximity on genetic diversity and reproductive success of the painted turtle (Chrysemys picta). CONSERV GENET 2012. [DOI: 10.1007/s10592-012-0419-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Milinkovitch MC, Kanitz R, Tiedemann R, Tapia W, Llerena F, Caccone A, Gibbs JP, Powell JR. Recovery of a nearly extinct Galápagos tortoise despite minimal genetic variation. Evol Appl 2012; 6:377-83. [PMID: 23467700 PMCID: PMC3586625 DOI: 10.1111/eva.12014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/22/2012] [Indexed: 11/29/2022] Open
Abstract
A species of Galápagos tortoise endemic to Española Island was reduced to just 12 females and three males that have been bred in captivity since 1971 and have produced over 1700 offspring now repatriated to the island. Our molecular genetic analyses of juveniles repatriated to and surviving on the island indicate that none of the tortoises sampled in 1994 had hatched on the island versus 3% in 2004 and 24% in 2007, which demonstrates substantial and increasing reproduction in situ once again. This recovery occurred despite the parental population having an estimated effective population size <8 due to a combination of unequal reproductive success of the breeders and nonrandom mating in captivity. These results provide guidelines for adapting breeding regimes in the parental captive population and decreasing inbreeding in the repatriated population. Using simple morphological data scored on the sampled animals, we also show that a strongly heterogeneous distribution of tortoise sizes on Española Island observed today is due to a large variance in the number of animals included in yearly repatriation events performed in the last 40 years. Our study reveals that, at least in the short run, some endangered species can recover dramatically despite a lack of genetic variation and irregular repatriation efforts.
Collapse
Affiliation(s)
- Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Paquette SR, Engberg SE, Huebinger RM, Louis EE. Characterization of 13 novel microsatellite markers in the Galápagos tortoise (Chelonoidis nigra). CONSERV GENET RESOUR 2012. [DOI: 10.1007/s12686-012-9640-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Kanthaswamy S, Ng J, Penedo MCT, Ward T, Smith DG, Ha JC. Population genetics of the Washington National Primate Research Center's (WaNPRC) captive pigtailed macaque (Macaca nemestrina) population. Am J Primatol 2012; 74:1017-27. [PMID: 22851336 DOI: 10.1002/ajp.22055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/31/2012] [Accepted: 06/17/2012] [Indexed: 01/03/2023]
Abstract
Pigtailed macaques (Macaca nemestrina) provide an important model for biomedical research on human disease and for studying the evolution of primate behavior. The genetic structure of captive populations of pigtailed macaques is not as well described as that of captive rhesus (M. mulatta) or cynomolgus (M. fascicularis) macaques. The Washington National Primate Research Center houses the largest captive colony of pigtailed macaques located in several different housing facilities. Based on genotypes of 18 microsatellite (short tandem repeat [STR]) loci, these pigtailed macaques are more genetically diverse than captive rhesus macaques and exhibit relatively low levels of inbreeding. Colony genetic management facilitates the maintenance of genetic variability without compromising production goals of a breeding facility. The periodic introduction of new founders from specific sources to separate housing facilities at different times influenced the colony's genetic structure over time and space markedly but did not alter its genetic diversity significantly. Changes in genetic structure over time were predominantly due to the inclusion of animals from the Yerkes National Primate Research Center in the original colony and after 2005. Strategies to equalize founder representation in the colony have maximized the representation of the founders' genomes in the extant population. Were exchange of animals among the facilities increased, further differentiation could be avoided. The use of highly differentiated animals may confound interpretations of phenotypic differences due to the inflation of the genetic contribution to phenotypic variance of heritable traits.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- California National Primate Research Center, University of California, Davis, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Fritz U, Alcalde L, Vargas-Ramírez M, Goode EV, Fabius-Turoblin DU, Praschag P. Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00533.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Silva TL, Silva MIA, Venancio LPR, Zago CES, Moscheta VAG, Lima AVB, Vizotto LD, Santos JR, Bonini-Domingos CR, Azeredo-Oliveira MTV. Simple method for culture of peripheral blood lymphocytes of Testudinidae. GENETICS AND MOLECULAR RESEARCH 2011; 10:3020-5. [PMID: 22180035 DOI: 10.4238/2011.december.6.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We developed and optimized a simple, efficient and inexpensive method for in vitro culture of peripheral blood lymphocytes from the Brazilian tortoise Chelonoidis carbonaria (Testudinidae), testing various parameters, including culture medium, mitogen concentration, mitotic index, culture volume, incubation time, and mitotic arrest. Peripheral blood samples were obtained from the costal vein of four couples. The conditions that gave a good mitotic index were lymphocytes cultured at 37°C in minimum essential medium (7.5 mL), with phytohemagglutinin as a mitogen (0.375 mL), plus streptomycin/penicillin (0.1 mL), and an incubation period of 72 h. Mitotic arrest was induced by 2-h exposure to colchicine (0.1 mL), 70 h after establishing the culture. After mitotic arrest, the cells were hypotonized with 0.075 M KCl for 2 h and fixed with methanol/acetic acid (3:1). The non-banded mitotic chromosomes were visualized by Giemsa staining. The diploid chromosome number of C. carbonaria was found to be 52 in females and males, and sex chromosomes were not observed. We were able to culture peripheral blood lymphocytes of a Brazilian tortoise in vitro, for the preparation of mitotic chromosomes.
Collapse
Affiliation(s)
- T L Silva
- Departamento de Biologia, Centro de Estudos de Quelônios, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brasil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Poulakakis N, Russello M, Geist D, Caccone A. Unravelling the peculiarities of island life: vicariance, dispersal and the diversification of the extinct and extant giant Galápagos tortoises. Mol Ecol 2011; 21:160-73. [PMID: 22098061 DOI: 10.1111/j.1365-294x.2011.05370.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In isolated oceanic islands, colonization patterns are often interpreted as resulting from dispersal rather than vicariant events. Such inferences may not be appropriate when island associations change over time and new islands do not form in a simple linear trend. Further complexity in the phylogeography of ocean islands arises when dealing with endangered taxa as extinctions, uncertainty on the number of evolutionary 'units', and human activities can obscure the progression of colonization events. Here, we address these issues through a reconstruction of the evolutionary history of giant Galápagos tortoises, integrating DNA data from extinct and extant species with information on recent human activities and newly available geological data. Our results show that only three of the five extinct or nearly extinct species should be considered independent evolutionary units. Dispersal from mainland South America started at approximately 3.2 Ma after the emergence of the two oldest islands of San Cristobal and Española. Dispersal from older to younger islands began approximately 1.74 Ma and was followed by multiple colonizations from different sources within the archipelago. Vicariant events, spurred by island formation, coalescence, and separation, contributed to lineage diversifications on Pinzón and Floreana dating from 1.26 and 0.85 Ma. This work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and highlights the need to take into account both vicariance and dispersal when dealing with organisms from islands whose associations are not simply explained by a linear emergence model.
Collapse
Affiliation(s)
- Nikos Poulakakis
- Molecular Systematics Lab, Natural History Museum of Crete, University of Crete, Iraklion, Crete.
| | | | | | | |
Collapse
|
29
|
Benavides E, Russello M, Boyer D, Wiese RJ, Kajdacsi B, Marquez L, Garrick R, Caccone A. Lineage identification and genealogical relationships among captive Galápagos tortoises. Zoo Biol 2011; 31:107-20. [PMID: 21674601 DOI: 10.1002/zoo.20397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 11/12/2022]
Abstract
Genetic tools have become a critical complement to traditional approaches for meeting short- and long-term goals of ex situ conservation programs. The San Diego Zoo (SDZ) harbors a collection of wild-born and captive-born Galápagos giant tortoises (n = 22) of uncertain species designation and unknown genealogical relationships. Here, we used mitochondrial DNA haplotypic data and nuclear microsatellite genotypic data to identify the evolutionary lineage of wild-born and captive-born tortoises of unknown ancestry, to infer levels of relatedness among founders and captive-born tortoises, and assess putative pedigree relationships assigned by the SDZ studbook. Assignment tests revealed that 12 wild-born and five captive-born tortoises represent five different species from Isabela Island and one species from Santa Cruz Island, only five of which were consistent with current studbook designations. Three wild-born and one captive-born tortoise were of mixed ancestry. In addition, kinship analyses revealed two significant first-order relationship pairs between wild-born and captive-born tortoises, four second-order relationships (half-sibling) between wild-born and captive tortoises (full-sibs or parent-offspring), and one second-order relationship between two captive-born tortoises. Of particular note, we also reconstructed a first-order relationship between two wild-born individuals, violating the founder assumption. Overall, our results contribute to a worldwide effort in identifying genetically important Galápagos tortoises currently in captivity while revealing closely related founders, reconstructing genealogical relationships, and providing detailed management recommendations for the SDZ tortoises.
Collapse
Affiliation(s)
- Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fabiani A, Trucchi E, Rosa S, Marquez C, Snell HL, Snell HM, Tapia Aguilera W, Gentile G. Conservation of Galápagos land iguanas: genetic monitoring and predictions of a long-term program on the island of Santa Cruz. Anim Conserv 2011. [DOI: 10.1111/j.1469-1795.2011.00442.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Chiari Y, Claude J. Study of the carapace shape and growth in two Galápagos tortoise lineages. J Morphol 2011; 272:379-86. [PMID: 21246597 DOI: 10.1002/jmor.10923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 11/08/2022]
Abstract
Galápagos tortoises possess two main shell forms, domed and saddleback, that correlate with the biogeographic history of this species group. However, the lack of description of morphological shell variation within and among populations has prevented the understanding of the contribution of evolutionary forces and the potential role of ontogeny in shaping morphological shell differences. Here, we analyze two lineages of Galápagos tortoises inhabiting Santa Cruz Island by applying geometric morphometrics in combination with a photogrammetry 3D reconstruction method on a set of tortoises of different ages (from juvenile to adult). The aim of this study is to describe morphological features on the carapace that could be used for taxonomic recognition by taking into account confounding factors, such as the morphological changes occurring during growth. Our results indicate that despite the shared similarities of growth patterns and of morphological changes observed during growth, the two lineages and the different sexes can be distinguished on the basis of distinct carapace features. Lineages differ by the shape of the vertebral (especially concerning their width) and pleural scutes, with one lineage having a more compressed carapace shape, whereas the other possesses a carapace that is more elongated and expanded toward the sides as well as an higher positioning of the first vertebral scute. Furthermore, females have a more elongated and wider carapace shape than males. Finally, carapace shape changes with growth, with vertebral scutes becoming narrower and pleural scutes becoming larger during late ontogeny.
Collapse
Affiliation(s)
- Ylenia Chiari
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106, USA.
| | | |
Collapse
|
32
|
Spradling TA, Tamplin JW, Dow SS, Meyer KJ. Conservation genetics of a peripherally isolated population of the wood turtle (Glyptemys insculpta) in Iowa. CONSERV GENET 2010. [DOI: 10.1007/s10592-010-0059-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Balmer O, Ciofi C, Galbraith DA, Swingland IR, Zug GR, Caccone A. Population genetic structure of Aldabra giant tortoises. J Hered 2010; 102:29-37. [PMID: 20805288 DOI: 10.1093/jhered/esq096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evolution of population structure on islands is the result of physical processes linked to volcanism, orogenic events, changes in sea level, as well as habitat variation. We assessed patterns of genetic structure in the giant tortoise of the Aldabra atoll, where previous ecological studies suggested population subdivisions as a result of landscape discontinuity due to unsuitable habitat and island separation. Analysis of mitochondrial DNA (mtDNA) control region sequences and allelic variation at 8 microsatellite loci were conducted on tortoises sampled in 3 locations on the 2 major islands of Aldabra. We found no variation in mtDNA sequences. This pattern corroborated earlier work supporting the occurrence of a founding event during the last interglacial period and a further reduction in genetic variability during historical time. On the other hand, significant population structure recorded at nuclear loci suggested allopatric divergence possibly due to geographical barriers among islands and ecological partitions hindering tortoise movements within islands. This is the first attempt to study the population genetics of Aldabra tortoises, which are now at carrying capacity in an isolated terrestrial ecosystem where ecological factors appear to have a strong influence on population dynamics.
Collapse
Affiliation(s)
- Oliver Balmer
- Institute of Zoology, University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Hoeck PEA, Bollmer JL, Parker PG, Keller LF. Differentiation with drift: a spatio-temporal genetic analysis of Galapagos mockingbird populations (Mimus spp.). Philos Trans R Soc Lond B Biol Sci 2010; 365:1127-38. [PMID: 20194174 DOI: 10.1098/rstb.2009.0311] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small and isolated island populations provide ideal systems to study the effects of limited population size, genetic drift and gene flow on genetic diversity. We assessed genetic diversity within and differentiation among 19 mockingbird populations on 15 Galápagos islands, covering all four endemic species, using 16 microsatellite loci. We tested for signs of drift and gene flow, and used historic specimens to assess genetic change over the last century and to estimate effective population sizes. Within-population genetic diversity and effective population sizes varied substantially among island populations and correlated strongly with island size, suggesting that island size serves as a good predictor for effective population size. Genetic differentiation among populations was pronounced and increased with geographical distance. A century of genetic drift did not change genetic diversity on an archipelago-wide scale, but genetic drift led to loss of genetic diversity in small populations, especially in one of the two remaining populations of the endangered Floreana mockingbird. Unlike in other Galápagos bird species such as the Darwin's finches, gene flow among mockingbird populations was low. The clear pattern of genetically distinct populations reflects the effects of genetic drift and suggests that Galápagos mockingbirds are evolving in relative isolation.
Collapse
Affiliation(s)
- Paquita E A Hoeck
- Zoological Museum, University of Zurich, , Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
35
|
Fujii A, Forstner MRJ. Genetic Variation and Population Structure of the Texas Tortoise, Gopherus berlandieri (Testudinidae), with Implications for Conservation. CHELONIAN CONSERVATION AND BIOLOGY 2010. [DOI: 10.2744/ccb-0786.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Paquette SR, Louis EE, Lapointe FJ. Microsatellite Analyses Provide Evidence of Male-Biased Dispersal in the Radiated Tortoise Astrochelys radiata (Chelonia: Testudinidae). J Hered 2010; 101:403-12. [PMID: 20308081 DOI: 10.1093/jhered/esq020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sébastien Rioux Paquette
- Allan Wilson Centre for Molecular Ecology and School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| | | | | |
Collapse
|
37
|
Russello MA, Poulakakis N, Gibbs JP, Tapia W, Benavides E, Powell JR, Caccone A. DNA from the past informs ex situ conservation for the future: an "extinct" species of Galápagos tortoise identified in captivity. PLoS One 2010; 5:e8683. [PMID: 20084268 PMCID: PMC2800188 DOI: 10.1371/journal.pone.0008683] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/20/2009] [Indexed: 12/02/2022] Open
Abstract
Background Although not unusual to find captive relicts of species lost in the wild, rarely are presumed extinct species rediscovered outside of their native range. A recent study detected living descendents of an extinct Galápagos tortoise species (Chelonoidis elephantopus) once endemic to Floreana Island on the neighboring island of Isabela. This finding adds to the growing cryptic diversity detected among these species in the wild. There also exists a large number of Galápagos tortoises in captivity of ambiguous origin. The recently accumulated population-level haplotypic and genotypic data now available for C. elephantopus add a critical reference population to the existing database of 11 extant species for investigating the origin of captive individuals of unknown ancestry. Methodology/Findings We reanalyzed mitochondrial DNA control region haplotypes and microsatellite genotypes of 156 captive individuals using an expanded reference database that included all extant Galápagos tortoise species as well as the extinct species from Floreana. Nine individuals (six females and three males) exhibited strong signatures of Floreana ancestry and a high probability of assignment to C. elephantopus as detected by Bayesian assignment and clustering analyses of empirical and simulated data. One male with high assignment probability to C. elephantopus based on microsatellite genotypic data also possessed a “Floreana-like” mitochondrial DNA haplotype. Significance Historical DNA analysis of museum specimens has provided critical spatial and temporal components to ecological, evolutionary, taxonomic and conservation-related research, but rarely has it informed ex situ species recovery efforts. Here, the availability of population-level genotypic data from the extinct C. elephantopus enabled the identification of nine Galápagos tortoise individuals of substantial conservation value that were previously misassigned to extant species of varying conservation status. As all captive individuals of C. elephantopus ancestry currently reside at a centralized breeding facility on Santa Cruz, these findings permit breeding efforts to commence in support of the reestablishment of this extinct species to its native range.
Collapse
Affiliation(s)
- Michael A Russello
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
38
|
Marsack K, Swanson BJ. A Genetic Analysis of the Impact of Generation Time and Road-Based Habitat Fragmentation on Eastern Box Turtles (Terrapene c. carolina). COPEIA 2009. [DOI: 10.1643/ce-08-233] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Genetic assessment, illegal trafficking and management of the Mediterranean spur-thighed tortoise in Southern Spain and Northern Africa. CONSERV GENET 2009. [DOI: 10.1007/s10592-009-9982-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Morphometrics parallel genetics in a newly discovered and endangered taxon of Galápagos tortoise. PLoS One 2009; 4:e6272. [PMID: 19609441 PMCID: PMC2707613 DOI: 10.1371/journal.pone.0006272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 06/07/2009] [Indexed: 11/19/2022] Open
Abstract
Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva) exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.
Collapse
|
41
|
Benavides E, Baum R, Snell HM, Snell HL, Sites JW. Island biogeography of Galápagos lava lizards (Tropiduridae: Microlophus): species diversity and colonization of the archipelago. Evolution 2009; 63:1606-26. [PMID: 19154379 DOI: 10.1111/j.1558-5646.2009.00617.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The "lava lizards" (Microlophus) are distributed throughout the Galápagos Archipelago, and consist of radiations derived from two independent colonizations. The "Eastern Radiation" includes M. bivittatus and M. habeli endemic to San Cristobal and Marchena Islands. The "Western Radiation" includes five to seven historically recognized species distributed across almost the entire Archipelago. We combine dense geographic sampling and multilocus sequence data to estimate a phylogenetic hypothesis for the Western Radiation, to delimit species boundaries in this radiation, and to estimate a time frame for colonization events. Our phylogenetic hypothesis rejects two earlier topologies for the Western Radiation and paraphyly of M. albemarlensis, while providing strong support for single colonizations on each island. The colonization history implied by our phylogeny is consistent with general expectations of an east-to-west route predicted by the putative age of island groups, and prevailing ocean currents in the Archipelago. Additionally, combined evidence suggests that M. indefatigabilis from Santa Fe should be recognized as a full species. Finally, molecular divergence estimates suggest that the two colonization events likely occurred on the oldest existing islands, and the Western Radiation represents a recent radiation that, in most cases, has produced species that are considerably younger than the islands they inhabit.
Collapse
Affiliation(s)
- Edgar Benavides
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | |
Collapse
|
42
|
POULAKAKIS NIKOS, ANTONIOU AGLAIA, MANTZIOU GEORGIA, PARMAKELIS ARIS, SKARTSI THEODORA, VASILAKIS DIMITRIS, ELORRIAGA JAVIER, DE LA PUENTE JAVIER, GAVASHELISHVILI ALEXANDER, GHASABYAN MAMIKON, KATZNER TODD, MCGRADY MICHAEL, BATBAYAR NYAMBAYAR, FULLER MARK, NATSAGDORJ TSEVEENMYADAG. Population structure, diversity, and phylogeography in the near-threatened Eurasian black vultures Aegypius monachus (Falconiformes; Accipitridae) in Europe: insights from microsatellite and mitochondrial DNA variation. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.01099.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Historical DNA analysis reveals living descendants of an extinct species of Galápagos tortoise. Proc Natl Acad Sci U S A 2008; 105:15464-9. [PMID: 18809928 DOI: 10.1073/pnas.0805340105] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Giant tortoises, a prominent symbol of the Galápagos archipelago, illustrate the influence of geological history and natural selection on the diversification of organisms. Because of heavy human exploitation, 4 of the 15 known species (Geochelone spp.) have disappeared. Charles Darwin himself detailed the intense harvesting of one species, G. elephantopus, which once was endemic to the island of Floreana. This species was believed to have been exterminated within 15 years of Darwin's historic visit to the Galápagos in 1835. The application of modern DNA techniques to museum specimens combined with long-term study of a system creates new opportunities for identifying the living remnants of extinct taxa in the wild. Here, we use mitochondrial DNA and microsatellite data obtained from museum specimens to show that the population on Floreana was evolutionarily distinct from all other Galápagos tortoise populations. It was demonstrated that some living individuals on the nearby island of Isabela are genetically distinct from the rest of the island's inhabitants. Surprisingly, we found that these "non-native" tortoises from Isabela are of recent Floreana ancestry and closely match the genetic data provided by the museum specimens. Thus, we show that the genetic line of G. elephantopus has not been completely extinguished and still exists in an intermixed population on Isabela. With enough individuals to commence a serious captive breeding program, this finding may help reestablish a species that was thought to have gone extinct more than a century ago and illustrates the power of long-term genetic analysis and the critical role of museum specimens in conservation biology.
Collapse
|
44
|
Molecular genetic analysis of a captive-breeding program: the vulnerable endemic Jamaican yellow boa. CONSERV GENET 2008. [DOI: 10.1007/s10592-008-9519-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Schmitz P, Cibois A, Landry B. Molecular phylogeny and dating of an insular endemic moth radiation inferred from mitochondrial and nuclear genes: The genus Galagete (Lepidoptera: Autostichidae) of the Galapagos Islands. Mol Phylogenet Evol 2007; 45:180-92. [PMID: 17604184 DOI: 10.1016/j.ympev.2007.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 05/09/2007] [Indexed: 11/18/2022]
Abstract
Galagete is a genus of microlepidoptera including 12 nominate species endemic to the Galapagos Islands. In order to better understand the diversification of this endemic insular radiation, to unravel relationships among species and populations, and to get insight into the early stages of speciation, we developed a phylogenetic reconstruction based on the combined mitochondrial cytochrome oxidase I (555bp) and II (453bp), and the nuclear elongation factor-1alpha (711bp) and wingless (351bp) genes. Monophyly of the genus is strongly supported in the Bayesian and maximum likelihood analyses suggesting a single colonization event by a common ancestor. Two cases of paraphyly observed between species are hypothesized to represent imperfect species limits for G. espanolaensis nested within the G. turritella clade, and introgressive hybridization or lineage sorting in the case of the population of G. protozona from Santa Fe nested within the G. gnathodoxa clade. A geologically calibrated, relaxed molecular clock model was used for the first time to unravel the chronological sequence of an insular radiation. The first split occurring within the Galagete lineage on the archipelago is estimated at 3.3+/-0.4million years ago. The genus radiated relatively quickly in about 1.8million years, and gives an estimated speciation rate of 0.8 species per million years. Although the colonization scenario shows a stochastic dispersal pattern, the arrival of the ancestor and the diversification of the radiation coincide with the chronological emergence of the major islands.
Collapse
Affiliation(s)
- Patrick Schmitz
- Department of Entomology, Muséum d'histoire naturelle, C.P. 6434, CH-1211 Geneva 6, Switzerland.
| | | | | |
Collapse
|
46
|
Russello MA, Hyseni C, Gibbs JP, Cruz S, Marquez C, Tapia W, Velensky P, Powell JR, Caccone A. Lineage identification of Galápagos tortoises in captivity worldwide. Anim Conserv 2007. [DOI: 10.1111/j.1469-1795.2007.00113.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Russello MA, Beheregaray LB, Gibbs JP, Fritts T, Havill N, Powell JR, Caccone A. Lonesome George is not alone among Galápagos tortoises. Curr Biol 2007; 17:R317-8. [PMID: 17470342 DOI: 10.1016/j.cub.2007.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Milinkovitch MC, Monteyne D, Russello M, Gibbs JP, Snell HL, Tapia W, Marquez C, Caccone A, Powell JR. Giant Galápagos tortoises; molecular genetic analyses identify a trans-island hybrid in a repatriation program of an endangered taxon. BMC Ecol 2007; 7:2. [PMID: 17302982 PMCID: PMC1820773 DOI: 10.1186/1472-6785-7-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 02/15/2007] [Indexed: 11/10/2022] Open
Abstract
Background Giant Galápagos tortoises on the island of Española have been the focus of an intensive captive breeding-repatriation programme for over 35 years that saved the taxon from extinction. However, analysis of 118 samples from released individuals indicated that the bias sex ratio and large variance in reproductive success among the 15 breeders has severely reduced the effective population size (Ne). Results We report here that an analysis of an additional 473 captive-bred tortoises released back to the island reveals an individual (E1465) that exhibits nuclear microsatellite alleles not found in any of the 15 breeders. Statistical analyses incorporating genotypes of 304 field-sampled individuals from all populations on the major islands indicate that E1465 is most probably a hybrid between an Española female tortoise and a male from the island of Pinzón, likely present on Española due to human transport. Conclusion Removal of E1465 as well as its father and possible (half-)siblings is warranted to prevent further contamination within this taxon of particular conservation significance. Despite this detected single contamination, it is highly noteworthy to emphasize the success of this repatriation program conducted over nearly 40 years and involving release of over 2000 captive-bred tortoises that now reproduce in situ. The incorporation of molecular genetic analysis of the program is providing guidance that will aid in monitoring the genetic integrity of this ambitious effort to restore a unique linage of a spectacular animal.
Collapse
Affiliation(s)
- Michel C Milinkovitch
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology & Medicine, Université Libre de Bruxelles, Rue Jeener & Brachet 12, 6041 Gosselies, Belgium
| | - Daniel Monteyne
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology & Medicine, Université Libre de Bruxelles, Rue Jeener & Brachet 12, 6041 Gosselies, Belgium
| | - Michael Russello
- Department of Ecology & Evolutionary Biology, Yale Institute for Biospherics Studies ECOSAVE, Yale University, New Haven, CT 06520-8106, USA
| | - James P Gibbs
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA
| | - Howard L Snell
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Washington Tapia
- Galápagos National Park Service, Puerto Ayora, Galápagos Islands, Ecuador
| | - Cruz Marquez
- Charles Darwin Foundation, Puerto Ayora, Galápagos Islands, Ecuador
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale Institute for Biospherics Studies ECOSAVE, Yale University, New Haven, CT 06520-8106, USA
| | - Jeffrey R Powell
- Department of Ecology & Evolutionary Biology, Yale Institute for Biospherics Studies ECOSAVE, Yale University, New Haven, CT 06520-8106, USA
| |
Collapse
|
49
|
Russello MA, Glaberman S, Gibbs JP, Marquez C, Powell JR, Caccone A. A cryptic taxon of Galápagos tortoise in conservation peril. Biol Lett 2007; 1:287-90. [PMID: 17148189 PMCID: PMC1617146 DOI: 10.1098/rsbl.2005.0317] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As once boldly stated, 'bad taxonomy can kill', highlighting the critical importance of accurate taxonomy for the conservation of endangered taxa. The concept continues to evolve almost 15 years later largely because most legal protections aimed at preserving biological diversity are based on formal taxonomic designations. In this paper we report unrecognized genetic divisions within the giant tortoises of the Galápagos. We found three distinct lineages among populations formerly considered a single taxon on the most populous and accessible island of Santa Cruz; their diagnosability, degree of genetic divergence and phylogenetic placement merit the recognition of at least one new taxon. These results demonstrate the fundamental importance of continuing taxonomic investigations to recognize biological diversity and designate units of conservation, even within long-studied organisms such as Galápagos tortoises, whose evolutionary heritage and contribution to human intellectual history warrant them special attention.
Collapse
Affiliation(s)
- Michael A Russello
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Paquette SR, Behncke SM, O’Brien SH, Brenneman RA, Louis EE, Lapointe FJ. Riverbeds demarcate distinct conservation units of the radiated tortoise (Geochelone radiata) in southern Madagascar. CONSERV GENET 2006. [DOI: 10.1007/s10592-006-9227-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|