1
|
Olasz F, Szabó M, Veress A, Bibó M, Kiss J. The dynamic network of IS30 transposition pathways. PLoS One 2022; 17:e0271414. [PMID: 35901099 PMCID: PMC9333248 DOI: 10.1371/journal.pone.0271414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
The E. coli element IS30 has adopted the copy-out-paste-in transposition mechanism that is prevalent in a number of IS-families. As an initial step, IS30 forms free circular transposition intermediates like IS minicircles or tandem IS-dimers by joining the inverted repeats of a single element or two, sometimes distantly positioned IS copies, respectively. Then, the active IR-IR junction of these intermediates reacts with the target DNA, which generates insertions, deletions, inversions or cointegrates. The element shows dual target specificity as it can insert into hot spot sequences or next to its inverted repeats. In this study the pathways of rearrangements of transposition-derived cointegrate-like structures were examined. The results showed that the probability of further rearrangements in these structures depends on whether the IS elements are flanked by hot spot sequences or take part in an IR-IR junction. The variability of the deriving products increases with the number of simultaneously available IRs and IR-IR joints in the cointegrates or the chromosome. Under certain conditions, the parental structures whose transposition formed the cointegrates are restored and persist among the rearranged products. Based on these findings, a novel dynamic model has been proposed for IS30, which possibly fits to other elements that have adopted the same transposition mechanism. The model integrates the known transposition pathways and the downstream rearrangements occurring after the formation of different cointegrate-like structures into a complex network. Important feature of this network is the presence of “feedback loops” and reversible transposition rearrangements that can explain how IS30 generates variability and preserves the original genetic constitution in the bacterial population, which contributes to the adaptability and evolution of host bacteria.
Collapse
Affiliation(s)
- Ferenc Olasz
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
| | - Mónika Szabó
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
| | - Alexandra Veress
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Márton Bibó
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - János Kiss
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
- * E-mail:
| |
Collapse
|
2
|
Comparative genome analysis of Bacillus thuringiensis strain HD521 and HS18-1. Sci Rep 2021; 11:16590. [PMID: 34400725 PMCID: PMC8368016 DOI: 10.1038/s41598-021-96133-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bacillus thuringiensis (Bt) is an important biological insecticide used to management of different agricultural pests by producing toxic parasporal crystals proteins. Strain HD521 has an antagonistic effect against Rhizoctonia solani AG1IA, the causal agent of rice sheath blight. This strain with three cry7 genes can the formation of bipyramidal parasporal crystals (BPCs). BPCs are used for insecticidal activities against Henosepilachna vigintioctomaculata larva (Coleoptera). Strain HS18-1 contains different types of BPCs encoding genes and has effective toxicity for Lepidoptera and Diptera insects. Here we report the whole genome sequencing and assembly of HD521 and HS18-1 strains and analyzed the genome constitution covering virulence factors, types of plasmid, insertion sequences, and prophage sequences. The results showed that the genome of strain HD521 contains a circular chromosome and six circular plasmids, encoding eight types of virulence protein factors [Immune Inhibitor A, Hemolytic Enterotoxin, S-layer protein, Phospholipase C, Zwittermicin A-resistance protein, Metalloprotease, Chitinase, and N-acyl homoserine lactonase (AiiA)], four families of insertion sequence, and comprises six pro-phage sequences. The genome of strain HS18-1 contains one circular chromosome and nine circular plasmids, encoding five types of virulence protein factors [Hemolytic Enterotoxin, S-layer protein, Phospholipase C, Chitinase, and N-acyl homoserine lactonase (AiiA)] and four families of insertion sequence, and comprises of three pro-phage sequences. The obtained results will contribute to deeply understand the B. thuringiensis strain HD521 and HS18-1 at the genomic level.
Collapse
|
3
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
4
|
Transposase-Mediated Excision, Conjugative Transfer, and Diversity of ICE 6013 Elements in Staphylococcus aureus. J Bacteriol 2017; 199:JB.00629-16. [PMID: 28138100 DOI: 10.1128/jb.00629-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/25/2017] [Indexed: 01/04/2023] Open
Abstract
ICE6013 represents one of two families of integrative conjugative elements (ICEs) identified in the pan-genome of the human and animal pathogen Staphylococcus aureus Here we investigated the excision and conjugation functions of ICE6013 and further characterized the diversity of this element. ICE6013 excision was not significantly affected by growth, temperature, pH, or UV exposure and did not depend on recA The IS30-like DDE transposase (Tpase; encoded by orf1 and orf2) of ICE6013 must be uninterrupted for excision to occur, whereas disrupting three of the other open reading frames (ORFs) on the element significantly affects the level of excision. We demonstrate that ICE6013 conjugatively transfers to different S. aureus backgrounds at frequencies approaching that of the conjugative plasmid pGO1. We found that excision is required for conjugation, that not all S. aureus backgrounds are successful recipients, and that transconjugants acquire the ability to transfer ICE6013 Sequencing of chromosomal integration sites in serially passaged transconjugants revealed a significant integration site preference for a 15-bp AT-rich palindromic consensus sequence, which surrounds the 3-bp target site that is duplicated upon integration. A sequence analysis of ICE6013 from different host strains of S. aureus and from eight other species of staphylococci identified seven divergent subfamilies of ICE6013 that include sequences previously classified as a transposon, a plasmid, and various ICEs. In summary, these results indicate that the IS30-like Tpase functions as the ICE6013 recombinase and that ICE6013 represents a diverse family of mobile genetic elements that mediate conjugation in staphylococci.IMPORTANCE Integrative conjugative elements (ICEs) encode the abilities to integrate into and excise from bacterial chromosomes and plasmids and mediate conjugation between bacteria. As agents of horizontal gene transfer, ICEs may affect bacterial evolution. ICE6013 represents one of two known families of ICEs in the pathogen Staphylococcus aureus, but its core functions of excision and conjugation are not well studied. Here, we show that ICE6013 depends on its IS30-like DDE transposase for excision, which is unique among ICEs, and we demonstrate the conjugative transfer and integration site preference of ICE6013 A sequence analysis revealed that ICE6013 has diverged into seven subfamilies that are dispersed among staphylococci.
Collapse
|
5
|
El Gharniti F, Dols-Lafargue M, Bon E, Claisse O, Miot-Sertier C, Lonvaud A, Le Marrec C. IS30 elements are mediators of genetic diversity in Oenococcus oeni. Int J Food Microbiol 2012; 158:14-22. [PMID: 22809637 DOI: 10.1016/j.ijfoodmicro.2012.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/11/2012] [Accepted: 06/16/2012] [Indexed: 01/23/2023]
Abstract
Oenococcus oeni is responsible for the malolactic fermentation of wines. Genomic diversity has been recently established in the species and extensive attention is now being given to the genomic bases of strain-specific differences. We explored the role of insertion sequences (IS), which are considered as driving forces for novel genotypic and phenotypic variants in prokaryotes. The present study focuses on members of the IS30 family, which are widespread among lactic acid bacteria. An in silico analysis of the three available genomes of O. oeni in combination with the use of an inverse PCR strategy targeting conserved IS30-related sequences indicated the presence of seven IS30 copies in the pangenome of O. oeni. A primer designed to anneal to the conserved 3' end of the IS30 element was paired with each of the seven primers selected to bind to unique sequences upstream of each of the seven mobile elements identified. The study presents an overview of the abundance, and the genomic environment of IS30 elements in the O. oeni pangenome and shows that the two existing genetic sub-populations previously described in the species through multilocus sequence typing analysis (MLST) differ in their IS30 content. Possible IS30 impacts on bacterial adaptation are discussed.
Collapse
|
6
|
Imre A, Olasz F, Nagy B. Site-directed (IS30-FljA) transposon mutagenesis system to produce nonflagellated mutants of Salmonella Enteritidis. FEMS Microbiol Lett 2011; 317:52-9. [PMID: 21219416 DOI: 10.1111/j.1574-6968.2011.02210.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Site-directed integration/mutagenesis systems are used to carry out targeted transpositions on DNA. The well-characterized IS30-element and its transposase have numerous advantages that predestine it to be a good candidate for such applications. In order to generate nonflagellated mutants of Salmonella Enteritidis, a new site-directed mutagenesis system has been developed and applied. The system was constructed based on the assumption that the DNA-binding FljA component of the fusion transposase would bind to its target (the operator of fliC), and as a consequence, insertions could be concentrated in the flagellin operon. The system consists of two components: one expresses the fusion transposase and the other is an integration donor plasmid harbouring the (IS30)(2) reactive structure. The application of this site-directed mutagenesis system on a strain of S. Enteritidis 11 (SE11) resulted in several nonmotile mutants with fliD insertion that could serve as negatively markered vaccine candidates. Analysis of less motile mutants generated by the fusion transposase revealed further hot spot sequences preferred by the fusion construct.
Collapse
Affiliation(s)
- Ariel Imre
- Veterinary Medical Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | |
Collapse
|
7
|
Abstract
The mobile element IS30 has 26-bp imperfect terminal inverted repeats (IRs) that are indispensable for transposition. We have analyzed the effects of IR mutations on both major transposition steps, the circle formation and integration of the abutted ends, characteristic for IS30. Several mutants show strikingly different phenotypes if the mutations are present at one or both ends and differentially influence the transposition steps. The two IRs are equivalent in the recombination reactions and contain several functional regions. We have determined that positions 20 to 26 are responsible for binding of the N-terminal domain of the transposase and the formation of a correct 2-bp spacer between the abutted ends. However, integration is efficient without this region, suggesting that a second binding site for the transposase may exist, possibly within the region from 4 to 11 bp. Several mutations at this part of the IRs, which are highly conserved in the IS30 family, considerably affected both major transposition steps. In addition, positions 16 and 17 seem to be responsible for distinguishing the IRs of related insertion sequences by providing specificity for the transposase to recognize its cognate ends. Finally, we show both in vivo and in vitro that position 3 has a determining role in the donor function of the ends, especially in DNA cleavage adjacent to the IRs. Taken together, the present work provides evidence for a more complex organization of the IS30 IRs than was previously suggested.
Collapse
|
8
|
Lysnyansky I, Calcutt MJ, Ben-Barak I, Ron Y, Levisohn S, Methé BA, Yogev D. Molecular characterization of newly identified IS3, IS4and IS30insertion sequence-like elements inMycoplasma bovisand their possible roles in genome plasticity. FEMS Microbiol Lett 2009; 294:172-82. [DOI: 10.1111/j.1574-6968.2009.01562.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Lee JH, Karamychev VN, Kozyavkin SA, Mills D, Pavlov AR, Pavlova NV, Polouchine NN, Richardson PM, Shakhova VV, Slesarev AI, Weimer B, O'Sullivan DJ. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics 2008; 9:247. [PMID: 18505588 PMCID: PMC2430713 DOI: 10.1186/1471-2164-9-247] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 05/27/2008] [Indexed: 01/01/2023] Open
Abstract
Background Bifidobacteria are frequently proposed to be associated with good intestinal health primarily because of their overriding dominance in the feces of breast fed infants. However, clinical feeding studies with exogenous bifidobacteria show they don't remain in the intestine, suggesting they may lose competitive fitness when grown outside the gut. Results To further the understanding of genetic attenuation that may be occurring in bifidobacteria cultures, we obtained the complete genome sequence of an intestinal isolate, Bifidobacterium longum DJO10A that was minimally cultured in the laboratory, and compared it to that of a culture collection strain, B. longum NCC2705. This comparison revealed colinear genomes that exhibited high sequence identity, except for the presence of 17 unique DNA regions in strain DJO10A and six in strain NCC2705. While the majority of these unique regions encoded proteins of diverse function, eight from the DJO10A genome and one from NCC2705, encoded gene clusters predicted to be involved in diverse traits pertinent to the human intestinal environment, specifically oligosaccharide and polyol utilization, arsenic resistance and lantibiotic production. Seven of these unique regions were suggested by a base deviation index analysis to have been precisely deleted from strain NCC2705 and this is substantiated by a DNA remnant from within one of the regions still remaining in the genome of NCC2705 at the same locus. This targeted loss of genomic regions was experimentally validated when growth of the intestinal B. longum in the laboratory for 1,000 generations resulted in two large deletions, one in a lantibiotic encoding region, analogous to a predicted deletion event for NCC2705. A simulated fecal growth study showed a significant reduced competitive ability of this deletion strain against Clostridium difficile and E. coli. The deleted region was between two IS30 elements which were experimentally demonstrated to be hyperactive within the genome. The other deleted region bordered a novel class of mobile elements, termed mobile integrase cassettes (MIC) substantiating the likely role of these elements in genome deletion events. Conclusion Deletion of genomic regions, often facilitated by mobile elements, allows bifidobacteria to adapt to fermentation environments in a very rapid manner (2 genome deletions per 1,000 generations) and the concomitant loss of possible competitive abilities in the gut.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave., St. Paul, MN 55108, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tegetmeyer HE, Jones SCP, Langford PR, Baltes N. ISApl1, a novel insertion element of Actinobacillus pleuropneumoniae, prevents ApxIV-based serological detection of serotype 7 strain AP76. Vet Microbiol 2007; 128:342-53. [PMID: 18065168 DOI: 10.1016/j.vetmic.2007.10.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/25/2007] [Accepted: 10/30/2007] [Indexed: 11/28/2022]
Abstract
Actinobacillus pleuropneumoniae, a gram-negative rod of the Pasteurellaceae family, causes pleuropneumonia in pigs. Establishing A. pleuropneumoniae free herds is difficult due to the occurrence of persistently infected animals. The ApxIV toxin is expressed by A. pleuropneumoniae in vivo and an ELISA based on the toxin is used to detect infection and to differentiate between infected and vaccinated animals. In this study, we have identified a 1070bp insertion element of the IS30 family, designated ISApl1, in the A. pleuropneumoniae serotype 7 strain AP76. ISApl1 contains a 924bp ORF encoding a transposase, which is flanked by 27bp inverted repeats showing six mismatches. We investigated the occurrence of ISApl1 in other A. pleuropneumoniae strains, and its possible interference with virulence associated factors. Four insertion sites were identified in AP76: within the apxIVA toxin ORF, within a putative autotransporter adhesin ORF, upstream of a capsular polysaccharide biosynthesis gene cluster, and downstream of a beta-lactamase gene. ISApl1 is also present in some serotype 7 field isolates, but not in reference or field strains of other serotypes. In A. pleuropneumoniae AP76, the transposase gene is transcribed in vitro. The insertion in the apxIVA toxin gene remains stable after animal passage. Since this insertion should disrupt toxin expression, we tested 7 pigs infected with AP76 at day 21 post-infection. All were negative in the ApxIV ELISA but four out of seven were positive in an ApxII toxin ELISA. These results show that insertion elements can affect the detection of A. pleuropneumoniae infected animals.
Collapse
Affiliation(s)
- Halina E Tegetmeyer
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Foundation, Germany
| | | | | | | |
Collapse
|
11
|
Szabó M, Kiss J, Nagy Z, Chandler M, Olasz F. Sub-terminal sequences modulating IS30 transposition in vivo and in vitro. J Mol Biol 2007; 375:337-52. [PMID: 18022196 DOI: 10.1016/j.jmb.2007.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 11/18/2022]
Abstract
Inverted repeats of insertion sequences (ISs) are indispensable for transposition. We demonstrate that sub-terminal sequences adjacent to the inverted repeats of IS30 are also required for optimal transposition activity. We have developed a cell-free recombination system and showed that the transposase catalyses formation of a figure-of-eight transposition intermediate, where a 2 bp long single strand bridge holds the inverted repeat sequences (IRs) together. This is the first demonstration of the figure-of-eight structure in a non-IS3 family element, suggesting that this mechanism is likely more widely adopted among IS families. We show that the absence of sub-terminal IS30 sequences negatively influences figure-of-eight production both in vivo and in vitro. These regions enhance IR-IR junction formation and IR-targeting events in vivo. Enhancer elements have been identified within 51 bp internal to IRL and 17 bp internal to IRR. In the right end, a decanucleotide, 5'-GAGATAATTG-3', is responsible for wild-type activity, while in the left end, a complex assembly of repetitive elements is required. Functioning of the 10 bp element in the right end is position-dependent and the repetitive elements in the left end act cooperatively and may influence bendability of the end. In vitro kinetic experiments suggest that the sub-terminal enhancers may, at least partly, be transposase-dependent. Such enhancers may reflect a subtle regulatory mechanism for IS30 transposition.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cell-Free System
- DNA Mutational Analysis
- DNA Primers
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Circular/genetics
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Escherichia coli/genetics
- Genes, Bacterial
- In Vitro Techniques
- Kinetics
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Conformation
- Open Reading Frames
- Plasmids
- Point Mutation
- Polymerase Chain Reaction
- Recombination, Genetic
- Salmonella typhimurium/genetics
- Terminal Repeat Sequences
- Transposases/chemistry
- Transposases/genetics
- Transposases/isolation & purification
- Transposases/metabolism
Collapse
Affiliation(s)
- Mónika Szabó
- Agricultural Biotechnology Center, 4 Szent-Györgyi Albert str., H-2100, Gödöllo, Hungary
| | | | | | | | | |
Collapse
|
12
|
Kivistik PA, Kivisaar M, Hõrak R. Target site selection of Pseudomonas putida transposon Tn4652. J Bacteriol 2007; 189:3918-21. [PMID: 17351034 PMCID: PMC1913344 DOI: 10.1128/jb.01863-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the target preferences of a Tn3 family transposon Tn4652. Alignment of 93 different insertion sites revealed a consensus sequence which resembles that of Tn3, indicating that despite a low similarity between Tn4652 and Tn3 transposases, their target site recognition is conserved.
Collapse
Affiliation(s)
- Paula Ann Kivistik
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 51010 Tartu, Estonia
| | | | | |
Collapse
|
13
|
Kiss J, Nagy Z, Tóth G, Kiss GB, Jakab J, Chandler M, Olasz F. Transposition and target specificity of the typical IS30 family element IS1655 from Neisseria meningitidis. Mol Microbiol 2007; 63:1731-47. [PMID: 17367392 DOI: 10.1111/j.1365-2958.2007.05621.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have analysed the transposition and target selection strategy of IS1655, a typical IS30 family member resident in Neisseria meningitidis. We have redefined IS1655 as a 1080 bp long element with 25 bp imperfect inverted repeats (IRs), which generates a 3 bp target duplication and have shown that it transposes using an intermediate with abutted IRs separated by 2 bp. IS1655 exhibits bipartite target specificity inserting preferentially either next to sequences similar to its IRs or into an unrelated but well defined sequence. IR-targeting leads to the formation of a new junction in which the targeted IR and one of the donor IRs are separated by 2 bp. The non-IR targets were characterized as an imperfect 19 bp palindrome in which the central five positions show slight GC excess and the distal region is AT-rich. Artificial targets designed according to the consensus were recognized by the element as hot spots for insertion. The organization of IS1655 is similar to that of other IS30 family members. Moreover, it shows striking similarity to IS30 in transposition strategy even though their transposases differ in their N-terminal regions, which, for IS30, appears to determine target specificity. Comparative analysis of the transposases and the evolutionary aspects of sequence variants are also briefly discussed.
Collapse
Affiliation(s)
- János Kiss
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, H-2100, Gödöllo, Hungary
| | | | | | | | | | | | | |
Collapse
|
14
|
De Gregorio E, Silvestro G, Venditti R, Carlomagno MS, Di Nocera PP. Structural organization and functional properties of miniature DNA insertion sequences in yersiniae. J Bacteriol 2006; 188:7876-84. [PMID: 16963573 PMCID: PMC1636318 DOI: 10.1128/jb.00942-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YPALs (Yersinia palindromic sequences) are miniature DNA insertions scattered along the chromosomes of yersiniae. The spread of these intergenic repeats likely occurred via transposition, as suggested by the presence of target site duplications at their termini and the identification of syntenic chromosomal regions which differ in the presence/absence of YPAL DNA among Yersinia strains. YPALs tend to be inserted closely downstream from the stop codon of flanking genes, and many YPAL targets overlap rho-independent transcriptional terminator-like sequences. This peculiar pattern of insertion supports the hypothesis that most of these repeats are cotranscribed with upstream sequences into mRNAs. YPAL RNAs fold into stable hairpins which may modulate mRNA decay. Accordingly, we found that YPAL-positive transcripts accumulate in Yersinia enterocolitica cells at significantly higher levels than homologous transcripts lacking YPAL sequences in their 3' untranslated region.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
15
|
Nagy Z, Szabó M, Chandler M, Olasz F. Analysis of the N-terminal DNA binding domain of the IS30 transposase. Mol Microbiol 2005; 54:478-88. [PMID: 15469518 DOI: 10.1111/j.1365-2958.2004.04279.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IS30 is the founding member of a large family of widely spread bacterial insertion sequences with closely related transposases. The N-terminal end of the IS30 transposase had been shown to retain sequence-specific DNA binding activity and to protect the IS30 terminal inverted repeats. Structural predictions revealed the presence of a helix-helix-turn-helix motif (H-HTH2) which, in the case of IS30, is preceded by an additional helix-turn-helix motif (HTH1). Analysis of deletion and point mutants in this region revealed that both motifs are important for IS30 transposition. IS30 exhibits two types of insertion specificity preferring either a 24 bp palindromic hot-spot (GOHS) or sequences resembling its ends [left and right terminal inverted repeat (IRL and IRR)]. Results are presented suggesting that the HTH1 region is required for GOHS targeting and interferes with the inverted repeat (IR) targeting. On the other hand, H-HTH2 appears to be required for both. The binding activities of the mutant proteins to the terminal IS30 IRs as measured by gel retardation correlated well with these results. Furthermore, close inspection of the H-HTH2 region revealed significant amino acid identity with a similar predicted secondary structure carried by the transcriptional regulator FixJ of Sinorhizobium meliloti and involved in FixJ binding to its target sequence. This suggests that FixJ and IS30 transposase share similar sequence-specific DNA binding mechanisms.
Collapse
Affiliation(s)
- Zita Nagy
- Laboratoire de Microbiologie et de Génétique Moléculaire, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
16
|
Ah Fong AMV, Judelson HS. The hAT -like DNA transposon DodoPi resides in a cluster of retro- and DNA transposons in the stramenopile Phytophthora infestans. Mol Genet Genomics 2004; 271:577-85. [PMID: 15098122 DOI: 10.1007/s00438-004-1004-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Accepted: 03/04/2004] [Indexed: 11/29/2022]
Abstract
A family of transposable elements belonging to the hAT group of DNA transposons is described from an oomycete, the plant pathogen Phytophthora infestans. The family, named DodoPi, was identified by studying a hotspot for retro- and DNA transposon insertions adjacent to the mating type locus. The DodoPi family comprises a small number of full-length copies, each of which is 2.7 kb long and predicted to encode a transposase-like protein consisting of 617 amino acids, and several truncated copies. Both types contain 12-bp terminal inverted repeats and are flanked by 8-bp target site duplications. Despite the detection of a DodoPi transcript and of many polymorphisms between isolates, conclusive evidence of recent transposition was not obtained. A phylogenetic analysis indicated that DodoPi was novel, with only modest similarity to some elements from plants and fungi. Relatives were detected in only some members of the genus. This is the first DNA transposon identified in the stramenopile group of eukaryotes.
Collapse
Affiliation(s)
- A M V Ah Fong
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
17
|
Kiss J, Szabó M, Olasz F. Site-specific recombination by the DDE family member mobile element IS30 transposase. Proc Natl Acad Sci U S A 2004; 100:15000-5. [PMID: 14665688 PMCID: PMC299879 DOI: 10.1073/pnas.2436518100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA rearrangements carried out by site-specific recombinases and transposases (Tpases) show striking similarities despite the wide spectrum of the catalytic mechanisms involved in the reactions. Here, we show that the bacterial insertion sequence (IS)30 element can act similarly to site-specific systems. We have developed an inversion system using IS30 Tpase and a viable lambda phage, where the integration/excision system is replaced with IS30. Both models have been proved to operate analogously to their natural counterpart, confirming that a DDE family Tpase is able to fulfill the functions of site-specific recombinases. This work demonstrates that distinction between transposition and site-specific recombination becomes blurred, because both functions can be fulfilled by the same enzyme, and both types of rearrangements can be achieved by the same catalytic mechanisms.
Collapse
Affiliation(s)
- János Kiss
- Environmental Biosafety Research Institute, Agricultural Biotechnology Center, 4 Szent-Györgyi Albert Street, H-2100, Gödöllõ, Hungary
| | | | | |
Collapse
|
18
|
Olasz F, Fischer T, Szabó M, Nagy Z, Kiss J. Gene conversion in transposition of Escherichia coli element IS30. J Mol Biol 2004; 334:967-78. [PMID: 14643660 DOI: 10.1016/j.jmb.2003.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mobile element IS30 has dual target specificity, since it can integrate adjacent to the inverted repeat (IR) of another IS30 copy or into hot-spot sequences characterized by a well-defined consensus showing no similarity to the ends of the element. The result of such integrations into these targets is different, as gene conversion events take place frequently during insertion next to an IR end, while this phenomenon has never been observed in targeting hot-spot sequences. Conversion events in IR-targeting cannot be explained exclusively by the activity of the transposase, but suggest the involvement of the homologous recombination and repair machinery of the host cell. Here, we show that the homology between the donor and target sequences is required for conversion and the starting point of the process is the site of integration. The frequency of conversion depends on the distance of mutations from the end of the targeted element. Remarkable bias is found in the role of donor and target DNA, since generally the donor sequence is converted depending on the target. Conversion was shown to occur also without formation of transposition products. All these data are consistent with the idea of the establishment, migration and resolution of a Holliday-like cruciform structure, which can be responsible for conversion events. To explain the variety of conversion products in IR-targeting, a molecular model has been proposed and discussed.
Collapse
Affiliation(s)
- Ferenc Olasz
- Environmental Biosafety Research Institute, Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4., H-2100 Gödöllo, Hungary.
| | | | | | | | | |
Collapse
|
19
|
Szabó M, Müller F, Kiss J, Balduf C, Strähle U, Olasz F. Transposition and targeting of the prokaryotic mobile element IS30 in zebrafish. FEBS Lett 2003; 550:46-50. [PMID: 12935884 DOI: 10.1016/s0014-5793(03)00814-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We provide evidence that a prokaryotic insertion sequence (IS) element is active in a vertebrate system. The transposase of Escherichia coli element IS30 catalyzes both excision and integration in extrachromosomal DNA in zebrafish embryos. The transposase has a pronounced target preference, which is shown to be modified by fusing the enzyme to unrelated DNA binding proteins. Joining the transposase to the cI repressor of phage lambda causes transposition primarily into the vicinity of the lambda operator in E. coli, and linking to the DNA binding domain of Gli1 also directs the recombination activity of transposase near to the Gli1 binding site in zebrafish. Our results demonstrate the possibility of fusion transposases to acquire novel target specificity in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Mónika Szabó
- Environmental Biosafety Research Institute, Agricultural Biotechnology Center, Szent-Györgyi Albert St. 4, H-2101 Gödöllo, Hungary
| | | | | | | | | | | |
Collapse
|
20
|
Hsu WB, Chen JH. The IS1 elements in Shigella boydii: horizontal transfer, vertical inactivation and target duplication. FEMS Microbiol Lett 2003; 222:289-95. [PMID: 12770720 DOI: 10.1016/s0378-1097(03)00319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IS1(SB) and its two variants were identified as the major and minor IS1 elements in Shigella boydii. The nucleotide sequences of IS1(SB), IS1(O157:H7) from Escherichia coli O157:H7 and IS1F from E. coli K12 suggest that these IS1 elements had been horizontally transferred among S. boydii and E. coli O157:H7 and K12. The two IS1(SB) variants and IS1(O157:H7) have transposition activities 7- to 86-fold less than that of IS1(SB), whereas IS1F has little transposition activity. Analysis of the flanking sequences of IS1(SB) and its two variants in S. boydii revealed the nature of regional specificity of the target sites and the sequence dependence of 8 and 9 bp target duplications, for which a model is presented.
Collapse
Affiliation(s)
- Wen-Bin Hsu
- Institute of Molecular Biology, National Chung Hsing University, 402, Taichung, Taiwan
| | | |
Collapse
|
21
|
Szeverényi I, Nagy Z, Farkas T, Olasz F, Kiss J. Detection and analysis of transpositionally active head-to-tail dimers in three additional Escherichia coli IS elements. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1297-1310. [PMID: 12724391 DOI: 10.1099/mic.0.26121-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study demonstrates that Escherichia coli insertion elements IS3, IS150 and IS186 are able to form transpositionally active head-to-tail dimers which show similar structure and transpositional activity to the dimers of IS2, IS21 and IS30. These structures arise by joining of the left and right inverted repeats (IRs) of two elements. The resulting junction includes a spacer region (SR) of a few base pairs derived from the flanking sequence of one of the reacting IRs. Head-to-tail dimers of IS3, IS150 and IS186 are unstable due to their transpositional activity. They can be resolved in two ways that seem to form a general rule for those elements reported to form dimers. One way is a site-specific process (dimer dissolution) which is accompanied by the loss of one IS copy along with the SR. The other is 'classical' transposition where the joined ends integrate into the target DNA. In intramolecular transposition this often gives rise to deletion formation, whereas in intermolecular transposition it gives rise to replicon fusion. The results presented for IS3, IS150 and IS186 are in accordance with the IS dimer model, which is in turn consistent with models based on covalently closed minicircles.
Collapse
Affiliation(s)
- Ildikó Szeverényi
- Environmental Biosafety Research Institute, Agricultural Biotechnology Centre, Szent-Györgyi Albert str. 4, H-2101 Gödöllő, Hungary
| | - Zita Nagy
- Environmental Biosafety Research Institute, Agricultural Biotechnology Centre, Szent-Györgyi Albert str. 4, H-2101 Gödöllő, Hungary
| | - Tibor Farkas
- Environmental Biosafety Research Institute, Agricultural Biotechnology Centre, Szent-Györgyi Albert str. 4, H-2101 Gödöllő, Hungary
| | - Ferenc Olasz
- Environmental Biosafety Research Institute, Agricultural Biotechnology Centre, Szent-Györgyi Albert str. 4, H-2101 Gödöllő, Hungary
| | - János Kiss
- Environmental Biosafety Research Institute, Agricultural Biotechnology Centre, Szent-Györgyi Albert str. 4, H-2101 Gödöllő, Hungary
| |
Collapse
|
22
|
Dufour A, Rincé A, Uguen P, Le Pennec JP. IS1675, a novel lactococcal insertion element, forms a transposon-like structure including the lacticin 481 lantibiotic operon. J Bacteriol 2000; 182:5600-5. [PMID: 10986268 PMCID: PMC111008 DOI: 10.1128/jb.182.19.5600-5605.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two copies of IS1675, a novel lactococcal insertion element from the IS4 family, are present on a 70-kb plasmid, where they frame the lantibiotic lacticin 481 operon. The whole structure could be a composite transposon designated Tn5721. This study shows that the lacticin 481 operon does not include any regulatory gene and provides a new example of a transposon-associated bacteriocin determinant. We identified five other IS1675 copies not associated with the lacticin 481 operon. The conservation of IS1675 flanking sequences suggested a 24-bp target site.
Collapse
Affiliation(s)
- A Dufour
- Laboratoire de Biologie et Chimie Moléculaires, EA 2594, Université de Bretagne Sud, Vannes, France.
| | | | | | | |
Collapse
|
23
|
Calcutt MJ, Lavrrar JL, Wise KS. IS1630 of Mycoplasma fermentans, a novel IS30-type insertion element that targets and duplicates inverted repeats of variable length and sequence during insertion. J Bacteriol 1999; 181:7597-607. [PMID: 10601219 PMCID: PMC94219 DOI: 10.1128/jb.181.24.7597-7607.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new insertion sequence (IS) of Mycoplasma fermentans is described. This element, designated IS1630, is 1,377 bp long and has 27-bp inverted repeats at the termini. A single open reading frame (ORF), predicted to encode a basic protein of either 366 or 387 amino acids (depending on the start codon utilized), occupies most of this compact element. The predicted translation product of this ORF has homology to transposases of the IS30 family of IS elements and is most closely related (27% identical amino acid residues) to the product of the prototype of the group, IS30. Multiple copies of IS1630 are present in the genomes of at least two M. fermentans strains. Characterization and comparison of nine copies of the element revealed that IS1630 exhibits unusual target site specificity and, upon insertion, duplicates target sequences in a manner unlike that of any other IS element. IS1630 was shown to have the striking ability to target and duplicate inverted repeats of variable length and sequence during transposition. IS30-type elements typically generate 2- or 3-bp target site duplications, whereas those created by IS1630 vary between 19 and 26 bp. With the exception of two recently reported IS4-type elements which have the ability to generate variable large duplications (B. B. Plikaytis, J. T. Crawford, and T. M. Shinnick, J. Bacteriol. 180:1037-1043, 1998; E. M. Vilei, J. Nicolet, and J. Frey, J. Bacteriol. 181:1319-1323, 1999), such large direct repeats had not been observed for other IS elements. Interestingly, the IS1630-generated duplications are all symmetrical inverted repeat sequences that are apparently derived from rho-independent transcription terminators of neighboring genes. Although the consensus target site for IS30 is almost palindromic, individual target sites possess considerably less inverted symmetry. In contrast, IS1630 appears to exhibit an increased stringency for inverted repeat recognition, since the majority of target sites had no mismatches in the inverted repeat sequences. In the course of this study, an additional copy of the previously identified insertion sequence ISMi1 was cloned. Analysis of the sequence of this element revealed that the transposase encoded by this element is more than 200 amino acid residues longer and is more closely related to the products of other IS3 family members than had previously been recognized. A potential site for programmed translational frameshifting in ISMi1 was also identified.
Collapse
Affiliation(s)
- M J Calcutt
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
| | | | | |
Collapse
|
24
|
Clément JM, Wilde C, Bachellier S, Lambert P, Hofnung M. IS1397 is active for transposition into the chromosome of Escherichia coli K-12 and inserts specifically into palindromic units of bacterial interspersed mosaic elements. J Bacteriol 1999; 181:6929-36. [PMID: 10559158 PMCID: PMC94167 DOI: 10.1128/jb.181.22.6929-6936.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that IS1397, a putative mobile genetic element discovered in natural isolates of Escherichia coli, is active for transposition into the chromosome of E. coli K-12 and inserts specifically into palindromic units, also called repetitive extragenic palindromes, the basic element of bacterial interspersed mosaic elements (BIMEs), which are found in intergenic regions of enterobacteria closely related to E. coli and Salmonella. We could not detect transposition onto a plasmid carrying BIMEs. This unprecedented specificity of insertion into a well-characterized chromosomal intergenic repeated element and its evolutionary implications are discussed.
Collapse
Affiliation(s)
- J M Clément
- Unité de Programmation Moléculaire et Toxicologie Génétique, CNRS URA 1444, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
25
|
Kiss J, Olasz F. Formation and transposition of the covalently closed IS30 circle: the relation between tandem dimers and monomeric circles. Mol Microbiol 1999; 34:37-52. [PMID: 10540284 DOI: 10.1046/j.1365-2958.1999.01567.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we demonstrate that a circular IS30 element acts as an intermediate for simple insertion. Covalently closed IS and Tn circles constructed in vitro are suitable for integration into the host genome. Minicircle integration displays all the characteristics of transpositional fusion mediated by the (IS30 )2 dimer regarding target selection and target duplication. Evidence is provided for in vivo circularization of the element located either on plasmids or on the genome. It is shown that circle formation can occur through alternative pathways. One of them is excision of IS30 from a hot spot via joining the IRs. This reaction resembles the site-specific dimerization that leads to (IS30 )2 establishment. The other process is the dissolution of (IS30 )2 dimer, when the element is excised from an IR-IR joint. These pathways differ basically in the fate of the donor replicon: only dimer dissolution gives rise to resealed donor backbone. Analysis of minicircles and the rearranged donor replicons led us to propose a molecular model that can account for differences between the circle-generating processes. Our focus was to the dissolution of IR-IR joints located on the host genome, because these events promoted extensive genomic rearrangements and accompanied minicircle formation. The results present the possibility of host genome reorganization by IS30-like transposition.
Collapse
Affiliation(s)
- J Kiss
- Agricultural Biotechnology Center,Szent-Györgyi Albert u. 4, H-2101 Gödöllo", Hungary
| | | |
Collapse
|
26
|
Casadesús J, Naas T, Garzón A, Arini A, Torreblanca J, Arber W. Lack of hotspot targets: a constraint for IS30 transposition in Salmonella. Gene 1999; 238:231-9. [PMID: 10570999 DOI: 10.1016/s0378-1119(99)00256-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IS30 is an insertion element common in E. coli strains but rare or absent in Salmonella. Transfer of the IS30-flanked transposon Tn2700 to Salmonella typhimurium was assayed using standard delivery procedures of bacterial genetics (conjugation and transduction). Tn2700 'hops' were rare and required transposase overproduction, suggesting the existence of host constraints for IS30 activity. Sequencing of three Tn2700 insertions in the genome of S. typhimurium revealed that the transposon had been inserted into sites with a low homology to the IS30 consensus target, suggesting that inefficient Tn2700 transposition to the Salmonella genome might be caused by a lack of hotspot targets. This view was confirmed by the introduction of an IS30 'hot target sequence', whose sole presence permitted Tn2700 transposition without transposase overproduction. Detection of IS30-induced DNA rearrangements in S. typhimurium provided further evidence that the element undergoes similar activities in E. coli and S. typhimurium. Thus, hotspot absence may be the main (if not the only) limitation for IS30 activity in the latter species. If these observations faithfully reproduce the scenario of natural populations, establishment of IS30 in the Salmonella genome may have been prevented by a lack of DNA sequences closely related to the unusually long (24 bp) IS30 consensus target.
Collapse
Affiliation(s)
- J Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Brynestad S, Granum PE. Evidence that Tn5565, which includes the enterotoxin gene in Clostridium perfringens, can have a circular form which may be a transposition intermediate. FEMS Microbiol Lett 1999; 170:281-6. [PMID: 9919679 DOI: 10.1111/j.1574-6968.1999.tb13385.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Clostridium perfringens enterotoxin gene is on a transposon-like element, Tn5565, integrated in the chromosome in human food poisoning strains. The flanking IS elements, IS1470 A and B, are related to IS30. The IS element found in the transposon, IS1469, is related to IS200 and has been found upstream of cpe in all Type A strains. PCR and sequencing studies from cell extracts and plasmid isolations of C. perfringens indicate that Tn5565 can form a circular form with the tandem repeat (IS1470)2, similar to the transposition intermediates described for a number of IS elements.
Collapse
Affiliation(s)
- S Brynestad
- Department of Pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, Oslo, Norway.
| | | |
Collapse
|