1
|
Chawla R, Tom JKA, Boyd T, Tu NH, Bai T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. Nat Commun 2024; 15:9258. [PMID: 39462120 PMCID: PMC11513989 DOI: 10.1038/s41467-024-53469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The inorganic biopolymer polyphosphate (polyP) occurs in all domains of life and affects myriad cellular processes. A longstanding observation is polyP's frequent proximity to chromatin, and, in many bacteria, its occurrence as magnesium (Mg2+)-enriched condensates embedded in the nucleoid region, particularly in response to stress. The physical basis of the interaction between polyP, DNA and Mg2+, and the resulting effects on the organization of the nucleoid and polyP condensates, remain poorly understood. Here, using a minimal system of polyP, Mg2+, and DNA, we find that DNA can form shells around polyP-Mg2+ condensates. These shells show reentrant behavior, that is, they form within a window of Mg2+ concentrations, representing a tunable architecture with potential relevance in other multicomponent condensates. This surface association tunes condensate size and DNA morphology in a manner dependent on DNA length and concentration, even at DNA concentrations orders of magnitude lower than found in the cell. Our work also highlights the remarkable capacity of two primordial inorganic species to organize DNA.
Collapse
Affiliation(s)
- Ravi Chawla
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Chakra Techworks Inc., San Diego, CA, USA
| | - Jenna K A Tom
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas H Tu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanxi Bai
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Lisa R Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Sato N, Endo M, Nishi H, Fujiwara S, Tsuzuki M. Polyphosphate-kinase-1 dependent polyphosphate hyperaccumulation for acclimation to nutrient loss in the cyanobacterium, Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2024; 15:1441626. [PMID: 39145186 PMCID: PMC11322815 DOI: 10.3389/fpls.2024.1441626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Polyphosphate is prevalent in living organisms. To obtain insights into polyphosphate synthesis and its physiological significance in cyanobacteria, we characterize sll0290, a homolog of the polyphosphate-kinase-1 gene, in the freshwater cyanobacterium Synechocystis sp. PCC 6803. The Sll0290 protein structure reveals characteristics of Ppk1. A Synechocystis sll0290 disruptant and sll0290-overexpressing Escherichia coli transformant demonstrated loss and gain of polyphosphate synthesis ability, respectively. Accordingly, sll0290 is identified as ppk1. The disruptant (Δppk1) grows normally with aeration of ordinary air (0.04% CO2), consistent with its photosynthesis comparable to the wild type level, which contrasts with a previously reported high-CO2 (5%) requirement for Δppk1 in an alkaline hot spring cyanobacterium, Synechococcus OS-B'. Synechocystis Δppk1 is defective in polyphosphate hyperaccumulation and survival competence at the stationary phase, and also under sulfur-starvation conditions, implying that sulfur limitation is one of the triggers to induce polyphosphate hyperaccumulation in stationary cells. Furthermore, Δppk1 is defective in the enhancement of total phosphorus contents under sulfur-starvation conditions, a phenomenon that is only partially explained by polyphosphate hyperaccumulation. This study therefore demonstrates that in Synechocystis, ppk1 is not essential for low-CO2 acclimation but plays a crucial role in dynamic P-metabolic regulation, including polyP hyperaccumulation, to maintain physiological fitness under sulfur-starvation conditions.
Collapse
Affiliation(s)
- Norihiro Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
3
|
García-Villada L, Degtyareva NP, Brooks AM, Goldberg JB, Doetsch PW. A role for the stringent response in ciprofloxacin resistance in Pseudomonas aeruginosa. Sci Rep 2024; 14:8598. [PMID: 38615146 PMCID: PMC11016087 DOI: 10.1038/s41598-024-59188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Ashley M Brooks
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, NIEHS, Durham, NC, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul W Doetsch
- Genomic Integrity and Structural Biology Laboratory, NIEHS, Durham, NC, USA.
| |
Collapse
|
4
|
Geerlings NMJ, Kienhuis MVM, Hidalgo-Martinez S, Hageman R, Vasquez-Cardenas D, Middelburg JJ, Meysman FJR, Polerecky L. Polyphosphate Dynamics in Cable Bacteria. Front Microbiol 2022; 13:883807. [PMID: 35663875 PMCID: PMC9159916 DOI: 10.3389/fmicb.2022.883807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
Cable bacteria are multicellular sulfide oxidizing bacteria that display a unique metabolism based on long-distance electron transport. Cells in deeper sediment layers perform the sulfide oxidizing half-reaction whereas cells in the surface layers of the sediment perform the oxygen-reducing half-reaction. These half-reactions are coupled via electron transport through a conductive fiber network that runs along the shared cell envelope. Remarkably, only the sulfide oxidizing half-reaction is coupled to biosynthesis and growth whereas the oxygen reducing half-reaction serves to rapidly remove electrons from the conductive fiber network and is not coupled to energy generation and growth. Cells residing in the oxic zone are believed to (temporarily) rely on storage compounds of which polyphosphate (poly-P) is prominently present in cable bacteria. Here we investigate the role of poly-P in the metabolism of cable bacteria within the different redox environments. To this end, we combined nanoscale secondary ion mass spectrometry with dual-stable isotope probing (13C-DIC and 18O-H2O) to visualize the relationship between growth in the cytoplasm (13C-enrichment) and poly-P activity (18O-enrichment). We found that poly-P was synthesized in almost all cells, as indicated by 18O enrichment of poly-P granules. Hence, poly-P must have an important function in the metabolism of cable bacteria. Within the oxic zone of the sediment, where little growth is observed, 18O enrichment in poly-P granules was significantly lower than in the suboxic zone. Thus, both growth and poly-P metabolism appear to be correlated to the redox environment. However, the poly-P metabolism is not coupled to growth in cable bacteria, as many filaments from the suboxic zone showed poly-P activity but did not grow. We hypothesize that within the oxic zone, poly-P is used to protect the cells against oxidative stress and/or as a resource to support motility, while within the suboxic zone, poly-P is involved in the metabolic regulation before cells enter a non-growing stage.
Collapse
Affiliation(s)
- Nicole M. J. Geerlings
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
- *Correspondence: Nicole M. J. Geerlings,
| | | | - Silvia Hidalgo-Martinez
- Excellence centre for Microbial Systems Technology, University of Antwerp, Wilrijk, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Renee Hageman
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Diana Vasquez-Cardenas
- Excellence centre for Microbial Systems Technology, University of Antwerp, Wilrijk, Belgium
| | | | - Filip J. R. Meysman
- Excellence centre for Microbial Systems Technology, University of Antwerp, Wilrijk, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
- Lubos Polerecky,
| |
Collapse
|
5
|
The Histone H1-Like Protein AlgP Facilitates Even Spacing of Polyphosphate Granules in Pseudomonas aeruginosa. mBio 2022; 13:e0246321. [PMID: 35435704 PMCID: PMC9239181 DOI: 10.1128/mbio.02463-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Synthesis of polyphosphate (polyP) is an ancient and universal stress and starvation response in bacteria. In many bacteria, polyP chains come together to form granular superstructures within cells. Some species appear to regulate polyP granule subcellular organization. Despite the critical role of polyP in starvation fitness, the composition of these structures, mechanism(s) underpinning their organization, and functional significance of such organization are poorly understood. We previously determined that granules become transiently evenly spaced on the cell’s long axis during nitrogen starvation in the opportunistic human pathogen Pseudomonas aeruginosa. Here, we developed a granule-enrichment protocol to screen for polyP granule-localizing proteins. We identified AlgP as a protein that associates with polyP granules. We further discovered that AlgP is required for the even spacing of polyP granules. AlgP is a DNA-binding protein with a 154 amino acid C-terminal domain enriched in “KPAA” repeats and variants of this repeat, with an overall sequence composition similar to the C-terminal tail of eukaryotic histone H1. Granule size, number, and spacing are significantly perturbed in the absence of AlgP, or when AlgP is truncated to remove the C-terminus. The ΔalgP and algPΔCTD mutants have fewer, larger granules. We speculate that AlgP may contribute to spacing by tethering polyP granules to the chromosome, thereby inhibiting fusion with neighboring granules. Our discovery that AlgP facilitates granule spacing allows us for the first time to directly uncouple granule biogenesis from even spacing, and will inform future efforts to explore the functional significance of granule organization on fitness during starvation.
Collapse
|
6
|
Zhang A, Lu Z, Xu Y, Qi T, Li W, Zhang L, Cui Z. The structure of exopolyphosphatase (PPX) from Porphyromonas gingivalis in complex with substrate analogs and magnesium ions reveals the basis for polyphosphate processivity. J Struct Biol 2021; 213:107767. [PMID: 34214602 DOI: 10.1016/j.jsb.2021.107767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
The enzymes exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GppA) play important roles in the bacterial stringent response. PPX degrades inorganic polyphosphate (polyP), a polymer composed of a few to hundreds of phosphate residues supporting cell survival in the stationary phase. The crystal structure of PPX from Porphyromonas gingivalis (PgPPX) in complex with catalytic magnesium ions and several sulfate ions was solved. PgPPX contained two domains and represented a "closed" configuration. Four sulfate ions forming a linear dispersed chain were observed in the aqueduct of the PPX dimer, which the long polyP chain most likely occupied. The side chain of R255 stretched into the cavity where polyP could be located, obstructing the entrance of larger substrates such as NTP and NDP. This study provided the first view into the structure of the PPX/GppA homolog in complex with magnesium ions and substrate analogs and explained how PgPPX implemented its functionality.
Collapse
Affiliation(s)
- Aili Zhang
- Food and Pharmacy College, Xuchang University, China; Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, China
| | - Zuokun Lu
- Food and Pharmacy College, Xuchang University, China; Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, China.
| | - Yanhao Xu
- Food and Pharmacy College, Xuchang University, China
| | - Tiantian Qi
- Food and Pharmacy College, Xuchang University, China
| | - Wenwen Li
- Food and Pharmacy College, Xuchang University, China
| | - Liang Zhang
- Food and Pharmacy College, Xuchang University, China; Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, China
| | - Zhaohui Cui
- Food and Pharmacy College, Xuchang University, China; Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, China
| |
Collapse
|
7
|
Morales M, Sentchilo V, Hadadi N, van der Meer JR. Genome-wide gene expression changes of Pseudomonas veronii 1YdBTEX2 during bioaugmentation in polluted soils. ENVIRONMENTAL MICROBIOME 2021; 16:8. [PMID: 33926576 PMCID: PMC8082905 DOI: 10.1186/s40793-021-00378-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bioaugmentation aims to use the capacities of specific bacterial strains inoculated into sites to enhance pollutant biodegradation. Bioaugmentation results have been mixed, which has been attributed to poor inoculant growth and survival in the field, and, consequently, moderate catalytic performance. However, our understanding of biodegradation activity mostly comes from experiments conducted under laboratory conditions, and the processes occurring during adaptation and invasion of inoculants into complex environmental microbiomes remain poorly known. The main aim of this work was thus to study the specific and different cellular reactions of an inoculant for bioaugmentation during adaptation, growth and survival in natural clean and contaminated non-sterile soils, in order to better understand factors limiting bioaugmentation. RESULTS As inoculant we focused on the monoaromatic compound-degrading bacterium Pseudomonas veronii 1YdBTEX2. The strain proliferated in all but one soil types in presence and in absence of exogenously added toluene. RNAseq and differential genome-wide gene expression analysis illustrated both a range of common soil responses such as increased nutrient scavenging and recycling, expression of defense mechanisms, as well as environment-specific reactions, notably osmoprotection and metal homeostasis. The core metabolism of P. veronii remained remarkably constant during exponential growth irrespective of the environment, with slight changes in cofactor regeneration pathways, possibly needed for balancing defense reactions. CONCLUSIONS P. veronii displayed a versatile global program, enabling it to adapt to a variety of soil environments in the presence and even in absence of its target pollutant toluene. Our results thus challenge the widely perceived dogma of poor survival and growth of exogenous inoculants in complex microbial ecosystems such as soil and provide a further basis to developing successful bioaugmentation strategies.
Collapse
Affiliation(s)
- Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Noushin Hadadi
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet 2021; 67:331-346. [PMID: 33420907 DOI: 10.1007/s00294-020-01148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Polyphosphates (polyP) are polymers of inorganic phosphates joined by high-energy bonds to form long chains. These chains are present in all forms of life but were once disregarded as 'molecular fossils'. PolyP has gained attention in recent years following new links to diverse biological roles ranging from energy storage to cell signaling. PolyP research in humans and other higher eukaryotes is limited by a lack of suitable tools and awaits the identification of enzymatic players that would enable more comprehensive studies. Therefore, many of the most important insights have come from single-cell model systems. Here, we review determinants of polyP metabolism, regulation, and function in major microbial systems, including bacteria, fungi, protozoa, and algae. We highlight key similarities and differences that may aid in our understanding of how polyP impacts cell physiology at a molecular level.
Collapse
Affiliation(s)
- Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada.
| |
Collapse
|
9
|
MURATA K. Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:479-498. [PMID: 34629356 PMCID: PMC8553519 DOI: 10.2183/pjab.97.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Polyphosphate [poly(P)] is described as a homopolymer of inorganic phosphates. Nicotinamide adenine dinucleotide kinase (NAD kinase) catalyzes the phosphorylation of NAD+ to NADP+ in the presence of ATP (ATP-NAD kinase). Novel NAD kinase that explicitly phosphorylates NAD+ to NADP+ using poly(P), besides ATP [ATP/poly(P)-NAD kinase], was found in bacteria, in particular, Gram-positive bacteria, and the gene encoding ATP/poly(P)-NAD kinase was also newly identified in Mycobacterium tuberculosis H37Rv. Both NAD kinases required multi-homopolymeric structures for activity expression. The enzymatic and genetic results, combined with their primary and tertiary structures, have led to the discovery of a long-awaited human mitochondrial NAD kinase. This discovery showed that the NAD kinase is a bacterial type of ATP/poly(P)-NAD kinase. These pioneering findings, i.e., ATP/poly(P)-NAD kinase, NAD kinase gene, and human mitochondrial NAD kinase, have significantly enhanced research on the biochemistry, molecular biology, and evolutionary biology of NAD kinase, mitochondria, and poly(P), including some biotechnological knowledge applicable to NADP+ production.
Collapse
|
10
|
Rémy B, Plener L, Decloquement P, Armstrong N, Elias M, Daudé D, Chabrière É. Lactonase Specificity Is Key to Quorum Quenching in Pseudomonas aeruginosa. Front Microbiol 2020; 11:762. [PMID: 32390993 PMCID: PMC7193897 DOI: 10.3389/fmicb.2020.00762] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
The human opportunistic pathogen Pseudomonas aeruginosa orchestrates the expression of many genes in a cell density-dependent manner by using quorum sensing (QS). Two acyl-homoserine lactones (AHLs) are involved in QS circuits and contribute to the regulation of virulence factors production, biofilm formation, and antimicrobial sensitivity. Disrupting QS, a strategy referred to as quorum quenching (QQ) can be achieved using exogenous AHL-degrading lactonases. However, the importance of enzyme specificity on quenching efficacy has been poorly investigated. Here, we used two lactonases both targeting the signal molecules N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 HSL) and butyryl-homoserine lactone (C4 HSL) albeit with different efficacies on C4 HSL. Interestingly, both lactonases similarly decreased AHL concentrations and comparably impacted the expression of AHL-based QS genes. However, strong variations were observed in Pseudomonas Quinolone Signal (PQS) regulation depending on the lactonase used. Both lactonases were also found to decrease virulence factors production and biofilm formation in vitro, albeit with different efficiencies. Unexpectedly, only the lactonase with lower efficacy on C4 HSL was able to inhibit P. aeruginosa pathogenicity in vivo in an amoeba infection model. Similarly, proteomic analysis revealed large variations in protein levels involved in antibiotic resistance, biofilm formation, virulence and diverse cellular mechanisms depending on the chosen lactonase. This global analysis provides evidences that QQ enzyme specificity has a significant impact on the modulation of QS-associated behavior in P. aeruginosa PA14.
Collapse
Affiliation(s)
- Benjamin Rémy
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France.,Gene&GreenTK, Marseille, France
| | | | - Philippe Decloquement
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | - Nicholas Armstrong
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics - BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | | | - Éric Chabrière
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| |
Collapse
|
11
|
Ge Y, Lee JH, Liu J, Yang H, Tian Y, Hu B, Zhao Y. Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non-coding small RNAs and have distinct roles in virulence. MOLECULAR PLANT PATHOLOGY 2019; 20:1217-1236. [PMID: 31218814 PMCID: PMC6715622 DOI: 10.1111/mpp.12823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (PstDC3000) contains five RsmA protein homologues. In this study, four were functionally characterized, with a focus on RsmA2, RsmA3 and RsmA4. RNA electrophoretic mobility shift assays demonstrated that RsmA1 and RsmA4 exhibited similar low binding affinities to non-coding small RNAs (ncsRNAs), whereas RsmA2 and RsmA3 exhibited similar, but much higher, binding affinities to ncsRNAs. Our results showed that both RsmA2 and RsmA3 were required for disease symptom development and bacterial growth in planta by significantly affecting virulence gene expression. All four RsmA proteins, especially RsmA2 and RsmA3, influenced γ-amino butyric acid utilization and pyoverdine production to some degree, whereas RsmA2, RsmA3 and RsmA4 influenced protease activities. A single RsmA, RsmA3, played a dominant role in regulating motility. Furthermore, reverse transcription quantitative real-time PCR and western blot results showed that RsmA proteins, especially RsmA2 and RsmA3, regulated target genes and possibly other RsmA proteins at both transcriptional and translational levels. These results indicate that RsmA proteins in PstDC3000 exhibit distinct binding affinities to ncsRNAs and have distinct roles in virulence. Our results also suggest that RsmA proteins in PstDC3000 interact with each other, where RsmA2 and RsmA3 play a major role in regulating various functions in a complex manner.
Collapse
Affiliation(s)
- Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jae Hoon Lee
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ho‐wen Yang
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
| | - Youfu Zhao
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
12
|
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp. J Bacteriol 2019; 201:JB.00664-18. [PMID: 30745375 DOI: 10.1128/jb.00664-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Production of inorganic polyphosphate (polyP) by bacteria is triggered by a variety of different stress conditions. polyP is required for stress survival and virulence in diverse pathogenic microbes. Previous studies have hypothesized a model for regulation of polyP synthesis in which production of the stringent-response second messenger (p)ppGpp directly stimulates polyP accumulation. In this work, I have now shown that this model is incorrect, and (p)ppGpp is not required for polyP synthesis in Escherichia coli However, stringent mutations of RNA polymerase that frequently arise spontaneously in strains defective in (p)ppGpp synthesis and null mutations of the stringent-response-associated transcription factor DksA both strongly inhibit polyP accumulation. The loss of polyP synthesis in a mutant lacking DksA was reversed by deletion of the transcription elongation factor GreA, suggesting that competition between these proteins for binding to the secondary channel of RNA polymerase plays an important role in controlling polyP activation. These results provide new insights into the poorly understood regulation of polyP synthesis in bacteria and indicate that the relationship between polyP and the stringent response is more complex than previously suspected.IMPORTANCE Production of polyP in bacteria is required for virulence and stress response, but little is known about how bacteria regulate polyP levels in response to changes in their environments. Understanding this regulation is important for understanding how pathogenic microbes resist killing by disinfectants, antibiotics, and the immune system. In this work, I have clarified the connections between polyP regulation and the stringent response to starvation stress in Escherichia coli and demonstrated an important and previously unknown role for the transcription factor DksA in controlling polyP levels.
Collapse
|
13
|
Grillo-Puertas M, Delaporte-Quintana P, Pedraza RO, Rapisarda VA. Intracellular Polyphosphate Levels in Gluconacetobacter diazotrophicus Affect Tolerance to Abiotic Stressors and Biofilm Formation. Microbes Environ 2018; 33:440-445. [PMID: 30404971 PMCID: PMC6307995 DOI: 10.1264/jsme2.me18044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gluconacetobacter diazotrophicus is a plant growth-promoting bacterium that is used as a bioinoculant. Phosphate (Pi) modulates intracellular polyphosphate (polyP) levels in Escherichia coli, affecting cellular fitness and biofilm formation capacity. It currently remains unclear whether environmental Pi modulates polyP levels in G. diazotrophicus to enhance fitness in view of its technological applications. In high Pi media, cells accumulated polyP and degraded it, thereby improving survival, tolerance to environmental stressors, biofilm formation capacity on abiotic and biotic surfaces, and competence as a growth promoter of strawberry plants. The present results support the importance of Pi and intracellular polyP as signals involved in the survival of G. diazotrophicus.
Collapse
Affiliation(s)
- Mariana Grillo-Puertas
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. San Miguel de Tucumán
| | | | | | - Viviana Andrea Rapisarda
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. San Miguel de Tucumán
| |
Collapse
|
14
|
Sulfurimonas subgroup GD17 cells accumulate polyphosphate under fluctuating redox conditions in the Baltic Sea: possible implications for their ecology. ISME JOURNAL 2018; 13:482-493. [PMID: 30291329 DOI: 10.1038/s41396-018-0267-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
Abstract
The central Baltic Sea is characterized by a pelagic redox zone exhibiting high dark CO2 fixation rates below the chemocline. These rates are mainly driven by chemolithoautotrophic and denitrifying Sulfurimonas GD17 subgroup cells which are motile and fast-reacting r-strategists. Baltic Sea redox zones are unstable and a measurable overlap of nitrate and reduced sulfur, essential for chemosynthesis, is often only available on small scales and short times due to local mixing events. This raises the question of how GD17 cells gain access to electron donors or acceptors over longer term periods and under substrate deficiency. One possible answer is that GD17 cells store high-energy-containing polyphosphate during favorable nutrient conditions to survive periods of nutrient starvation. We used scanning electron microscopy with energy-dispersive X-ray spectroscopy to investigate potential substrate enrichments in single GD17 cells collected from Baltic Sea redox zones. More specific substrate enrichment features were identified in experiments using Sulfurimonas gotlandica GD1T, a GD17 representative. Sulfurimonas cells accumulated polyphosphate both in situ and in vitro. Combined genome and culture-dependent analyses suggest that polyphosphate serves as an energy reservoir to maintain cellular integrity at unfavorable substrate conditions. This redox-independent energy supply would be a precondition for sustaining the r-strategy lifestyle of GD17 and may represent a newly identified survival strategy for chemolithoautotrophic prokaryotes occupying eutrophic redox zones.
Collapse
|
15
|
Rudat AK, Pokhrel A, Green TJ, Gray MJ. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. J Bacteriol 2018; 200:e00697-17. [PMID: 29311274 PMCID: PMC5826030 DOI: 10.1128/jb.00697-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a wide variety of stresses, and production of polyP is essential for stress response and survival in many important pathogens and bacteria used in biotechnological processes. However, surprisingly little is known about the molecular mechanisms that control polyP synthesis. We have therefore developed a novel genetic screen that specifically links growth of Escherichia coli to polyP synthesis, allowing us to isolate mutations leading to enhanced polyP production. Using this system, we have identified mutations in the polyP-synthesizing enzyme polyP kinase (PPK) that lead to dramatic increases in in vivo polyP synthesis but do not substantially affect the rate of polyP synthesis by PPK in vitro These mutations are distant from the PPK active site and found in interfaces between monomers of the PPK tetramer. We have also shown that high levels of polyP lead to intracellular magnesium starvation. Our results provide new insights into the control of bacterial polyP accumulation and suggest a simple, novel strategy for engineering bacteria with increased polyP contents.IMPORTANCE PolyP is an ancient, universally conserved biomolecule and is important for stress response, energy metabolism, and virulence in a remarkably broad range of microorganisms. PolyP accumulation by bacteria is also important in biotechnology applications. For example, it is critical to enhanced biological phosphate removal (EBPR) from wastewater. Understanding how bacteria control polyP synthesis is therefore of broad importance in both the fields of bacterial pathogenesis and biological engineering. Using Escherichia coli as a model organism, we have identified the first known mutations in polyP kinase that lead to increases in cellular polyP content.
Collapse
Affiliation(s)
- Amanda K Rudat
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arya Pokhrel
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:E2440-E2449. [PMID: 28265086 DOI: 10.1073/pnas.1615575114] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphosphate (polyP) granule biogenesis is an ancient and ubiquitous starvation response in bacteria. Although the ability to make polyP is important for survival during quiescence and resistance to diverse environmental stresses, granule genesis is poorly understood. Using quantitative microscopy at high spatial and temporal resolution, we show that granule genesis in Pseudomonas aeruginosa is tightly organized under nitrogen starvation. Following nucleation as many microgranules throughout the nucleoid, polyP granules consolidate and become transiently spatially organized during cell cycle exit. Between 1 and 3 h after nitrogen starvation, a minority of cells have divided, yet the total granule number per cell decreases, total granule volume per cell dramatically increases, and individual granules grow to occupy diameters as large as ∼200 nm. At their peak, mature granules constitute ∼2% of the total cell volume and are evenly spaced along the long cell axis. Following cell cycle exit, granules initially retain a tight spatial organization, yet their size distribution and spacing relax deeper into starvation. Mutant cells lacking polyP elongate during starvation and contain more than one origin. PolyP promotes cell cycle exit by functioning at a step after DNA replication initiation. Together with the universal starvation alarmone (p)ppGpp, polyP has an additive effect on nucleoid dynamics and organization during starvation. Notably, cell cycle exit is temporally coupled to a net increase in polyP granule biomass, suggesting that net synthesis, rather than consumption of the polymer, is important for the mechanism by which polyP promotes completion of cell cycle exit during starvation.
Collapse
|
17
|
Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol 2017; 7:39. [PMID: 28261568 PMCID: PMC5310132 DOI: 10.3389/fcimb.2017.00039] [Citation(s) in RCA: 886] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance and avoiding the spreading of resistant strains.
Collapse
Affiliation(s)
| | | | - Bernd H. A. Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
| |
Collapse
|
18
|
Ertesvåg H, Sletta H, Senneset M, Sun YQ, Klinkenberg G, Konradsen TA, Ellingsen TE, Valla S. Identification of genes affecting alginate biosynthesis in Pseudomonas fluorescens by screening a transposon insertion library. BMC Genomics 2017; 18:11. [PMID: 28049432 PMCID: PMC5210274 DOI: 10.1186/s12864-016-3467-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Background Polysaccharides often are necessary components of bacterial biofilms and capsules. Production of these biopolymers constitutes a drain on key components in the central carbon metabolism, but so far little is known concerning if and how the cells divide their resources between cell growth and production of exopolysaccharides. Alginate is an industrially important linear polysaccharide synthesized from fructose 6-phosphate by several bacterial species. The aim of this study was to identify genes that are necessary for obtaining a normal level of alginate production in alginate-producing Pseudomonas fluorescens. Results Polysaccharide biosynthesis is costly, since it utilizes nucleotide sugars and sequesters carbon. Consequently, transcription of the genes necessary for polysaccharide biosynthesis is usually tightly regulated. In this study we used an engineered P. fluorescens SBW25 derivative where all genes encoding the proteins needed for biosynthesis of alginate from fructose 6-phosphate and export of the polymer are expressed from inducible Pm promoters. In this way we would avoid identification of genes merely involved in regulating the expression of the alginate biosynthetic genes. The engineered strain was subjected to random transposon mutagenesis and a library of about 11500 mutants was screened for strains with altered alginate production. Identified inactivated genes were mainly found to encode proteins involved in metabolic pathways related to uptake and utilization of carbon, nitrogen and phosphor sources, biosynthesis of purine and tryptophan and peptidoglycan recycling. Conclusions The majority of the identified mutants resulted in diminished alginate biosynthesis while cell yield in most cases were less affected. In some cases, however, a higher final cell yield were measured. The data indicate that when the supplies of fructose 6-phosphate or GTP are diminished, less alginate is produced. This should be taken into account when bacterial strains are designed for industrial polysaccharide production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3467-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helga Ertesvåg
- Department of Biotechnology, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | | | - Mona Senneset
- Department of Biotechnology, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,SINTEF Materials and Chemistry, Trondheim, Norway
| | - Yi-Qian Sun
- Department of Biotechnology, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | - Svein Valla
- Department of Biotechnology, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
Pseudomonas aeruginosa Exopolyphosphatase Is Also a Polyphosphate: ADP Phosphotransferase. Enzyme Res 2015; 2015:404607. [PMID: 26576296 PMCID: PMC4631893 DOI: 10.1155/2015/404607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/27/2015] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn−1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4+ is an activator of the enzyme and may function at concentrations lower than those of K+; (iii) Zn2+ is also an activator of paPpx and may substitute Mg2+ in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg2+ and capable of producing ATP regardless of the presence or absence of K+ or NH4+ ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.
Collapse
|
20
|
Ortiz-Severín J, Varas M, Bravo-Toncio C, Guiliani N, Chávez FP. Multiple antibiotic susceptibility of polyphosphate kinase mutants (ppk1 and ppk2) from Pseudomonas aeruginosa PAO1 as revealed by global phenotypic analysis. Biol Res 2015; 48:22. [PMID: 25907584 PMCID: PMC4424552 DOI: 10.1186/s40659-015-0012-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1) is deficient in motility, quorum sensing, biofilm formation and virulence. FINDINGS By using Phenotypic Microarrays (PM) we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2). We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin. CONCLUSIONS Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| | - Macarena Varas
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| | - Catalina Bravo-Toncio
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| | - Nicolás Guiliani
- Bacterial Communication Laboratory, Department of Biology, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| | - Francisco P Chávez
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
21
|
phoU inactivation in Pseudomonas aeruginosa enhances accumulation of ppGpp and polyphosphate. Appl Environ Microbiol 2015; 81:3006-15. [PMID: 25710363 DOI: 10.1128/aem.04168-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/13/2015] [Indexed: 12/28/2022] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer composed of several molecules of orthophosphate (Pi) linked by energy-rich phosphoanhydride bonds. In Pseudomonas aeruginosa, Pi is taken up by the ABC transporter Pst, encoded by an operon consisting of five genes. The first four genes encode proteins involved in the transport of Pi and the last gene of the operon, phoU, codes for a protein which exact function is unknown. We show here that the inactivation of phoU in P. aeruginosa enhanced Pi removal from the medium and polyP accumulation. The phoU mutant also accumulated high levels of the alarmone guanosine tetraphosphate (ppGpp), which in turn increased the buildup of polyP. In addition, phoU inactivation had several pleiotropic effects, such as reduced growth rate and yield and increased sensitivity to antibiotics and stresses. However, biofilm formation was not affected by the phoU mutation.
Collapse
|
22
|
The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 2014; 80:6976-91. [PMID: 25192989 DOI: 10.1128/aem.01576-14] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state.
Collapse
|
23
|
Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6:637-50. [PMID: 24034361 PMCID: PMC3815931 DOI: 10.1111/1751-7915.12076] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/25/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022] Open
Abstract
Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required.
Collapse
Affiliation(s)
- Iain D Hay
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
24
|
Fujimoto K, Sawai S. A design principle of group-level decision making in cell populations. PLoS Comput Biol 2013; 9:e1003110. [PMID: 23825937 PMCID: PMC3694814 DOI: 10.1371/journal.pcbi.1003110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/05/2013] [Indexed: 11/19/2022] Open
Abstract
Populations of cells often switch states as a group to cope with environmental changes such as nutrient availability and cell density. Although the gene circuits that underlie the switches are well understood at the level of single cells, the ways in which such circuits work in concert among many cells to support group-level switches are not fully explored. Experimental studies of microbial quorum sensing show that group-level changes in cellular states occur in either a graded or an all-or-none fashion. Here, we show through numerical simulations and mathematical analysis that these behaviors generally originate from two distinct forms of bistability. The choice of bistability is uniquely determined by a dimensionless parameter that compares the synthesis and the transport of the inducing molecules. The role of the parameter is universal, such that it not only applies to the autoinducing circuits typically found in bacteria but also to the more complex gene circuits involved in transmembrane receptor signaling. Furthermore, in gene circuits with negative feedback, the same dimensionless parameter determines the coherence of group-level transitions from quiescence to a rhythmic state. The set of biochemical parameters in bacterial quorum-sensing circuits appear to be tuned so that the cells can use either type of transition. The design principle identified here serves as the basis for the analysis and control of cellular collective decision making. Although the genetic circuits underlying state switching at the single-cell level are well understood, how such circuits work in concert among many cells to support the population-level switching of cellular behaviors is not fully explored. Experiments using microbial signaling systems show that group-level changes in cellular state occur in either a graded or an all-or-none fashion. We show that the type of group-level decision making used by populations is uniquely determined by a single dimensionless parameter that compares the quorum-signaling molecules accumulated within the cells with those secreted by the population. Bacterial quorum-sensing circuits appear to be tuned so that the cells can convert between the two types of decision-making in response to slight biochemical variations. Furthermore, the role of the parameter is universal such that it not only applies to the autoinducing circuits typically found in bacteria but also to the more complex gene circuits involved in transmembrane receptor signaling and negative feedback. The design principle that we describe thus serves as the basis for the analysis and control of collective cellular decision making in general.
Collapse
Affiliation(s)
- Koichi Fujimoto
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
25
|
Crookes-Goodson WJ, Bojanowski CL, Kay ML, Lloyd PF, Blankemeier A, Hurtubise JM, Singh KM, Barlow DE, Ladouceur HD, Matt Eby D, Johnson GR, Mirau PA, Pehrsson PE, Fraser HL, Russell JN. The impact of culture medium on the development and physiology of biofilms of Pseudomonas fluorescens formed on polyurethane paint. BIOFOULING 2013; 29:601-615. [PMID: 23697763 DOI: 10.1080/08927014.2013.783906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microbial biofilms cause the deterioration of polymeric coatings such as polyurethanes (PUs). In many cases, microbes have been shown to use the PU as a nutrient source. The interaction between biofilms and nutritive substrata is complex, since both the medium and the substratum can provide nutrients that affect biofilm formation and biodeterioration. Historically, studies of PU biodeterioration have monitored the planktonic cells in the medium surrounding the material, not the biofilm. This study monitored planktonic and biofilm cell counts, and biofilm morphology, in long-term growth experiments conducted with Pseudomonas fluorescens under different nutrient conditions. Nutrients affected planktonic and biofilm cell numbers differently, and neither was representative of the system as a whole. Microscopic examination of the biofilm revealed the presence of intracellular storage granules in biofilms grown in M9 but not yeast extract salts medium. These granules are indicative of nutrient limitation and/or entry into stationary phase, which may impact the biodegradative capability of the biofilm.
Collapse
Affiliation(s)
- Wendy J Crookes-Goodson
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nikel PI, Chavarría M, Martínez-García E, Taylor AC, de Lorenzo V. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microb Cell Fact 2013; 12:50. [PMID: 23687963 PMCID: PMC3673903 DOI: 10.1186/1475-2859-12-50] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background Accumulation of inorganic polyphosphate (polyP), a persistent trait throughout the whole Tree of Life, is claimed to play a fundamental role in enduring environmental insults in a large variety of microorganisms. The share of polyP in the tolerance of the soil bacterium Pseudomonas putida KT2440 to a suite of physicochemical stresses has been studied on the background of its capacity as a host of oxidative biotransformations. Results Cells lacking polyphosphate kinase (Ppk), which expectedly presented a low intracellular polyP level, were more sensitive to a number of harsh external conditions such as ultraviolet irradiation, addition of β-lactam antibiotics and heavy metals (Cd2+ and Cu2+). Other phenotypes related to a high-energy phosphate load (e.g., swimming) were substantially weakened as well. Furthermore, the ppk mutant was consistently less tolerant to solvents and its survival in stationary phase was significantly affected. In contrast, the major metabolic routes were not significantly influenced by the loss of Ppk as diagnosed from respiration patterns of the mutant in phenotypic microarrays. However, the catalytic vigour of the mutant decreased to about 50% of that in the wild-type strain as estimated from the specific growth rate of cells carrying the catabolic TOL plasmid pWW0 for m-xylene biodegradation. The catalytic phenotype of the mutant was restored by over-expressing ppk in trans. Some of these deficits could be explained by the effect of the ppk mutation on the expression profile of the rpoS gene, the stationary phase sigma factor, which was revealed by the analysis of a PrpoS → rpoS‘-’lacZ translational fusion. Still, every stress-related effect of lacking Ppk in P. putida was relatively moderate as compared to some of the conspicuous phenotypes reported for other bacteria. Conclusions While polyP can be involved in a myriad of cellular functions, the polymer seems to play a relatively secondary role in the genetic and biochemical networks that ultimately enable P. putida to endure environmental stresses. Instead, the main value of polyP could be ensuring a reservoire of energy during prolonged starvation. This is perhaps one of the reasons for polyP persistence in live systems despite its apparent lack of essentiality.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
Grillo-Puertas M, Villegas JM, Rintoul MR, Rapisarda VA. Polyphosphate degradation in stationary phase triggers biofilm formation via LuxS quorum sensing system in Escherichia coli. PLoS One 2012; 7:e50368. [PMID: 23226268 PMCID: PMC3511525 DOI: 10.1371/journal.pone.0050368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/19/2012] [Indexed: 12/12/2022] Open
Abstract
In most natural environments, association with a surface in a structure known as biofilm is the prevailing microbial life-style of bacteria. Polyphosphate (polyP), an ubiquitous linear polymer of hundreds of orthophosphate residues, has a crucial role in stress responses, stationary-phase survival, and it was associated to bacterial biofilm formation and production of virulence factors. In previous work, we have shown that Escherichia coli cells grown in media containing a critical phosphate concentration >37 mM maintained an unusual high polyP level in stationary phase. The aim of the present work was to analyze if fluctuations in polyP levels in stationary phase affect biofilm formation capacity in E. coli. Polymer levels were modulated by the media phosphate concentration or using mutant strains in polyP metabolism. Cells grown in media containing phosphate concentrations higher than 25 mM were defective in biofilm formation. Besides, there was a disassembly of 24 h preformed biofilm by the addition of high phosphate concentration to the medium. These phenotypes were related to the maintenance or re-synthesis of polyP in stationary phase in static conditions. No biofilm formation was observed in ppk(-)ppx(-) or ppk(-)ppx(-)/ppk(+) strains, deficient in polyP synthesis and hydrolysis, respectively. luxS and lsrK mutants, impaired in autoinducer-2 quorum sensing signal metabolism, were unable to form biofilm unless conditioned media from stationary phase wild type cells grown in low phosphate were used. We conclude that polyP degradation is required for biofilm formation in sufficient phosphate media, activating or triggering the production of autoinducer-2. According to our results, phosphate concentration of the culture media should be carefully considered in bacterial adhesion and virulence studies.
Collapse
Affiliation(s)
| | | | | | - Viviana A. Rapisarda
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán), and Instituto de Química Biológica “Dr Bernabé Bloj” (Universidad Nacional de Tucumán), San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
28
|
The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2012; 76:46-65. [PMID: 22390972 DOI: 10.1128/mmbr.05007-11] [Citation(s) in RCA: 497] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production.
Collapse
|
29
|
Ruffing AM, Chen RR. Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb Cell Fact 2012; 11:17. [PMID: 22305302 PMCID: PMC3293034 DOI: 10.1186/1475-2859-11-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background The ability to synthesize exopolysaccharides (EPS) is widespread among microorganisms, and microbial EPS play important roles in biofilm formation, pathogen persistence, and applications in the food and medical industries. Although it is well established that EPS synthesis is invariably in response to environmental cues, it remains largely unknown how various environmental signals trigger activation of the biochemical synthesis machinery. Results We report here the transcriptome profiling of Agrobacterium sp. ATCC 31749, a microorganism that produces large amounts of a glucose polymer known as curdlan under nitrogen starvation. Transcriptome analysis revealed a nearly 100-fold upregulation of the curdlan synthesis operon upon transition to nitrogen starvation, thus establishing the prominent role that transcriptional regulation plays in the EPS synthesis. In addition to known mechanisms of EPS regulation such as activation by c-di-GMP, we identify novel mechanisms of regulation in ATCC 31749, including RpoN-independent NtrC regulation and intracellular pH regulation by acidocalcisomes. Furthermore, we show evidence that curdlan synthesis is also regulated by conserved cell stress responses, including polyphosphate accumulation and the stringent response. In fact, the stringent response signal, pppGpp, appears to be indispensible for transcriptional activation of curdlan biosynthesis. Conclusions This study identifies several mechanisms regulating the synthesis of curdlan, an EPS with numerous applications. These mechanisms are potential metabolic engineering targets for improving the industrial production of curdlan from Agrobacterium sp. ATCC 31749. Furthermore, many of the genes identified in this study are highly conserved across microbial genomes, and we propose that the molecular elements identified in this study may serve as universal regulators of microbial EPS synthesis.
Collapse
Affiliation(s)
- Anne M Ruffing
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100, USA
| | | |
Collapse
|
30
|
Effect of purine limitation caused by an amidophosphoribosyl transferase (purF) mutation on polyphosphate kinase 1 (ppk1) gene expression. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Achbergerová L, Nahálka J. Polyphosphate--an ancient energy source and active metabolic regulator. Microb Cell Fact 2011; 10:63. [PMID: 21816086 PMCID: PMC3163519 DOI: 10.1186/1475-2859-10-63] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/04/2011] [Indexed: 11/23/2022] Open
Abstract
There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs) can currently be categorized into three groups (PPK1, PPK2 and PPK3) according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC). This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate.
Collapse
Affiliation(s)
- Lucia Achbergerová
- Slovak Academy of Sciences, Institute of Chemistry, Centre for Glycomics, Dúbravská cesta 9, Bratislava, Slovakia
| | | |
Collapse
|
32
|
Costa CS, Pezzoni M, Fernández RO, Pizarro RA. Role of the Quorum Sensing Mechanism in the Response of Pseudomonas aeruginosa to Lethal and Sublethal UVA Irradiation. Photochem Photobiol 2010; 86:1334-42. [DOI: 10.1111/j.1751-1097.2010.00800.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Gangaiah D, Liu Z, Arcos J, Kassem II, Sanad Y, Torrelles JB, Rajashekara G. Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni. PLoS One 2010; 5:e12142. [PMID: 20808906 PMCID: PMC2923150 DOI: 10.1371/journal.pone.0012142] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inorganic polyphosphate (poly P) plays an important role in stress tolerance and virulence in many bacteria. PPK1 is the principal enzyme involved in poly P synthesis, while PPK2 uses poly P to generate GTP, a signaling molecule that serves as an alternative energy source and a precursor for various physiological processes. Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans, possesses homologs of both ppk1 and ppk2. ppk1 has been previously shown to impact the pathobiology of C. jejuni. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate for the first time that the deletion of ppk2 in C. jejuni resulted in a significant decrease in poly P-dependent GTP synthesis, while displaying an increased intracellular ATP:GTP ratio. The Deltappk2 mutant exhibited a significant survival defect under osmotic, nutrient, aerobic, and antimicrobial stresses and displayed an enhanced ability to form static biofilms. However, the Deltappk2 mutant was not defective in poly P and ppGpp synthesis suggesting that PPK2-mediated stress tolerance is not ppGpp-mediated. Importantly, the Deltappk2 mutant was significantly attenuated in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. CONCLUSIONS/SIGNIFICANCE Taken together, we have highlighted the role of PPK2 as a novel pathogenicity determinant that is critical for C. jejuni survival, adaptation, and persistence in the host environments. PPK2 is absent in humans and animals; therefore, can serve as a novel target for therapeutic intervention of C. jejuni infections.
Collapse
Affiliation(s)
- Dharanesh Gangaiah
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, United States of America
| | - Zhe Liu
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, United States of America
| | - Jesús Arcos
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Issmat I. Kassem
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, United States of America
| | - Yasser Sanad
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, United States of America
| | - Jordi B. Torrelles
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
34
|
|
35
|
Varela C, Mauriaca C, Paradela A, Albar JP, Jerez CA, Chávez FP. New structural and functional defects in polyphosphate deficient bacteria: a cellular and proteomic study. BMC Microbiol 2010; 10:7. [PMID: 20067623 PMCID: PMC2817675 DOI: 10.1186/1471-2180-10-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/12/2010] [Indexed: 12/15/2022] Open
Abstract
Background Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.
Collapse
Affiliation(s)
- Cristian Varela
- Department of Biology, Faculty of Sciences, Laboratory of Molecular Microbiology and Biotechnology & Millennium Institute of Cell Dynamics and Biotechnology, University of Chile, Las Palmeras 3425, Nuñoa, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Inorganic polyphosphate (Poly P) is a polymer of tens to hundreds of phosphate residues linked by "high-energy" phosphoanhydride bonds as in ATP. Found in abundance in all cells in nature, it is unique in its likely role in the origin and survival of species. Here, we present extensive evidence that the remarkable properties of Poly P as a polyanion have made it suited for a crucial role in the emergence of cells on earth. Beyond that, Poly P has proved in a variety of ways to be essential for growth of cells, their responses to stresses and stringencies, and the virulence of pathogens. In this review, we pay particular attention to the enzyme, polyphosphate kinase 1 (Poly P kinase 1 or PPK1), responsible for Poly P synthesis and highly conserved in many bacterial species, including 20 or more of the major pathogens. Mutants lacking PPK1 are defective in motility, quorum sensing, biofilm formation, and virulence. Structural studies are cited that reveal the conserved ATP-binding site of PPK1 at atomic resolution and reveal that the site can be blocked with minute concentrations of designed inhibitors. Another widely conserved enzyme is PPK2, which has distinctive kinetic properties and is also implicated in the virulence of some pathogens. Thus, these enzymes, absent in yeast and animals, are novel attractive targets for treatment of many microbial diseases. Still another enzyme featured in this review is one discovered in Dictyostelium discoideum that becomes an actin-like fiber concurrent with the synthesis, step by step, of a Poly P chain made from ATP. The Poly P-actin fiber complex, localized in the cell, lengthens and recedes in response to metabolic signals. Homologs of DdPPK2 are found in pathogenic protozoa and in the alga Chlamydomonas. Beyond the immediate relevance of Poly P as a target for anti-infective drugs, a large variety of cellular operations that rely on Poly P will be considered.
Collapse
Affiliation(s)
- Narayana N Rao
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
37
|
|
38
|
Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9925-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Brown MRW, Kornberg A. The long and short of it - polyphosphate, PPK and bacterial survival. Trends Biochem Sci 2008; 33:284-90. [PMID: 18487048 DOI: 10.1016/j.tibs.2008.04.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 04/17/2008] [Accepted: 04/17/2008] [Indexed: 12/12/2022]
Abstract
Inorganic polyphosphate (poly P) is present in all species tested to date, from each of the three kingdoms of life. Studied mainly in prokaryotes, poly P and its associated enzymes are important in diverse basic metabolism, in at least some structural functions and, notably, in stress responses. These numerous and unrelated roles for poly P are probably the consequence of its presence in life-forms from early in evolution. The genomes of many bacterial species, including pathogens, encode a homologue of a major poly P synthetic enzyme, poly P kinase 1 (PPK1). Loss of PPK1 results in reduced poly P levels, and deletion of the ppk1 gene in pathogens also results in a loss of virulence towards protozoa and animals. Thus far, no PPK1 homologue has been identified in higher-order eukaryotes and, therefore, PPK1 exhibits potential as a novel target for chemotherapy.
Collapse
Affiliation(s)
- Michael R W Brown
- Research Institute in Healthcare Science, Department of Pharmacy, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, UK.
| | | |
Collapse
|
40
|
Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A. Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 2008; 74:1583-97. [PMID: 18192414 PMCID: PMC2258634 DOI: 10.1128/aem.01507-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 12/30/2007] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni causes food- and waterborne gastroenteritis, and as such it must survive passage through the stomach in order to reach the gastrointestinal tract. While little is known about how C. jejuni survives transit through the stomach, its low infectious dose suggests it is well equipped to sense and respond to acid shock. In this study, the transcriptional profile of C. jejuni NCTC 11168 was obtained after the organism was exposed to in vitro and in vivo (piglet stomach) acid shock. The observed down-regulation of genes encoding ribosomal proteins likely reflects the need to reshuffle energy toward the expression of components required for survival. Acid shock also caused C. jejuni to up-regulate genes involved in stress responses. These included heat shock genes as well as genes involved in the response to oxidative and nitrosative stress. A role for the chaperone clpB in acid resistance was confirmed in vitro. Some genes showed expression patterns that were markedly different in vivo and in vitro, which likely reflects the complexity of the in vivo environment. For instance, transit through the stomach was characterized by up-regulation of genes that encode products that are involved in the use of nitrite as a terminal electron acceptor and down-regulation of genes that are involved in capsular polysaccharide expression. In conclusion, this study has enabled us to understand how C. jejuni modulates gene expression in response to acid shock in vitro and to correlate this with gene expression profiles of C. jejuni as it transits through the host stomach.
Collapse
Affiliation(s)
- Anne N Reid
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
41
|
Fraley CD, Rashid MH, Lee SSK, Gottschalk R, Harrison J, Wood PJ, Brown MRW, Kornberg A. A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc Natl Acad Sci U S A 2007; 104:3526-31. [PMID: 17360677 PMCID: PMC1803759 DOI: 10.1073/pnas.0609733104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa, of medical, environmental, and industrial importance, depends on inorganic polyphosphate (poly P) for a wide range of functions, especially survival. Mutants of PAO1 lacking poly P kinase 1, PPK1, the enzyme responsible for most poly P synthesis in Escherichia coli and other bacteria, are defective in motility, quorum sensing, biofilm formation, and virulence. We describe here multiple defects in the ppk1 mutant PAOM5, including a striking compaction of the nucleoid, distortion of the cell envelope, lack of planktonic motility and exopolymer production, and susceptibility to the beta-lactam antibiotic carbenicillin as well as desiccation. We propose that P. aeruginosa with reduced poly P levels undergoes ultrastructural changes that contribute to profound deficiencies in cellular functions.
Collapse
Affiliation(s)
- Cresson D. Fraley
- *Department of Biochemistry, Stanford University School of Medicine, 279 West Campus Drive, Stanford, CA 94305-5307
| | - M. Harunur Rashid
- Genencor International, Inc., 925 Page Mill Road, Palo Alto, CA 94304
| | - Sam S. K. Lee
- ICOS Corporation, 22021 20th Avenue SE, Bothell, WA 98021
| | | | | | - Pauline J. Wood
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom; and
| | - Michael R. W. Brown
- Research Institute of Healthcare Science, School of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, United Kingdom
| | - Arthur Kornberg
- *Department of Biochemistry, Stanford University School of Medicine, 279 West Campus Drive, Stanford, CA 94305-5307
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Williams HD, Zlosnik JEA, Ryall B. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv Microb Physiol 2006; 52:1-71. [PMID: 17027370 DOI: 10.1016/s0065-2911(06)52001-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is a gram-negative, rod-shaped bacterium that belongs to the gamma-proteobacteria. This clinically challenging, opportunistic pathogen occupies a wide range of niches from an almost ubiquitous environmental presence to causing infections in a wide range of animals and plants. P. aeruginosa is the single most important pathogen of the cystic fibrosis (CF) lung. It causes serious chronic infections following its colonisation of the dehydrated mucus of the CF lung, leading to it being the most important cause of morbidity and mortality in CF sufferers. The recent finding that steep O2 gradients exist across the mucus of the CF-lung indicates that P. aeruginosa will have to show metabolic adaptability to modify its energy metabolism as it moves from a high O2 to low O2 and on to anaerobic environments within the CF lung. Therefore, the starting point of this review is that an understanding of the diverse modes of energy metabolism available to P. aeruginosa and their regulation is important to understanding both its fundamental physiology and the factors significant in its pathogenicity. The main aim of this review is to appraise the current state of knowledge of the energy generating pathways of P. aeruginosa. We first look at the organisation of the aerobic respiratory chains of P. aeruginosa, focusing on the multiple primary dehydrogenases and terminal oxidases that make up the highly branched pathways. Next, we will discuss the denitrification pathways used during anaerobic respiration as well as considering the ability of P. aeruginosa to carry out aerobic denitrification. Attention is then directed to the limited fermentative capacity of P. aeruginosa with discussion of the arginine deiminase pathway and the role of pyruvate fermentation. In the final part of the review, we consider other aspects of the biology of P. aeruginosa that are linked to energy metabolism or affected by oxygen availability. These include cyanide synthesis, which is oxygen-regulated and can affect the operation of aerobic respiratory pathways, and alginate production leading to a mucoid phenotype, which is regulated by oxygen and energy availability, as well as having a role in the protection of P. aeruginosa against reactive oxygen species. Finally, we consider a possible link between cyanide synthesis and the mucoid switch that operates in P. aeruginosa during chronic CF lung infection.
Collapse
Affiliation(s)
- Huw D Williams
- Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
43
|
Tobin KM, McGrath JW, Mullan A, Quinn JP, O'Connor KE. Polyphosphate accumulation by Pseudomonas putida CA-3 and other medium-chain-length polyhydroxyalkanoate-accumulating bacteria under aerobic growth conditions. Appl Environ Microbiol 2006; 73:1383-7. [PMID: 17158616 PMCID: PMC1828677 DOI: 10.1128/aem.02007-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida CA-3 accumulates polyphosphate (polyP) and medium-chain-length polyhydroxyalkanoate (mclPHA) concurrently under nitrogen limitation. Five other mclPHA-accumulating Pseudomonas strains are capable of simultaneous polyP and mclPHA biosynthesis. It appears that polyP is not the rate-limiting step for mclPHA accumulation in these Pseudomonas strains.
Collapse
Affiliation(s)
- Karen M Tobin
- School of Biomolecular and Biomedical Sciences, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
44
|
Moriarty TF, Mullan A, McGrath JW, Quinn JP, Elborn JS, Tunney MM. Effect of reduced pH on inorganic polyphosphate accumulation by Burkholderia cepacia complex isolates. Lett Appl Microbiol 2006; 42:617-23. [PMID: 16706902 DOI: 10.1111/j.1472-765x.2006.01930.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Burkholderia cepacia complex (Bcc) isolates causing pulmonary infection in cystic fibrosis (CF) patients grow within an acidic environment in the lung. As exposure to acid pH has been shown to increase intracellular inorganic polyphosphate (polyP) formation in some bacteria, we investigated the inter-relationship between acidic pH and polyP accumulation in Bcc isolates. METHODS AND RESULTS The formation of polyP by one Burkholderia cenocepacia clinical isolate was initially examined at a range of pH values by measuring total intracellular polyP accumulation and phosphate uptake. The pattern of polyP accumulation corresponded with the pattern of phosphate uptake with the maximum for both occurring at pH 5.5. Phosphate uptake and formation of polyP by this isolate was further determined over 48 h at pH 5.5, 6.5 and 7.5; formation of polyP was maximal at pH 5.5 at all time points studied. Sixteen of 17 additional clinical and environmental Bcc isolates examined also exhibited maximum phosphate uptake at pH 5.5. CONCLUSIONS Both clinical and environmental Bcc isolates, of five genomovars, show enhanced formation of polyP in an acidic environment. Given both the speculated role of polyP in pathogenesis, cell signalling and biofilm formation and the acidic nature of the CF lung, this may be of considerable clinical importance. SIGNIFICANCE AND IMPACT OF THE STUDY Growth of Bcc in an acidic environment, such as that found in the lungs of CF patients may be influenced in part by polyP accumulation.
Collapse
Affiliation(s)
- T F Moriarty
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | | | | | | | | | | |
Collapse
|
45
|
Buzoleva LS, Krivosheeva AM, Isachenko AS, Somova LM, Somov GP. Effect of temperature on synthesis of polyphosphates in Yersinia pseudotuberculosis and Listeria monocytogenes under starvation conditions. BIOCHEMISTRY (MOSCOW) 2006; 71:437-40. [PMID: 16615864 DOI: 10.1134/s0006297906040122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was found that at low temperature (6-8 degrees C) in the absence of nitrogen supply and at the presence of phosphate ions in the medium, Yersinia pseudotuberculosis and Listeria monocytogenes are able to actively synthesize reserve substances as polyphosphates. Most of the bacterial polyphosphates are alkali-soluble, especially at the preliminary stage of cell growth (lag-phase). This is proved by electron microscopic studies of ultrastructure of model microorganisms. During a long starvation period under conditions of carbon and energy source deficit, L. monocytogenes and Y. pseudotuberculosis consume this biopolymer for biosynthetic and bioenergetic processes.
Collapse
Affiliation(s)
- L S Buzoleva
- Institute of Epidemiology and Microbiology, Siberian Branch of the Russian Academy of Sciences, 690087 Vladivostok, Russia.
| | | | | | | | | |
Collapse
|
46
|
Ambrosi C, Tiburzi F, Imperi F, Putignani L, Visca P. Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1. J Bacteriol 2005; 187:5097-107. [PMID: 16030202 PMCID: PMC1196021 DOI: 10.1128/jb.187.15.5097-5107.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to iron limitation, Pseudomonas aeruginosa produces the fluorescent siderophore pyoverdine. Transcription of pyoverdine biosynthetic (pvd) genes is driven by the iron starvation sigma factor PvdS, which is negatively regulated by the Fur-Fe(II) holorepressor. We studied the effect of AlgQ, the Escherichia coli Rsd orthologue, on pyoverdine production by P. aeruginosa PAO1. AlgQ is a global regulatory protein which activates alginate, ppGpp, and inorganic polyphosphate synthesis through a cascade involving nucleoside diphosphate kinase (Ndk). AlgQ is also capable of interacting with region 4 of RpoD. In a reconstituted E. coli system, PvdS-dependent transcription from the pvdA promoter was doubled by the multicopy algQ gene. The P. aeruginosa DeltaalgQ mutant exhibited a moderate but reproducible reduction in pyoverdine production compared with wild-type PAO1, as a result of a decline in transcription of pvd genes. PvdS expression was not affected by the algQ mutation. Single-copy algQ fully restored pyoverdine production and expression of pvd genes in the DeltaalgQ mutant, while ndk did not. An increased intracellular concentration of RpoD mimicked the DeltaalgQ phenotype, whereas PvdS overexpression suppressed the algQ mutation. E. coli rsd could partially substitute for algQ in transcriptional modulation of pvd genes. We propose that AlgQ acts as an anti-sigma factor for RpoD, eliciting core RNA polymerase recruitment by PvdS and transcription initiation at pvd promoters. AlgQ provides a link between the pyoverdine and alginate regulatory networks. These systems have similarities in responsiveness and physiological function: both depend on alternative sigma factors, respond to nutrient starvation, and act as virulence determinants for P. aeruginosa.
Collapse
Affiliation(s)
- Cecilia Ambrosi
- Dipartimento di Biologia, Università di Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy.
| | | | | | | | | |
Collapse
|
47
|
Lazdunski AM, Ventre I, Sturgis JN. Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2004; 2:581-92. [PMID: 15197393 DOI: 10.1038/nrmicro924] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Andrée M Lazdunski
- Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | |
Collapse
|
48
|
McGrath JW, Quinn JP. Microbial phosphate removal and polyphosphate production from wastewaters. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:75-100. [PMID: 12964240 DOI: 10.1016/s0065-2164(03)01003-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- John W McGrath
- School of Biology and Biochemistry, QUESTOR Center, Queen's University of Belfast, Medical Biology Centre Belfast, BT9 7BL Northern Ireland
| | | |
Collapse
|
49
|
Ledgham F, Soscia C, Chakrabarty A, Lazdunski A, Foglino M. Global regulation in Pseudomonas aeruginosa: the regulatory protein AlgR2 (AlgQ) acts as a modulator of quorum sensing. Res Microbiol 2003; 154:207-13. [PMID: 12706510 DOI: 10.1016/s0923-2508(03)00024-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Pseudomonas aeruginosa protein AlgR2 (AlgQ) was originally identified as a regulatory protein implicated in alginate production. It also regulates the synthesis of polyphosphate as well as of a variety of secretable virulence factors, upregulating neuraminidase and siderophore synthesis and downregulating rhamnolipid biosurfactant and extracellular protease synthesis. In this study, we show that the regulatory effect of AlgR2 on elastase protease synthesis is exerted at transcriptional level on the lasB gene. We also demonstrate that AlgR2 negatively modulates the expression of quorum sensing regulatory genes lasR and rhlR. Finally, results obtained from DNA retardation assays provide evidence that AlgR2 can bind specifically to the lasR and rhlR promoters. Altogether, these data provide strong support for the hypothesis that AlgR2 is a global transcriptional regulator in P. aeruginosa.
Collapse
Affiliation(s)
- Fouzia Ledgham
- Laboratoire d'Ingiénérie des Systèmes Macromoléculaires, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | |
Collapse
|
50
|
Haas D, Keel C. Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:117-53. [PMID: 12730389 DOI: 10.1146/annurev.phyto.41.052002.095656] [Citation(s) in RCA: 380] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Certain strains of fluorescent pseudomonads are important biological components of agricultural soils that are suppressive to diseases caused by pathogenic fungi on crop plants. The biocontrol abilities of such strains depend essentially on aggressive root colonization, induction of systemic resistance in the plant, and the production of diffusible or volatile antifungal antibiotics. Evidence that these compounds are produced in situ is based on their chemical extraction from the rhizosphere and on the expression of antibiotic biosynthetic genes in the producer strains colonizing plant roots. Well-characterized antibiotics with biocontrol properties include phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide. In vitro, optimal production of these compounds occurs at high cell densities and during conditions of restricted growth, involving (i) a number of transcriptional regulators, which are mostly pathway-specific, and (ii) the GacS/GacA two-component system, which globally exerts a positive effect on the production of extracellular metabolites at a posttranscriptional level. Small untranslated RNAs have important roles in the GacS/GacA signal transduction pathway. One challenge in future biocontrol research involves development of new strategies to overcome the broad toxicity and lack of antifungal specificity displayed by most biocontrol antibiotics studied so far.
Collapse
Affiliation(s)
- Dieter Haas
- Institut de Microbiologie Fondamentale, Universite de Lausanne, CH-1015 Lausanne, Switzerland;
| | | |
Collapse
|