1
|
Sheng Y, Yang Z, Feng Z, Wang Y, Ji N. MicroRNA-499-5p promotes vascular smooth muscle cell proliferation and migration via inhibiting SOX6. Physiol Genomics 2023; 55:67-74. [PMID: 36250561 DOI: 10.1152/physiolgenomics.00165.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis (AS) is the primary etiology of cardiovascular disease, which is considered the leading cause of death all over the world. MicroRNA miR-499-5p was involved in the functional regulation of myocardial and skeletal muscle, whereas its role in atherosclerosis, especially in vascular smooth muscle cells (VSMCs), remains unclear. Our study aims to investigate the effects of miR-499-5p in the proliferation and migration of VSMCs and potential mechanisms. We used mouse aortic vascular smooth muscle cells (MOVAS) and ApoE-/- mice to establish the models of AS in vitro and in vivo, respectively. RT-PCR was performed to detect the expression level of miR-499-5p. Subsequently, Cell Counting Kit-8 (CCK-8) assays, Transwell assays, and wound-healing assays were used to evaluate cell proliferation and migration. Dual-luciferase reporter assay was performed to validate the interaction between miR-499-5p and SOX6. miR-499-5p significantly increased in aorta tissues of mice in AS tissues and vascular smooth muscle cells treated with ox-LDL. miR-499-5p overexpression could promote the proliferation and migration of MOVAS. Bioinformatics analysis predicted and further experiments verified that miR-499-5p could directly bind to the 3'-untranslated region (UTR) region of SOX6. Further, miR-499-5p induced an increased expression of smooth muscle proliferation and migration-related genes, PCNA, cyclin D1, and matrix metalloproteinase (MMP2), as well as the decreased expression of proliferation inhibiting factor p21, which was significantly reversed by SOX6 overexpression. miR-499-5p boosts the proliferation and migration of smooth muscle cells by binding and inhibiting SOX6 expression. The miR-499-5p/SOX6 axis may present a promising therapeutic implication for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Sheng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Zewen Yang
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Ziming Feng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| |
Collapse
|
2
|
Sato A, Takamatsu M, Kobayashi S, Ogawa M, Shiwa Y, Watanabe S, Chibazakura T, Yoshikawa H. Novel heat shock response mechanism mediated by the initiation nucleotide of transcription. J GEN APPL MICROBIOL 2022; 68:95-108. [DOI: 10.2323/jgam.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Aya Sato
- Department of Bioscience, Tokyo University of Agriculture
| | | | | | - Michio Ogawa
- Department of Bioscience, Tokyo University of Agriculture
| | - Yuh Shiwa
- Department of Bioscience, Tokyo University of Agriculture
| | | | | | | |
Collapse
|
3
|
Identification of ClpP Dual Isoform Disruption as an Anti-sporulation Strategy for Clostridioides difficile. J Bacteriol 2021; 204:e0041121. [PMID: 34807726 DOI: 10.1128/jb.00411-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Clostridioides difficile is a primary cause of hospital-acquired diarrhea, threatening both immunocompromised and healthy individuals. An important aspect of defining mechanisms that drive C. difficile persistence and virulence relies on developing a more complete understanding of sporulation. C. difficile sporulation is the single determinant of transmission and complicates treatment and prevention due to the chemical and physical resilience of spores. By extension, the identification of druggable targets that significantly attenuate sporulation would have a significant impact on thwarting C. difficile infection. Using a new CRISPR-Cas9 nickase genome editing methodology, stop codons were inserted early in the coding sequence for clpP1 and clpP2 to generate C. difficile mutants that no longer produced the corresponding isoforms of caseinolytic protease P (ClpP). The data show that genetic ablation of ClpP isoforms leads to altered sporulation phenotypes with the clpP1/clpP2 double mutant exhibiting asporogenic behavior. A small screen of known ClpP inhibitors in a fluorescence-based biochemical assay identified bortezomib as an inhibitor of C. difficile ClpP that produces dose-dependent inhibition of purified ClpP. Incubation of C. difficile cultures in the presence of bortezomib reveals anti-sporulation effects approaching that observed in the clpP1/clpP2 double mutant. This work identifies ClpP as a key contributor to C. difficile sporulation and provides compelling support for the pursuit of small molecule ClpP inhibitors as C. difficile anti-sporulating agents. IMPORTANCE Due to diverse roles of ClpP and the reliance of pathogens upon this system for infection, it has emerged as a target for antimicrobial development. Biology regulated by ClpP is organism-dependent and has not been defined in C. difficile. This work identifies ClpP as a key contributor to C. difficile sporulation and provides compelling support for the pursuit of small molecule ClpP inhibitors as anti-sporulating agents. The identification of new approaches and/or drug targets that reduce C. difficile sporulation would be transformative and are expected to find high utility in prophylaxis, transmission attenuation, and relapse prevention. Discovery of the ClpP system as a major driver to sporulation also provides a new avenue of inquiry for advancing the understanding of sporulation.
Collapse
|
4
|
Evolution of Ribosomal Protein S14 Demonstrated by the Reconstruction of Chimeric Ribosomes in Bacillus subtilis. J Bacteriol 2021; 203:JB.00599-20. [PMID: 33649148 DOI: 10.1128/jb.00599-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Ribosomal protein S14 can be classified into three types. The first, the C+ type has a Zn2+ binding motif and is ancestral. The second and third are the C- short and C- long types, neither of which contain a Zn2+ binding motif and which are ca. 90 residues and 100 residues in length, respectively. In the present study, the C+ type S14 from Bacillus subtilis ribosomes (S14BsC+) were completely replaced by the heterologous C- long type of S14 from Escherichia coli (S14Ec) or Synechococcus elongatus (S14Se). Surprisingly, S14Ec and S14Se were incorporated fully into 70S ribosomes in B. subtilis However, the growth rates as well as the sporulation efficiency of the mutants harboring heterologous S14 were significantly decreased. In these mutants, the polysome fraction was decreased and the 30S and 50S subunits accumulated unusually, indicating that cellular translational activity of these mutants was decreased. In vitro analysis showed a reduction in the translational activity of the 70S ribosome fraction purified from these mutants. The abundance of ribosomal proteins S2 and S3 in the 30S fraction in these mutants was reduced while that of S14 was not significantly decreased. It seems likely that binding of heterologous S14 changes the structure of the 30S subunit, which causes a decrease in the assembly efficiency of S2 and S3, which are located near the binding site of S14. Moreover, we found that S3 from S. elongatus cannot function in B. subtilis unless S14Se is present.IMPORTANCE S14, an essential ribosomal protein, may have evolved to adapt bacteria to zinc-limited environments by replacement of a zinc-binding motif with a zinc-independent sequence. It was expected that the bacterial ribosome would be tolerant to replacement of S14 because of the previous prediction that the spread of C- type S14 involved horizontal gene transfer. In this study, we completely replaced the C+ type of S14 in B. subtilis ribosome with the heterologous C- long type of S14 and characterized the resulting chimeric ribosomes. Our results suggest that the B. subtilis ribosome is permissive for the replacement of S14, but coevolution of S3 might be required to utilize the C- long type of S14 more effectively.
Collapse
|
5
|
ClpC-Mediated Sporulation Regulation at Engulfment Stage in Bacillus anthracis. Indian J Microbiol 2021; 61:170-179. [PMID: 33927458 DOI: 10.1007/s12088-021-00927-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial sporulation is a conserved process utilized by members of Bacillus genus and Clostridium in response to stress such as nutrient or temperature. Sporulation initiation is triggered by stress signals perceived by bacterial cell that leads to shutdown of metabolic pathways of bacterial cells. The mechanism of sporulation involves a complex network that is regulated at various checkpoints to form the viable bacterial spore. Engulfment is one such check point that drives the required cellular rearrangement necessary for the spore assembly and is mediated by bacterial proteolytic machinery that involves association of various Clp ATPases and ClpP protease. The present study highlights the importance of degradation of an anti-sigma factor F, SpoIIAB by ClpCP proteolytic machinery playing a crucial role in culmination of engulfment process during the sporulation in Bacillus anthracis.
Collapse
|
6
|
Ogura M. Glucose-Mediated Protein Arginine Phosphorylation/Dephosphorylation Regulates ylxR Encoding Nucleoid-Associated Protein and Cell Growth in Bacillus subtilis. Front Microbiol 2020; 11:590828. [PMID: 33101263 PMCID: PMC7546277 DOI: 10.3389/fmicb.2020.590828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Glucose is the most favorable carbon source for many bacteria, and these bacteria have several glucose-responsive networks. We proposed new glucose responsive system, which includes protein acetylation and probable translation control through TsaEBD, which is a tRNA modification enzyme required for the synthesis of threonylcarbamoyl adenosine (t6A)-tRNA. The system also includes nucleoid-associated protein YlxR, regulating more than 400 genes including many metabolic genes and the ylxR-containing operon driven by the PylxS promoter is induced by glucose. Thus, transposon mutagenesis was performed for searching regulatory factors for PylxS expression. As a result, ywlE was identified. The McsB kinase phosphorylates arginine (Arg) residues of proteins and the YwlE phosphatase counteracts against McsB through Arg-dephosphorylation. Phosphorylated Arg has been known to function as a tag for ClpCP-dependent protein degradation. The previous analysis identified TsaD as an Arg-phosphorylated protein. Our results showed that the McsB/YwlE system regulates PylxS expression through ClpCP-mediated protein degradation of TsaD. In addition, we observed that glucose induced ywlE expression and repressed mcsB expression. It was concluded that these phenomena would cause glucose induction (GI) of PylxS, based on the Western blot analyses of TsaD-FLAG. These observations and the previous those that many glycolytic enzymes are Arg-phosphorylated suggested that the McsB/YwlE system might be involved in cell growth in glucose-containing medium. We observed that the disruption of mcsB and ywlE resulted in an increase of cell mass and delayed growth, respectively, in semi-synthetic medium. These results provide us broader insights to the physiological roles of the McsB/YwlE system and protein Arg-phosphorylation.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| |
Collapse
|
7
|
Physiological effects of overexpressed sigma factors on fermentative stress response of Zymomonas mobilis. Braz J Microbiol 2019; 51:65-75. [PMID: 31701383 DOI: 10.1007/s42770-019-00158-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
Zymomonas mobilis is a bacterium of industrial interest due to its high ethanol productivity and high tolerance to stresses. Although the physiological parameters of fermentation are well characterized, there are few studies on the molecular mechanisms that regulate the response to fermentative stress. Z. mobilis ZM4 presents five different sigma factors identified in the genome annotation, but the absence of sigma 38 leads to the questioning of which sigma factors are responsible for its mechanism of fermentative stress response. Thus, in this study, factors sigma 32 and sigma 24, traditionally related to heat shock, were tested for their influence on the response to osmotic and ethanol stress. The overexpression of these sigma factors in Z. mobilis ZM4 strain confirmed that both are associated with heat shock response, as described in other bacteria. Moreover, sigma 32 has also a role in the adaptation to osmotic stress, increasing both growth rate and glucose influx rate. The same strain that overexpresses sigma 32 also showed a decrease in ethanol tolerance, suggesting an antagonism between these two mechanisms. It was not possible to conclude if sigma 24 really affects ethanol tolerance in Z. mobilis, but the overexpression of this sigma factor led to a decrease in ethanol productivity.
Collapse
|
8
|
Magnesium Suppresses Defects in the Formation of 70S Ribosomes as Well as in Sporulation Caused by Lack of Several Individual Ribosomal Proteins. J Bacteriol 2018; 200:JB.00212-18. [PMID: 29967120 DOI: 10.1128/jb.00212-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023] Open
Abstract
Individually, the ribosomal proteins L1, L23, L36, and S6 are not essential for cell proliferation of Bacillus subtilis, but the absence of any one of these ribosomal proteins causes a defect in the formation of the 70S ribosomes and a reduced growth rate. In mutant strains individually lacking these ribosomal proteins, the cellular Mg2+ content was significantly reduced. The deletion of YhdP, an exporter of Mg2+, and overexpression of MgtE, the main importer of Mg2+, increased the cellular Mg2+ content and restored the formation of 70S ribosomes in these mutants. The increase in the cellular Mg2+ content improved the growth rate and the cellular translational activity of the ΔrplA (L1) and the ΔrplW (L23) mutants but did not restore those of the ΔrpmJ (L36) and the ΔrpsF (S6) mutants. The lack of L1 caused a decrease in the production of Spo0A, the master regulator of sporulation, resulting in a decreased sporulation frequency. However, deletion of yhdP and overexpression of mgtE increased the production of Spo0A and partially restored the sporulation frequency in the ΔrplA (L1) mutant. These results indicate that Mg2+ can partly complement the function of several ribosomal proteins, probably by stabilizing the conformation of the ribosome.IMPORTANCE We previously reported that an increase in cellular Mg2+ content can suppress defects in 70S ribosome formation and growth rate caused by the absence of ribosomal protein L34. In the present study, we demonstrated that, even in mutants lacking individual ribosomal proteins other than L34 (L1, L23, L36, and S6), an increase in the cellular Mg2+ content could restore 70S ribosome formation. Moreover, the defect in sporulation caused by the absence of L1 was also suppressed by an increase in the cellular Mg2+ content. These findings indicate that at least part of the function of these ribosomal proteins can be complemented by Mg2+, which is essential for all living cells.
Collapse
|
9
|
Cong M, Jiang Q, Xu X, Huang L, Su Y, Yan Q. The complete genome sequence of Exiguobacterium arabatum W-01 reveals potential probiotic functions. Microbiologyopen 2017; 6. [PMID: 28589562 PMCID: PMC5635162 DOI: 10.1002/mbo3.496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 12/27/2022] Open
Abstract
Shrimp is extensively cultured worldwide. Shrimp farming is suffering from a variety of diseases. Probiotics are considered to be one of the effective methods to prevent and cure shrimp diseases. Exiguobacterium arabatum W‐01, a gram‐positive and orange‐pigmented bacterium, was isolated from the intestine of a healthy Penaeus vannamei specimen. Whole‐genome sequencing revealed a genome of 2,914,854 bp, with 48.02% GC content. In total, 3,083 open reading frames (ORFs) were identified, with an average length of 843.98 bp and a mean GC content of 48.11%, accounting for 89.27% of the genome. Among these ORFs, 2,884 (93.5%) genes were classified into Clusters of Orthologous Groups (COG) families comprising 21 functional categories, and 1,650 ORFs were classified into 83 functional Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 27 rRNA operons and 68 tRNAs were identified, with all 20 amino acids represented. In addition, 91 genomic islands, 68 potential prophages, and 33 tandem repeats, but no clustered regularly interspaced short palindromic repeats (CRISPRs), were found. No resistance genes and only one virulence gene were identified. Among the 150 secreted proteins of E. arabatum W‐01, a variety of transport system substrate‐binding proteins, enzymes, and biosynthetic proteins, which play important roles in the uptake and metabolism of nutrients, were found. Two adherence‐related protein genes and 31 flagellum‐related protein genes were also identified. Taken together, these results indicate potential probiotic functions for E. arabatum W‐01.
Collapse
Affiliation(s)
- Meinan Cong
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingling Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| |
Collapse
|
10
|
Akanuma G, Kazo Y, Tagami K, Hiraoka H, Yano K, Suzuki S, Hanai R, Nanamiya H, Kato-Yamada Y, Kawamura F. Ribosome dimerization is essential for the efficient regrowth of Bacillus subtilis. MICROBIOLOGY-SGM 2016; 162:448-458. [PMID: 26743942 DOI: 10.1099/mic.0.000234] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ribosome dimers are a translationally inactive form of ribosomes found in Escherichia coli and many other bacterial cells. In this study, we found that the 70S ribosomes of Bacillus subtilis dimerized during the early stationary phase and these dimers remained in the cytoplasm until regrowth was initiated. Ribosome dimerization during the stationary phase required the hpf gene, which encodes a homologue of the E. coli hibernation-promoting factor (Hpf). The expression of hpf was induced at an early stationary phase and its expression was observed throughout the rest of the experimental period, including the entire 6 h of the stationary phase. Ribosome dimerization followed the induction of hpf in WT cells, but the dimerization was impaired in cells harbouring a deletion in the hpf gene. Although the absence of ribosome dimerization in these Hpf-deficient cells did not affect their viability in the stationary phase, their ability to regrow from the stationary phase decreased. Thus, following the transfer of stationary-phase cells to fresh LB medium, Δhpf mutant cells grew slower than WT cells. This observed lag in growth of Δhpf cells was probably due to a delay in restoring their translational activity. During regrowth, the abundance of ribosome dimers in WT cells decreased with a concomitant increase in the abundance of 70S ribosomes and growth rate. These results suggest that the ribosome dimers, by providing 70S ribosomes to the cells, play an important role in facilitating rapid and efficient regrowth of cells under nutrient-rich conditions.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Yuka Kazo
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Kazumi Tagami
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hirona Hiraoka
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Koichi Yano
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan.,Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Shota Suzuki
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan.,Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryo Hanai
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hideaki Nanamiya
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan.,Fukushima Medical University, Hiragaoka 1, Fukushima 960-1295, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Fujio Kawamura
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 155-8502, Japan.,Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
11
|
Singh LK, Dhasmana N, Sajid A, Kumar P, Bhaduri A, Bharadwaj M, Gandotra S, Kalia VC, Das TK, Goel AK, Pomerantsev AP, Misra R, Gerth U, Leppla SH, Singh Y. clpC operon regulates cell architecture and sporulation in Bacillus anthracis. Environ Microbiol 2014; 17:855-65. [PMID: 24947607 DOI: 10.1111/1462-2920.12548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
The clpC operon is known to regulate several processes such as genetic competence, protein degradation and stress survival in bacteria. Here, we describe the role of clpC operon in Bacillus anthracis. We generated knockout strains of the clpC operon genes to investigate the impact of CtsR, McsA, McsB and ClpC deletion on essential processes of B. anthracis. We observed that growth, cell division, sporulation and germination were severely affected in mcsB and clpC deleted strains, while none of deletions affected toxin secretion. Growth defect in these strains was pronounced at elevated temperature. The growth pattern gets restored on complementation of mcsB and clpC in respective mutants. Electron microscopic examination revealed that mcsB and clpC deletion also causes defect in septum formation leading to cell elongation. These vegetative cell deformities were accompanied by inability of mutant strains to generate morphologically intact spores. Higher levels of polyhydroxybutyrate granules accumulation were also observed in these deletion strains, indicating a defect in sporulation process. Our results demonstrate, for the first time, the vital role played by McsB and ClpC in physiology of B. anthracis and open up further interest on this operon, which might be of importance to success of B. anthracis as pathogen.
Collapse
Affiliation(s)
- Lalit K Singh
- CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yano K, Wada T, Suzuki S, Tagami K, Matsumoto T, Shiwa Y, Ishige T, Kawaguchi Y, Masuda K, Akanuma G, Nanamiya H, Niki H, Yoshikawa H, Kawamura F. Multiple rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis. Microbiology (Reading) 2013; 159:2225-2236. [DOI: 10.1099/mic.0.067025-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Koichi Yano
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Tetsuya Wada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Shota Suzuki
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Kazumi Tagami
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Takashi Matsumoto
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Taichiro Ishige
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Yasuhiro Kawaguchi
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Kenta Masuda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Genki Akanuma
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hideaki Nanamiya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hironori Niki
- Department of Genetics, Graduate University for Advanced Studies, Sokendai, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Fujio Kawamura
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| |
Collapse
|
13
|
Ishii H, Tanaka T, Ogura M. The Bacillus subtilis response regulator gene degU is positively regulated by CcpA and by catabolite-repressed synthesis of ClpC. J Bacteriol 2013; 195:193-201. [PMID: 23123903 PMCID: PMC3553847 DOI: 10.1128/jb.01881-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/24/2012] [Indexed: 01/18/2023] Open
Abstract
In Bacillus subtilis, the response regulator DegU and its cognate kinase, DegS, constitute a two-component system that regulates many cellular processes, including exoprotease production and genetic competence. Phosphorylated DegU (DegU-P) activates its own promoter and is degraded by the ClpCP protease. We observed induction of degU by glucose in sporulation medium. This was abolished in two mutants: the ccpA (catabolite control protein A) and clpC disruptants. Transcription of the promoter of the operon containing clpC (PclpC) decreased in the presence of glucose, and the disruption of ccpA resulted in derepression of PclpC. However, this was not directly mediated by CcpA, because we failed to detect binding of CcpA to PclpC. Glucose decreased the expression of clpC, leading to low cellular concentrations of the ClpCP protease. Thus, degU is induced through activation of autoregulation by a decrease in ClpCP-dependent proteolysis of DegU-P. An electrophoretic mobility shift assay showed that CcpA bound directly to the degU upstream region, indicating that CcpA activates degU through binding. The bound region was narrowed down to 27 bases, which contained a cre (catabolite-responsive element) sequence with a low match to the cre consensus sequence. In a footprint analysis, CcpA specifically protected a region containing the cre sequence from DNase I digestion. The induction of degU by glucose showed complex regulation of the degU gene.
Collapse
Affiliation(s)
- Hiroshi Ishii
- Institute of Oceanic Research and Development, Tokai University, Orido-Shimizu, Shizuoka, Japan
| | | | | |
Collapse
|
14
|
A Clp/Hsp100 chaperone functions in Myxococcus xanthus sporulation and self-organization. J Bacteriol 2012; 194:1689-96. [PMID: 22287524 DOI: 10.1128/jb.06492-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Clp/Hsp100 proteins are chaperones that play a role in protein degradation and reactivation. In bacteria, they exhibit a high degree of pleiotropy, affecting both individual and multicellular phenotypes. In this article, we present the first characterization of a Clp/Hsp100 homolog in Myxococcus xanthus (MXAN_4832 gene locus). Deletion of MXAN_4832 causes defects in both swarming and aggregation related to cell motility and the production of fibrils, which are an important component of the extracellular matrix of a swarm. The deletion also affects the formation of myxospores during development, causing them to become sensitive to heat. The protein product of MXAN_4832 can act as a chaperone in vitro, providing biochemical evidence in support of our hypothesis that MXAN_4832 is a functional Clp/Hsp100 homolog. There are a total of 12 Clp/Hsp100 homologs in M. xanthus, including MXAN_4832, and, based on its mutational and biochemical characterization, they may well represent an important group.
Collapse
|
15
|
Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans. J Bacteriol 2008; 191:1056-65. [PMID: 19047352 DOI: 10.1128/jb.01436-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, the primary causative agent of human dental caries, contains a single copy of the gene encoding ClpP, the chief intracellular protease responsible for tolerance to various environmental stresses. To better understand the role of ClpP in stress response, we investigated the regulation of clpP expression in S. mutans. Using semiquantitative reverse transcription-PCR analysis, we observed that, under nonstressed conditions, clpP expression is somewhat constant throughout the growth phases, although it gradually decreases as cells enter the late stationary phase. The half-life of the clpP transcript was found to be less than 1 minute. Sequence analysis of the clpP locus reveals the presence of a 50-bp tandem repeat sequence located immediately upstream of the clpP promoter (PclpP). PCR and DNA sequence analyses suggest that the number of tandem repeat units can vary from as few as two to as many as nine, depending on the particular S. mutans isolate. Further analysis, using a transcriptional reporter fusion consisting of PclpP fused to a promoterless gusA gene, indicates that the presence of the repeat sequence region within PclpP results in an approximately fivefold increase in expression from PclpP compared to the repeat-free transcriptional reporter fusion. CtsR, a transcriptional repressor that negatively regulates clpP expression, has no effect on this repeat-mediated induction of clpP transcription. Furthermore, the repeat sequence is not necessary for the induction of clpP under stress conditions. Database searches indicate that the region containing the tandem repeats is absent in the clpP loci in other bacteria, including other closely related Streptococcus spp., suggesting that the repeat sequences are specific for the induction of clpP expression in S. mutans. We speculate that a host-specific transcriptional activator might be involved in the upregulation of clpP expression in S. mutans.
Collapse
|
16
|
Frees D, Savijoki K, Varmanen P, Ingmer H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 2007; 63:1285-95. [PMID: 17302811 DOI: 10.1111/j.1365-2958.2007.05598.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clp proteolytic complexes consisting of a proteolytic core flanked by Clp ATPases are widely conserved in bacteria, and their biological roles have received considerable interest. In particular, mutants in the clp genes in the low-GC-content Gram-positive phyla Bacillales and Lactobacillales display a diverse range of phenotypic changes including general stress sensitivity, aberrant cell morphology, failure to initiate developmental programs, and for pathogens, severely attenuated virulence. Extensive research dedicated to unravelling the molecular mechanisms underlying these complex phenotypes has led to fascinating new insights that will be covered by this review. First, Clp ATPases and ClpP-containing proteolytic complexes play indispensable roles in cellular protein quality control systems by refolding or degrading damaged proteins in both stressed and non-stressed cells. Secondly, ClpP proteases and the chaperone activity of Clp ATPases are important for controlling stability and activity of central transcriptional regulators, thereby exerting tremendous impact on cell physiology. Targets include major stress regulators like Spx (oxidative stress), the antisigma factor RsiW (alkaline stress) and HdiR (DNA damage) in addition to regulators of developmental programs like ComK (competence development), sigmaH and Sda (sporulation). Thus, Clp proteins are central in co-ordinating developmental decisions and stress response in low GC Gram-positive bacteria.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
17
|
Kobayashi K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol 2007; 189:4920-31. [PMID: 17468240 PMCID: PMC1913431 DOI: 10.1128/jb.00157-07] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are structured multicellular communities of bacteria that form through a developmental process. In standing culture, undomesticated strains of Bacillus subtilis produce a floating biofilm, called a pellicle, with a distinct macroscopic architecture. Here we report on a comprehensive analysis of B. subtilis pellicle formation, with a focus on transcriptional regulators and morphological changes. To date, 288 known or putative transcriptional regulators encoded by the B. subtilis genome have been identified or assigned based on similarity to other known proteins. The genes encoding these regulators were systematically disrupted, and the effects of the mutations on pellicle formation were examined, resulting in the identification of 19 regulators involved in pellicle formation. In addition, morphological analysis revealed that pellicle formation begins with the formation of cell chains, which is followed by clustering and degradation of cell chains. Genetic and morphological evidence showed that each stage of morphological change can be defined genetically, based on mutants of transcriptional regulators, each of which blocks pellicle formation at a specific morphological stage. Formation and degradation of cell chains are controlled by down- and up-regulation of sigma(D)- and sigma(H)-dependent autolysins expressed at specific stages during pellicle formation. Transcriptional analysis revealed that the transcriptional activation of sigH depends on the formation of cell clusters, which in turn activates transcription of sigma(H)-dependent autolysin in cell clusters. Taken together, our results reveal relationships between transcriptional regulators and morphological development during pellicle formation by B. subtilis.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
18
|
Sato M, Nimura-Matsune K, Watanabe S, Chibazakura T, Yoshikawa H. Expression analysis of multiple dnaK genes in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 2007; 189:3751-8. [PMID: 17351044 PMCID: PMC1913318 DOI: 10.1128/jb.01722-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the stress responses of three dnaK homologues (dnaK1, dnaK2, and dnaK3) in the cyanobacterium Synechococcus elongatus PCC 7942. A reporter assay showed that under stress conditions the expression of only the dnaK2 gene was induced, suggesting a functional assignment of these homologues. RNA blot hybridization indicated a typical stress response of dnaK2 to heat and high-light stress. Primer extension mapping showed that dnaK2 was transcribed from similar sites under various stress conditions. Although no known sequence motif was detected in the upstream region, a 20-bp sequence element was highly conserved in dnaK2; it was essential not only for the stress induction but also for the basal expression of dnaK2. The ubiquitous upstream localization of this element in each heat shock gene suggests its important role in the cyanobacterial stress response.
Collapse
Affiliation(s)
- Masumi Sato
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | |
Collapse
|
19
|
Koga K, Ikegami A, Nakasone K, Murayama R, Akanuma G, Natori Y, Nanamiya H, Kawamura F. Construction of Bacillus subtilis strains carrying the transcriptional bgaB fusion with the promoter region of each rrn operon and their differential transcription during spore development. J GEN APPL MICROBIOL 2006; 52:119-24. [PMID: 16778356 DOI: 10.2323/jgam.52.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Keiko Koga
- Laboratory of Molecular Genetics and Frontier Project 'Life's Adaptation Strategies to Environmental Changes', College of Science, Rikkyo University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Henderson B, Allan E, Coates ARM. Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 2006; 74:3693-706. [PMID: 16790742 PMCID: PMC1489680 DOI: 10.1128/iai.01882-05] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X, United Kingdom.
| | | | | |
Collapse
|
21
|
Akanuma G, Nanamiya H, Natori Y, Nomura N, Kawamura F. Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. J Bacteriol 2006; 188:2715-20. [PMID: 16547061 PMCID: PMC1428384 DOI: 10.1128/jb.188.7.2715-2720.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have found that alternative localization of two types of L31 ribosomal protein, RpmE and YtiA, is controlled by the intracellular concentration of zinc in Bacillus subtilis. The detailed mechanisms for the alternation of L31 proteins under zinc-deficient conditions were previously unknown. To obtain further information about this regulatory mechanism, we have studied the stability of RpmE in vivo and the binding affinity of these proteins to ribosomes in vitro, and we have found that liberation of RpmE from ribosomes is triggered by the expression of ytiA, which is induced by the derepression of Zur under zinc-deficient conditions.
Collapse
Affiliation(s)
- Genki Akanuma
- College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | | | | | | | | |
Collapse
|
22
|
Nanamiya H, Akanuma G, Natori Y, Murayama R, Kosono S, Kudo T, Kobayashi K, Ogasawara N, Park SM, Ochi K, Kawamura F. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 2004; 52:273-83. [PMID: 15049826 DOI: 10.1111/j.1365-2958.2003.03972.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have analysed changes in the composition of ribosomal proteins during cell growth in Bacillus subtilis. Ribosome fractions were prepared from B. subtilis cells at different phases of growth and were separated by radical-free and highly reducing (RFHR) two-dimensional polyacrylamide gel electrophoresis. We identified 50 ribosomal proteins, including two paralogues of L31 protein (RpmE and YtiA). Although the ribosome fraction extracted from exponentially growing cells contained RpmE protein, this protein disappeared during the stationary phase. In contrast, YtiA was detected in the ribosome fraction extracted after the end of exponential growth. Expression of the ytiA gene encoding YtiA was found to be negatively controlled by Zur, a zinc-specific transcriptional repressor that controls zinc transport operons. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) indicated that RpmE contains one zinc ion per molecule of protein. In addition, mutagenesis of the rpmE gene encoding RpmE revealed that Cys-36 and Cys-39, located within a CxxC motif, are required not only for binding zinc but also for the accumulation of RpmE in the cell. Taken together, these results indicate that zinc plays an essential role in the alternation between two types of L31 protein in the ribosome of B. subtilis.
Collapse
Affiliation(s)
- Hideaki Nanamiya
- Laboratory of Molecular Genetics and Frontier Project Life's Adaptation Strategies to Environmental Changes, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kosono S, Asai K, Sadaie Y, Kudo T. Altered gene expression in the transition phase by disruption of a Na+/H+ antiporter gene (shaA) in Bacillus subtilis. FEMS Microbiol Lett 2004; 232:93-9. [PMID: 15019740 DOI: 10.1016/s0378-1097(04)00037-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/26/2003] [Accepted: 01/08/2004] [Indexed: 11/20/2022] Open
Abstract
The shaA gene (sodium-hydrogen antiporter gene A, identical to mrpA) is largely responsible for Na+ extrusion in Bacillus subtilis. The disruption of shaA combined with a low concentration of NaCl completely abolishes sporulation but allows normal growth. To investigate the role of shaA and shaA-mediated sodium ion homeostasis in sporulation, we performed a comprehensive study of expression profiles of eight alternative sigma factors, sigmaB and the seven extracytoplasmic function sigma factors (sigmaM, sigmaV, sigmaW, sigmaX, sigmaY, sigmaZ, and sigmaYlaC) in an attempt to determine the global change of gene expression that results from a disturbance of Na+ homeostasis caused by shaA disruption. Induction of sigmaB activity in the transition phase was impaired in the shaA mutant, and this effect was enhanced in the presence of 30 mM NaCl. Salt stress activation of sigmaB occurred normally in the shaA mutant. sigmaM-, sigmaW-, sigmaX-dependent transcription and sigZ transcription was also induced in the transition phase of the wild-type, which was modulated by shaA disruption. The induction of sigmaM-dependent transcription was enhanced in the shaA mutant, while that of sigmaX-dependent transcription and sigZ transcription was decreased. sigmaW-dependent transcription was increased throughout the growth phase of the shaA mutant, which was consistent with the result of proteome analysis. We conclude that shaA disruption resulted in the modulated induction of alternative sigma factor activities, which would be problematic for the cell upon entering the sporulation stage.
Collapse
Affiliation(s)
- Saori Kosono
- Saitama University, Saitama City, Saitama 338-8570, Japan.
| | | | | | | |
Collapse
|
24
|
Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J Bacteriol 2003; 185:5117-24. [PMID: 12923084 PMCID: PMC180999 DOI: 10.1128/jb.185.17.5117-5124.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat shock response in bacterial cells is characterized by rapid induction of heat shock protein expression, followed by an adaptation period during which heat shock protein synthesis decreases to a new steady-state level. In this study we found that after a shift to a high temperature the Clp ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease in expression of clpP encoding the proteolytic component of the Clp protease complex, this decrease was delayed in the absence of ClpE. Site-directed mutagenesis of the zinc-binding motif conserved in ClpE ATPases interfered with the ability to repress CtsR-dependent expression. Quantification of ClpE by Western blot analysis revealed that at a high temperature ClpE is subjected to ClpP-dependent processing and that disruption of the zinc finger domain renders ClpE more susceptible. Interestingly, this domain resembles the N-terminal region of McsA, which was recently reported to interact with the CtsR homologue in Bacillus subtilis. Thus, our data point to a regulatory role of ClpE in turning off clpP gene expression following temporal heat shock induction, and we propose that this effect is mediated through CtsR.
Collapse
Affiliation(s)
- Pekka Varmanen
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Tanaka K, Kobayashi K, Ogasawara N. The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2317-2329. [PMID: 12949159 DOI: 10.1099/mic.0.26257-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis has a complete set of enzymes for the tricarboxylic acid (TCA) cycle and can grow aerobically using most of the TCA cycle intermediates (malate, fumarate, succinate and citrate) as a sole carbon source. The B. subtilis genome sequence contains three paralogous two-component regulatory systems, CitST, DctSR and YufLM. CitST and DctSR activate the expression of a transporter of the Mg(2+)-citrate complex (CitM) and a fumarate and succinate transporter (DctP), respectively. These findings prompted an investigation of whether the YufL sensor and its cognate regulator, YufM, play a role in malate uptake. This paper reports that the YufM regulator shows in vitro binding to the promoter region of two malate transporter genes, maeN and yflS, and is responsible for inducing their expression in vivo. It was also found that inactivation of the yufM or maeN genes resulted in bacteria that could not grow in a minimal salts medium containing malate as a sole carbon source, indicating that the induction of the MaeN transporter by the YufM regulator is essential for the utilization of malate as a carbon source. Inactivation of the yufL gene resulted in the constitutive expression of MaeN. This expression was suppressed by reintroduction of the kinase domain of YufL, indicating that the YufL sensor is required for proper signal detection and signalling specificity. The authors propose that a phosphatase activity of YufL plays an important role in the YufLM two-component regulatory system. The studies reported here have revealed that members of a set of paralogous two-component regulatory systems in B. subtilis, CitST, DctSR and YufLM, are involved in a related function--uptake (and metabolism) of the TCA cycle intermediates--but with distinct substrate specificities.
Collapse
Affiliation(s)
- Kousei Tanaka
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | - Kazuo Kobayashi
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | - Naotake Ogasawara
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
26
|
Davies KM, Lewis PJ. Localization of rRNA synthesis in Bacillus subtilis: characterization of loci involved in transcription focus formation. J Bacteriol 2003; 185:2346-53. [PMID: 12644506 PMCID: PMC151511 DOI: 10.1128/jb.185.7.2346-2353.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 01/14/2003] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, RNA polymerase becomes concentrated into regions of the nucleoid called transcription foci. With green fluorescent protein-tagged RNA polymerase, these structures are only observed at higher growth rates and have been shown to represent the sites of rRNA synthesis. There are 10 rRNA (rrn) operons distributed around nearly half of the chromosome. In this study we analyzed the rrn composition of transcription foci with fluorescently tagged loci and showed that they comprise the origin-proximal operon rrnO but not the more dispersed rrnE or rrnD. This suggests that transcription foci comprise only the seven origin-proximal operons rrnO, rrnA, rrnJ, rrnW, rrnI, rrnH, and rrnG. These results have important implications for our understanding of microbial chromosome structure.
Collapse
Affiliation(s)
- Karen M Davies
- School of Environmental and Life Sciences, Biological Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | |
Collapse
|
27
|
Morimoto T, Loh PC, Hirai T, Asai K, Kobayashi K, Moriya S, Ogasawara N. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3539-3552. [PMID: 12427945 DOI: 10.1099/00221287-148-11-3539] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GTP-binding proteins are found in all domains of life and are involved in various essential cellular processes. With the recent explosion of available genome sequence data, a widely distributed bacterial subfamily of GTP-binding proteins was discovered, represented by the Escherichia coli Era and the Bacillus subtilis Obg proteins. Although only a limited number of the GTP-binding proteins belonging to the subfamily have been experimentally characterized, and their function remains unknown, the available data suggests that many of them are essential to bacterial growth. When the complete genomic sequence of B. subtilis was surveyed for genes encoding GTP-binding proteins of the Era/Obg family, nine such genes were identified. As a first step in elucidating the functional networks of those nine GTP-binding proteins, data presented here indicates that six of them are essential for B. subtilis viability. Additionally, it is shown that the six essential proteins are able to specifically bind GTP and GDP in vitro. Experimental depletion of the essential GTP-binding proteins was examined in the context of cell morphology and chromosome replication, and it was found that two proteins, Bex and YqeH, appeared to participate in the regulation of initiation of chromosome replication. Collectively, these results suggest that members of the GTP-binding Era/Obg family are important proteins with precise, yet still not fully understood, roles in bacterial growth and viability.
Collapse
Affiliation(s)
- Takuya Morimoto
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Pek Chin Loh
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Tomohiro Hirai
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Kei Asai
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Kazuo Kobayashi
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Shigeki Moriya
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Naotake Ogasawara
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| |
Collapse
|
28
|
Hosoya S, Asai K, Ogasawara N, Takeuchi M, Sato T. Mutation in yaaT leads to significant inhibition of phosphorelay during sporulation in Bacillus subtilis. J Bacteriol 2002; 184:5545-53. [PMID: 12270811 PMCID: PMC139598 DOI: 10.1128/jb.184.20.5545-5553.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of a Bacillus subtilis functional genomics project which involved screening for sporulation genes, we identified an open reading frame, yaaT, whose disruptant exhibits a sporulation defect. Twenty-four hours after the initiation of sporulation, most cells of the yaaT mutant exhibited stage 0 of sporulation, indicating that the yaaT mutation blocks sporulation at an early stage. Furthermore, the mutation in yaaT led to a significant decrease in transcription from a promoter controlled by Spo0A, a key response regulator required for the initiation of sporulation. However, neither the level of transcription of spo0A, the activity of sigma(H), which transcribes spo0A, nor the amount of Spo0A protein was severely affected by the mutation in yaaT. Bypassing the phosphorelay by introducing an spo0A mutation (sof-1) into the yaaT mutant suppressed the sporulation defect, suggesting that the yaaT mutation interferes with the phosphorelay process comprising Spo0F, Spo0B, and histidine kinases. We also observed that mutation of spo0E, which encodes the phosphatase that dephosphorylates Spo0A-P, suppressed the sporulation defect in the yaaT mutant. These results strongly suggest that yaaT plays a significant role in the transduction of signals to the phosphorelay for initiation of sporulation. Micrographs indicated that YaaT-green fluorescent protein localizes to the peripheral membrane, as well as to the septum, during sporulation.
Collapse
Affiliation(s)
- Shigeo Hosoya
- International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
29
|
Nakano S, Zheng G, Nakano MM, Zuber P. Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis. J Bacteriol 2002; 184:3664-70. [PMID: 12057962 PMCID: PMC135134 DOI: 10.1128/jb.184.13.3664-3670.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent proteases degrade denatured or misfolded proteins and are recruited for the controlled removal of proteins that block activation of regulatory pathways. Among the ATP-dependent proteases, those of the Clp family are particularly important for the growth and development of Bacillus subtilis. Proteolytic subunit ClpP, together with regulatory ATPase subunit ClpC or ClpX, is required for the normal response to stress, for development of genetic competence, and for sporulation. The spx (formally yjbD) gene was previously identified as a site of mutations that suppress defects in competence conferred by clpP and clpX. The level of Spx in wild-type cells grown in competence medium is low, and that in clpP mutants is high. This suggests that the Spx protein is a substrate for ClpP-containing proteases and that accumulation of Spx might be partly responsible for the observed pleiotropic phenotype resulting from the clpP mutation. In this study we examined, both in vivo and in vitro, which ClpP protease is responsible for degradation of Spx. Western blot analysis showed that Spx accumulated in clpX mutant to the same level as that observed in the clpP mutant. In contrast, a very low concentration of Spx was detected in a clpC mutant. An in vitro proteolysis experiment using purified proteins demonstrated that Spx was degraded by ClpCP but only in the presence of one of the ClpC adapter proteins, MecA or YpbH. However, ClpXP, either in the presence or in the absence of MecA and YpbH, was unable to degrade Spx. Transcription of spx, as measured by expression of spx-lacZ, was slightly increased by the clpX mutation. To exclude a possible effect of clpX and clpP on spx transcription, the spx gene was placed under the control of the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible Pspac promoter. In this strain, Spx accumulated when ClpX or ClpP was absent, suggesting that ClpX and ClpP are required for degradation of Spx. Taken together, these results suggest that Spx is degraded by both ClpCP and ClpXP. The putative proteolysis by ClpXP might require another adapter protein. Spx probably is degraded by ClpCP under as yet unidentified conditions. This study suggests that the level of Spx is tightly controlled by two different ClpP proteases.
Collapse
Affiliation(s)
- Shunji Nakano
- Department of Biochemistry and Molecular Biology, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
30
|
Inaoka T, Ochi K. RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J Bacteriol 2002; 184:3923-30. [PMID: 12081964 PMCID: PMC135162 DOI: 10.1128/jb.184.14.3923-3930.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that the ability to develop genetic competence of a certain relaxed (relA) aspartate-auxotrophic strain of Bacillus subtilis is significantly lower than that of the isogenic stringent (relA+) strain. Transcriptional fusion analysis utilizing a lacZ reporter gene indicated that the amount of the ComK protein, known as the key protein for competence development, is greatly reduced in the relaxed strain than in the stringent strain. We also found that the addition of decoyinine, a GMP synthetase inhibitor, induces expression of a competence gene (comG) in the relaxed strain, accompanied by a pronounced decrease in the level of intracellular GTP as measured by high-performance liquid chromatography. The transformation efficiency of the relaxed strain increased 100-fold when decoyinine was added at t0 (the transition point between exponential to stationary growth phase). Conversely, supplementation of guanosine together with decoyinine completely abolished the observed effect of adding decoyinine on competence development. Furthermore, the impaired ability of the relaxed strain for competence development was completely restored by disrupting the codY gene, which is known to negatively control comK expression. Our results indicate that the RelA protein plays an essential role in the induction of competence development at least under certain physiological conditions by reducing the level of intracellular GTP and overcoming CodY-mediated regulation.
Collapse
Affiliation(s)
- Takashi Inaoka
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | |
Collapse
|
31
|
Abstract
Cytoplasmic proteolysis is an indispensable process for proper function of a cell. Degradation of many intracellular proteins is initiated by ATP-dependent proteinases, which are involved in the regulation of the level of proteins with short half-lives. In addition, they remove many damaged and abnormal proteins and thus play also an important role during stress. ATP-dependent proteinases are large multi-subunit assemblies composed of proteolytic core domains and ATPase-containing regulatory domains on a single polypeptide chain or on distinct subunits, which can act as molecular chaperones. This review briefly summarizes the data about four main groups of these proteinases in bacteria (i.e. Lon, Clp family, HslUV and FtsH) and characterizes their structure, mechanism of action and properties.
Collapse
Affiliation(s)
- O Hlavácek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | |
Collapse
|
32
|
Dixon LG, Seredick S, Richer M, Spiegelman GB. Developmental gene expression in Bacillus subtilis crsA47 mutants reveals glucose-activated control of the gene for the minor sigma factor sigma(H). J Bacteriol 2001; 183:4814-22. [PMID: 11466285 PMCID: PMC99536 DOI: 10.1128/jb.183.16.4814-4822.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of excess glucose in growth media prevents normal sporulation of Bacillus subtilis. The crsA47 mutation, located in the gene for the vegetative phase sigma factor (sigma(A)) results in a glucose-resistant sporulation phenotype. As part of a study of the mechanisms whereby the mutation in sigma(A) overcomes glucose repression of sporulation, we examined the expression of genes involved in sporulation initiation in the crsA47 background. The crsA47 mutation had a significant impact on a variety of genes. Changes to stage II gene expression could be linked to alterations in the expression of the sinI and sinR genes. In addition, there was a dramatic increase in the expression of genes dependent on the minor sigma factor sigma(H). This latter change was paralleled by the pattern of spo0H gene transcription in cells with the crsA47 mutation. In vitro analysis of RNA polymerase containing sigma(A47) indicated that it did not have unusually high affinity for the spo0H gene promoter. The in vivo pattern of spo0H expression is not predicted by the known regulatory constraints on spo0H and suggests novel regulation mechanisms that are revealed in the crsA47 background.
Collapse
Affiliation(s)
- L G Dixon
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
33
|
McQuade RS, Comella N, Grossman AD. Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. J Bacteriol 2001; 183:4905-9. [PMID: 11466295 PMCID: PMC99546 DOI: 10.1128/jb.183.16.4905-4909.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A family of 11 phosphatases can help to modulate the activity of response regulator proteins in Bacillus subtilis. Downstream of seven of the rap (phosphatase) genes are phr genes, encoding secreted peptides that function as phosphatase regulators. By using fusions to lacZ and primer extension analysis, we found that six of the seven phr genes are controlled by the alternate sigma factor sigma-H. These results expand the potential of sigma-H to contribute to the output of several response regulators by controlling expression of inhibitors of phosphatases.
Collapse
Affiliation(s)
- R S McQuade
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
34
|
Krüger E, Zühlke D, Witt E, Ludwig H, Hecker M. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 2001; 20:852-63. [PMID: 11179229 PMCID: PMC145420 DOI: 10.1093/emboj/20.4.852] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heat shock proteins ClpC and ClpP are subunits of an ATP-dependent protease of Bacillus subtilis. Under non-stressed conditions, transcription of the clpC and clpP genes is negatively regulated by CtsR, the global repressor of clp gene expression. Here, CtsR was proven to be a specific substrate of the ClpCP protease under stress conditions. Two proteins of former unknown function, McsA and McsB, which are also encoded by the clpC operon, act as modulators of CtsR repression. McsA containing zinc finger motifs stabilizes CtsR under non-stressed conditions. McsB, a putative kinase, can inactivate CtsR by modification to remove the repressor from the DNA and to target CtsR for degradation by the ClpCP protease during stress. Thus, clp gene expression in Gram-positive bacteria is autoregulated by a novel mechanism of controlled proteolysis, a circuit of down-regulation by stabilization and protection of a transcription repressor, and induction by presenting the repressor to the protease. Thereby, the ClpC ATPase, a member of the Hsp100 family, was identified as a positive regulator of the heat shock response.
Collapse
Affiliation(s)
- Elke Krüger
- Institut für Biochemie, Humboldt Universität, Universitätsklinikum Charité, Monbijoustrasse 2, D-10117 Berlin,
Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15, D-17487 Greifswald and Lehrstuhl für Mikrobiologie, Universität Erlangen, Staudtstrasse 5, D-91058 Erlangen, Germany Corresponding author e-mail:
| | - Daniela Zühlke
- Institut für Biochemie, Humboldt Universität, Universitätsklinikum Charité, Monbijoustrasse 2, D-10117 Berlin,
Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15, D-17487 Greifswald and Lehrstuhl für Mikrobiologie, Universität Erlangen, Staudtstrasse 5, D-91058 Erlangen, Germany Corresponding author e-mail:
| | | | - Holger Ludwig
- Institut für Biochemie, Humboldt Universität, Universitätsklinikum Charité, Monbijoustrasse 2, D-10117 Berlin,
Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15, D-17487 Greifswald and Lehrstuhl für Mikrobiologie, Universität Erlangen, Staudtstrasse 5, D-91058 Erlangen, Germany Corresponding author e-mail:
| | - Michael Hecker
- Institut für Biochemie, Humboldt Universität, Universitätsklinikum Charité, Monbijoustrasse 2, D-10117 Berlin,
Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, Jahnstrasse 15, D-17487 Greifswald and Lehrstuhl für Mikrobiologie, Universität Erlangen, Staudtstrasse 5, D-91058 Erlangen, Germany Corresponding author e-mail:
| |
Collapse
|
35
|
Melly E, Setlow P. Heat shock proteins do not influence wet heat resistance of Bacillus subtilis spores. J Bacteriol 2001; 183:779-84. [PMID: 11133976 PMCID: PMC94938 DOI: 10.1128/jb.183.2.779-784.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of Bacillus subtilis are significantly more resistant to wet heat than are their vegetative cell counterparts. Analysis of the effects of mutations in and the expression of fusions of a coding gene for a thermostable beta-galactosidase to a number of heat shock genes has shown that heat shock proteins play no significant role in the wet heat resistance of B. subtilis spores.
Collapse
Affiliation(s)
- E Melly
- University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|
36
|
Nanamiya H, Takahashi K, Fujita M, Kawamura F. Deficiency of the initiation events of sporulation in Bacillus subtilis clpP mutant can be suppressed by a lack of the Spo0E protein phosphatase. Biochem Biophys Res Commun 2000; 279:229-33. [PMID: 11112444 DOI: 10.1006/bbrc.2000.3911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous results have shown that the Bacillus subtilis clpP gene is required for developmental processes such as sporulation and competence development. Little is known about its function during the initiation of sporulation. We studied the effect of clpP mutation on the early events of sporulation. The expression of the spo0A and spoIIG genes, whose active transcription requires the phosphorylated Spo0A protein (Spo0A approximately P) as the transcription activator, was significantly decreased in the clpP mutant at the onset of sporulation. The expression of spo0H gene encoding sigma(H) protein was also greatly reduced. As expected from these results, the sigma(H) and Spo0A protein levels in the clpP mutant were also decreased during the initiation of sporulation, indicating that the accumulation of Spo0A approximately P was inhibited in the clpP mutant. We, therefore, introduced the mutation of the spo0E gene, which codes for the Spo0A approximately P-specific phosphatase, into the clpP mutant and found that this double mutant restored the expression of the spo0A as well as spoIIG genes. These results suggest that ClpP had an indirect influence on the intracellular concentration of Spo0A approximately P by regulating the activity of the Spo0E phosphatase during the initiation of sporulation.
Collapse
Affiliation(s)
- H Nanamiya
- Laboratory of Molecular Genetics, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
37
|
Nanamiya H, Fugono N, Asai K, Doi RH, Kawamura F. Suppression of temperature-sensitive sporulation mutation in the Bacillus subtilis sigA gene by rpoB mutation. FEMS Microbiol Lett 2000; 192:237-41. [PMID: 11064201 DOI: 10.1111/j.1574-6968.2000.tb09388.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We isolated a temperature-sensitive sporulation defective mutant of the sigA gene, encoding a major sigma factor, sigma(A) protein, in Bacillus subtilis, and designated it as sigA21. The sigA21 mutation caused a single-amino acid substitution, E314K, in region 4 of the sigma(A) protein. In this mutant, expression of the spoIIG gene, whose transcription depends on both sigma(A) and the phosphorylated Spo0A protein, Spo0A approximately P, a major transcription factor during early stages of sporulation, was greatly reduced at 43 degrees C. To obtain further information on the mechanism of sigma(A) function during the early spore development, we isolated a spontaneous sporulation-proficient suppressor mutant at 43 degrees C. This extragenic suppressor mutation was mapped within the rpoB gene, encoding the beta subunit of RNA polymerase, and was found to have a single-amino acid substitution, A863G. In this mutant, the expression of the spoIIG is partially restored at 43 degrees C.
Collapse
Affiliation(s)
- H Nanamiya
- Laboratory of Molecular Genetics, College of Science, Rikkyo University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
38
|
Derré I, Rapoport G, Msadek T. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol Microbiol 2000; 38:335-47. [PMID: 11069659 DOI: 10.1046/j.1365-2958.2000.02124.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CtsR (class three stress gene repressor) negatively regulates the expression of class III heat shock genes (clpP, clpE and the clpC operon) by binding to a directly repeated heptanucleotide operator sequence (A/GGTCAAA NAN A/GGTCAAA). CtsR-dependent genes are expressed at a low level at 37 degrees C and are strongly induced under heat shock conditions. We performed a structure/function analysis of the CtsR protein, which is highly conserved among low G+C Gram-positive bacteria. Random chemical mutagenesis, in vitro cross-linking, in vivo co-expression of wild-type and mutant forms of CtsR and the construction of chimeric proteins with the DNA-binding domain of the lambda CI repressor allowed us to identify three different functional domains within CtsR: a helix-turn-helix DNA-binding domain, a dimerization domain and a putative heat-sensing domain. We provide evidence suggesting that CtsR is active as a dimer. Transcriptional analysis of a clpP'-bgaB fusion and/or Western blotting experiments using antibodies directed against the CtsR protein indicate that ClpP and ClpX are involved in CtsR degradation at 37 degrees C. This in turn leads to a low steady-state level of CtsR within the cell, as CtsR negatively autoregulates its own synthesis. This is the first example of degradation of a repressor of stress response genes by the Clp ATP-dependent protease.
Collapse
Affiliation(s)
- I Derré
- Unité de Biochimie Microbienne, URA 2172 du Centre National de la Recherche Scientifique, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
39
|
Charpentier E, Novak R, Tuomanen E. Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by clpC. Mol Microbiol 2000; 37:717-26. [PMID: 10972795 DOI: 10.1046/j.1365-2958.2000.02011.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ClpC ATPase is a subfamily of HSP100/Clp molecular chaperones-regulators of proteolysis. By screening a library of loss of function mutants for the ability to survive treatment with penicillin, we identified the gene clpC. The corresponding protein was identified as a ClpC ATPase, sharing strong peptide sequence identity with ClpC of Bacillus subtilis, Listeria monocytogenes and Lactococcus lactis. Northern blot experiments showed that expression of clpC was induced in response to high temperature (40-42 degrees C) versus 37 degrees C, suggesting that ClpC is a heat shock protein. Insertional duplication mutagenesis of clpC resulted in increased tolerance to high temperature; a result in contrast to other bacterial Clp proteases. The clpC-deficient mutant formed long chains and failed to undergo lysis after treatment with penicillin or vancomycin. The effect of the clpC mutation extended to deficiency of adherence to the human type II alveolar cells. Finally, the clpC disruption resulted in decreased genetic transformation. Western blot analysis demonstrated that the mutant failed to express pneumolysin and the choline-binding proteins LytA, CbpA, CbpE, CbpF, CbpJ. These results suggest that the heat shock protein ClpC plays an essential complex pleiotropic role in pneumococcal physiology, including cell growth under heat stress, cell division, autolysis, adherence and transformation.
Collapse
Affiliation(s)
- E Charpentier
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
40
|
Liu J, Zuber P. The ClpX protein of Bacillus subtilis indirectly influences RNA polymerase holoenzyme composition and directly stimulates sigma-dependent transcription. Mol Microbiol 2000; 37:885-97. [PMID: 10972809 DOI: 10.1046/j.1365-2958.2000.02053.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Bacillus subtilis, several processes associated with the onset of stationary phase, including the initiation of sporulation, require the activity of the minor sigmaH form of RNA polymerase (RNAP). The induction of sigmaH-dependent gene transcription requires the regulatory ATPase, ClpX. The ClpX-dependent post-exponential increase in sigmaH activity is not dependent on the activator of sporulation gene expression, Spo0A. By determining the level of sigmaH and sigmaA in whole-cell extracts and RNAP preparations, evidence is presented that clpX does not influence the concentration of sigma subunits, but is required for the stationary phase reduction in sigmaA-RNAP holoenzyme. This is probably an indirect consequence of ClpX activity, because the ClpX-dependent decrease in sigmaA-RNAP concentration does not occur in a spo0A abrB mutant. The addition of ClpX to in vitro transcription reactions resulted in the stimulation of RNAP holoenzyme activity, but sigmaH-RNAP was observed to be more sensitive to ClpX-dependent stimulation than sigmaA-RNAP. No difference in transcriptional activity was observed in single-cycle in vitro transcription reactions, suggesting that ClpX acted at a step in transcription initiation after closed- and open-promoter complex formation. ClpX is proposed to function indirectly in the displacement of sigmaA from core RNAP and to act directly in the stimulation of sigmaH-dependent transcription in sporulating B. subtilis cells.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006, USA. Health Sciences Cen
| | | |
Collapse
|
41
|
Nakano MM, Zhu Y, Liu J, Reyes DY, Yoshikawa H, Zuber P. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase alpha can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis. Mol Microbiol 2000; 37:869-84. [PMID: 10972808 DOI: 10.1046/j.1365-2958.2000.02052.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis clpX and clpP genes are the sites of pleiotropic mutations that adversely affect growth on a variety of media and impair developmental processes such as sporulation and competence development. ClpX is necessary for the post-exponential induction of genes that require the sigmaH form of RNA polymerase for transcription. Both ClpX and ClpP are required for the activation of sigmaA-dependent transcription of the srf operon that encodes surfactin synthetase and the regulatory peptide ComS, required for the development of genetic competence. Transcription of srf is activated by the two-component regulatory system ComPA in response to the peptide pheromone, ComX, which mediates cell density-dependent control. A clpX mutant, although able to produce ComX, is unable to respond to the pheromone. A mutant allele of comP, encoding a product whose activity is independent of ComX, is not able to suppress clpX with respect to srf expression, suggesting that ClpXP acts at the level of ComA-dependent activation of srf transcription initiation. Suppressor mutations of clpX (cxs-1 and cxs-2) were isolated in screens for pseudorevertants exhibiting high levels of srf expression and sigmaH-dependent transcription respectively. One mutation, cxs-1, suppressed a clpP null mutation with respect to srf transcription, but did not overcome the block conferred by clpP on competence development and sporulation. Both cxs-1 and cxs-2 mutations map to the region of the rpoA gene encoding the RNA polymerase alpha C-terminal domain (alphaCTD). The reconstruction of the cxs-1 and cxs-2 alleles of rpoA confirmed that these mutations confer the suppressor phenotype. These findings provide further support for the hypothesis that ClpX and ClpP might be intimately associated with transcription initiation in B. subtilis.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006, USA
| | | | | | | | | | | |
Collapse
|
42
|
Krüger E, Witt E, Ohlmeier S, Hanschke R, Hecker M. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 2000; 182:3259-65. [PMID: 10809708 PMCID: PMC94515 DOI: 10.1128/jb.182.11.3259-3265.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of the heat stress response-related ATPases ClpC and ClpX or the peptidase ClpP in the cell is crucial for tolerance of many forms of stress in Bacillus subtilis. Assays for detection of defects in protein degradation suggest that ClpC, ClpP, and ClpX participate directly in overall proteolysis of misfolded proteins. Turnover rates for abnormal puromycyl peptides are significantly decreased in clpC, clpP, and clpX mutant cells. Electron-dense aggregates, most likely due to the accumulation of misfolded proteins, were noticed in studies of ultrathin cryosections in clpC and clpP mutant cells even under nonstress conditions. In contrast, in the wild type or clpX mutants such aggregates could only be observed after heat shock. This phenomenon supports the assumption that clpC and clpP mutants are deficient in the ability to solubilize or degrade damaged and aggregated proteins, the accumulation of which is toxic for the cell. By using immunogold labeling with antibodies raised against ClpC, ClpP, and ClpX, the Clp proteins were localized in these aggregates, showing that the Clp proteins act at this level in vivo.
Collapse
Affiliation(s)
- E Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
43
|
Ashikaga S, Nanamiya H, Ohashi Y, Kawamura F. Natural genetic competence in Bacillus subtilis natto OK2. J Bacteriol 2000; 182:2411-5. [PMID: 10762239 PMCID: PMC111301 DOI: 10.1128/jb.182.9.2411-2415.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a Bacillus subtilis natto strain, designated OK2, from a lot of commercial fermented soybean natto and studied its ability to undergo natural competence development using a comG-lacZ fusion at the amyE locus. Although transcription of the late competence genes was not detected in the B. subtilis natto strain OK2 during competence development, these genes were constitutively transcribed in the OK2 strain carrying either the mecA or the clpC mutation derived from B. subtilis 168. In addition, both OK2 mutants exhibited high transformation frequencies, comparable with that observed for B. subtilis 168. Moreover, as expected from these results, overproduction of ComK derived from strain 168 in strain OK2 resulted in a high transformation frequency as well as in induction of the late competence genes. These results clearly indicated that ComK produced in both the mecA and clpC mutants of strain OK2 (ComK(OK2)) could activate the transcription of the whole set of late competence genes and suggested that ComK(OK2) was not activated in strain OK2 during competence development. We therefore sequenced the comS gene of OK2 and compared it with that of 168. The comS(OK2) had a single-base change, resulting in the replacement of Ser (strain 168) by Cys (strain OK2) at position 11.
Collapse
Affiliation(s)
- S Ashikaga
- Laboratory of Molecular Genetics, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
44
|
Kosono S, Ohashi Y, Kawamura F, Kitada M, Kudo T. Function of a principal Na(+)/H(+) antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J Bacteriol 2000; 182:898-904. [PMID: 10648512 PMCID: PMC94362 DOI: 10.1128/jb.182.4.898-904.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ShaA (sodium/hydrogen antiporter, previously termed YufT [or NtrA]), which is responsible for Na(+)/H(+) antiporter activity, is considered to be the major Na(+) excretion system in Bacillus subtilis. We found that a shaA-disrupted mutant of B. subtilis shows impaired sporulation but normal vegetative growth when the external Na(+) concentration was increased in a low range. In the shaA mutant, sigma(H)-dependent expression of spo0A (P(S)) and spoVG at an early stage of sporulation was sensitive to external NaCl. The level of sigma(H) protein was reduced by the addition of NaCl, while the expression of spo0H, which encodes sigma(H), was little affected, indicating that posttranscriptional control of sigma(H) rather than spo0H transcription is affected by the addition of NaCl in the shaA mutant. Since this mutant is considered to have a diminished ability to maintain a low internal Na(+) concentration, an increased level of internal Na(+) may affect posttranscriptional control of sigma(H). Bypassing the phosphorelay by introducing the sof-1 mutation into this mutant did not restore spo0A (P(S)) expression, suggesting that disruption of shaA affects sigma(H) accumulation, but does not interfere with the phosphorylation and phosphotransfer reactions of the phosphorelay. These results suggest that ShaA plays a significant role at an early stage of sporulation and not only during vegetative growth. Our findings raise the possibility that fine control of cytoplasmic ion levels, including control of the internal Na(+) concentration, may be important for the progression of the sporulation process.
Collapse
Affiliation(s)
- S Kosono
- Microbiology Laboratory, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
45
|
Fujita M. Temporal and selective association of multiple sigma factors with RNA polymerase during sporulation in Bacillus subtilis. Genes Cells 2000; 5:79-88. [PMID: 10672039 DOI: 10.1046/j.1365-2443.2000.00307.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND During sporulation in Bacillus subtilis, an asymmetric division produces two cells, a forespore and mother cell, with which follow different developmental paths. The highly ordered programme of temporal and spatial gene activation during sporulation is governed by the principal RNA polymerase holoenzyme (EsigmaA) and alternative holoenzyme forms containing the developmental sigma factors sigmaH, sigmaF, sigmaE, sigmaG and sigmaK, which appear successively during development. The control mechanism(s) of temporal and selective association of multiple sigma factors with core RNA polymerase is unclear. As a first step to addressing these issues, this report quantifies the amount of each subunit of RNA polymerase that is present in the sporangium during sporulation, and analyses in vitro the relative affinities of each sigma subunit for core RNA polymerase. RESULTS Using quantitative immunoblot analysis, the amounts of EsigmaA, EsigmaH, EsigmaE and EsigmaK in relation to the total amount of RNA polymerase at appropriate time-points were found to be 15%, 1%, 6% and 2%, respectively. Therefore, the core RNA polymerase is predicted to be in excess. The level of core RNA polymerase and sigmaA remained constant during the transition from vegetative growth to sporulation, whereas the sporulation-specific sigma factors appeared successively, in the order sigmaH, sigmaE and sigmaK. Competition experiments between sigma factors in an in vitro transcription system revealed the dominance of sigmaA over sigmaH and sigmaE for open promoter complex formation. These results are inconsistent with the idea that late appearing sigma factors can displace earlier appearing sigmas from the core enzyme. CONCLUSIONS As the core RNA polymerase is in excess, the results suggest that successive sigma factors can bind to core RNA polymerase without having to displace earlier appearing sigma factors. Thus, the programme of gene expression during sporulation might not require mechanisms for the substitution of one sigma factor by another on the core RNA polymerase.
Collapse
Affiliation(s)
- M Fujita
- Radioisotope Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
46
|
Asai K, Baik SH, Kasahara Y, Moriya S, Ogasawara N. Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):263-271. [PMID: 10708364 DOI: 10.1099/00221287-146-2-263] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transport systems for C4-dicarboxylates, such as malate, fumarate and succinate, are poorly understood in Gram-positive bacteria. The whole genome sequence of Bacillus subtilis revealed two genes, ydbE and ydbH, whose deduced products are highly homologous to binding proteins and transporters for C4-dicarboxylates in Gram-negative bacteria. Between ydbE and ydbH, genes ydbF and ydbG encoding a sensor-regulator pair, were located. Inactivation of each one of the ydbEFGH genes caused a deficiency in utilization of fumarate or succinate but not of malate. Expression of ydbH, encoding a putative transporter, was stimulated in a minimal salt medium containing 0-05% yeast extract but repressed by the addition of malate to the medium. Inactivation of the putative sensor-regulator pair or solute-binding protein, ydbFG or ydbE, caused complete loss of ydbH expression. The utilization of fumarate and stimulation of ydbH expression resumed in a ydbE null mutant in which ydbFGH were overproduced. Based on these observations, together with analysis of the sequence similarities of the deduced product, we conclude that YdbH is a C4-dicarboxylate-transport protein and its expression is regulated by a C4-dicarboxylate sensor kinase-regulator pair, YdbF and YdbG. Furthermore, it is suggested that YdbE does not directly participate in transport of C4-dicarboxylates, but plays a sensory role in the ydbF-ydbG two-component system, giving rise to specificity or increased efficiency to the system. Deletion analysis of the promoter region of ydbH revealed that a direct repeat sequence was required for the activation of ydbH expression. A catabolite-responsive element (CRE) was also found in the -10 region of the promoter, suggesting negative regulation by a CRE-binding protein.
Collapse
Affiliation(s)
- Kei Asai
- Department of Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Sang-Hoon Baik
- Department of Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Yasuhiro Kasahara
- Department of Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Shigeki Moriya
- Department of Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Naotake Ogasawara
- Department of Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| |
Collapse
|
47
|
Liu J, Cosby WM, Zuber P. Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol Microbiol 1999; 33:415-28. [PMID: 10411757 DOI: 10.1046/j.1365-2958.1999.01489.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase sigma subunit, sigmaH (Spo0H) of Bacillus subtilis, is essential for the transcription of genes that function in sporulation and genetic competence. Although spo0H is transcriptionally regulated by the key regulatory device that controls sporulation initiation, the Spo0 phosphorelay, there is considerable evidence implicating a mechanism of post-translational control that governs the activity and concentration of sigmaH. Post-translational control of spo0H is responsible for the reduced expression of genes requiring sigmaH under conditions of low environmental pH. It is also responsible for heightened sigmaH activity upon relief of acid stress and during nutritional depletion. In this study, the ATP-dependent proteases LonA and B and the regulatory ATPase ClpX were found to function in the post-translational control of sigmaH. Mutations in lonA and lonB result in elevated sigmaH protein concentrations in low-pH cultures. However, this is not sufficient to increase sigmaH-dependent transcription. Activation of sigmaH-dependent transcription upon raising medium pH and in cells undergoing sporulation requires clpX, as shown by measuring the expression of lacZ fusions that require sigmaH for transcription and by complementation of a clpX null mutation. A hypothesis is presented that low environmental pH results in the Lon-dependent degradation of sigmaH, but the activity of sigmaH in sporulating cells and in cultures at neutral pH is stimulated by a ClpX-dependent mechanism in response to nutritional stress.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, OR 97291-1000, USA
| | | | | |
Collapse
|
48
|
Ohashi Y, Sugimaru K, Nanamiya H, Sebata T, Asai K, Yoshikawa H, Kawamura F. Thermo-labile stability of sigmaH (Spo0H) in temperature-sensitive spo0H mutants of Bacillus subtilis can be suppressed by mutations in RNA polymerase beta subunit. Gene X 1999; 229:117-24. [PMID: 10095111 DOI: 10.1016/s0378-1119(99)00040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We isolated novel temperature-sensitive mutants of spo0H, spo0H1 and spo0H5, having E61K and G30E amino-acid substitutions within the sigmaH protein, respectively, and located in the highly conserved region, "2", among prokaryotic sigma factors that participates in binding to core enzyme of RNA polymerase. These mutants showed a sporulation-deficient phenotype at 43 degrees C. Moreover, we successfully isolated suppressor mutants that were spontaneously generated from the spo0H mutants. Our genetic analysis of these suppressor mutations revealed that the suppressor mutations are within the rpoB gene coding for the beta subunit of RNA polymerase. The mutations caused single amino-acid substitutions, E857A and P1055S, in rpoB18 and rpoB532 mutants that were generated from spo0H1 and spo0H5, respectively. Whereas the sigmaH-dependent expression of a spo0A-bgaB fusion was greatly reduced in both spo0H mutants, their expression was partially restored in the suppressor mutants at 43 degrees C. Western blot analysis showed that the level of sigmaH protein in the wild type increased between T0 and T2 and decreased after T3, while the level of sigmaH protein in spo0H mutants was greatly reduced throughout growth, indicating that the mutant sigmaH proteins were rapidly degraded by some unknown proteolytic enzyme(s). The analysis of the half-life of sigmaH protein showed that the short life of sigmaH in spo0H mutants is prolonged in the suppressor mutants. These findings suggest that, at least to some extent, the process of E-sigmaH formation may be involved in stabilization of sigmaH at the onset of sporulation.
Collapse
Affiliation(s)
- Y Ohashi
- Laboratory of Molecular Genetics, College of Science, Rikkyo (St. Paul's) University, 3-34-1 Nishi-ikebukuro, Toshima-ku, 171-8501, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Drzewiecki K, Eymann C, Mittenhuber G, Hecker M. The yvyD gene of Bacillus subtilis is under dual control of sigmaB and sigmaH. J Bacteriol 1998; 180:6674-80. [PMID: 9852014 PMCID: PMC107773 DOI: 10.1128/jb.180.24.6674-6680.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a search by computer-aided inspection of two-dimensional (2D) protein gels for sigmaB-dependent general stress proteins exhibiting atypical induction profiles, a protein initially called Hst23 was identified as a product of the yvyD gene of Bacillus subtilis. In addition to the typical sigmaB-dependent, stress- and starvation-inducible pattern, yvyD is also induced in response to amino acid depletion. By primer extension of RNA isolated from the wild-type strain and appropriate mutants carrying mutations in the sigB and/or spo0H gene, two promoters were mapped upstream of the yvyD gene. The sigmaB-dependent promoter drives expression of yvyD under stress conditions and after glucose starvation, whereas a sigmaH-dependent promoter is responsible for yvyD transcription following amino acid limitation. Analysis of Northern blots revealed that yvyD is transcribed monocistronically and confirmed the conclusions drawn from the primer extension experiments. The analysis of the protein synthesis pattern in amino acid-starved wild-type and relA mutant cells showed that the YvyD protein is not synthesized in the relA mutant background. It was concluded that the stringent response plays a role in the activation of sigmaH. The yvyD gene product is homologous to a protein which might modify the activity of sigma54 in gram-negative bacteria. The expression of a sigmaL-dependent (sigmaL is the equivalent of sigma54 in B. subtilis) levD-lacZ fusion is upregulated twofold in a yvyD mutant. This indicates that the yvyD gene product, being a member of both the sigmaB and sigmaH regulons, might negatively regulate the activity of the sigmaL regulon. We conclude that (i) systematic, computer-aided analysis of 2D protein gels is appropriate for the identification of genes regulated by multiple transcription factors and that (ii) YvyD might form a junction between the sigmaB and sigmaH regulons on one side and the sigmaL regulon on the other.
Collapse
Affiliation(s)
- K Drzewiecki
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
50
|
Krüger E, Hecker M. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 1998; 180:6681-8. [PMID: 9852015 PMCID: PMC107774 DOI: 10.1128/jb.180.24.6681-6688.1998] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis clpC operon is regulated by two stress induction pathways relying on either sigmaB or a class III stress induction mechanism acting at a sigmaA-like promoter. When the clpC operon was placed under the control of the isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible Pspac promoter, dramatic repression of the natural clpC promoters fused to a lacZ reporter gene was noticed after IPTG induction. This result strongly indicated negative regulation of the clpC operon by one of its gene products. Indeed, the negative regulator could be identified which is encoded by the first gene of the clpC operon, ctsR, containing a predicted helix-turn-helix DNA-binding motif. Deletion of ctsR abolished the negative regulation and resulted in high expression of both the clpC operon and the clpP gene under nonstressed conditions. Nevertheless, a further increase in clpC and clpP mRNA levels was observed after heat shock, even in the absence of sigmaB, suggesting a second induction mechanism at the vegetative promoter. Two-dimensional gel analysis and mRNA studies showed that the expression of other class III stress genes was at least partially influenced by the ctsR deletion. Studies with different clpC promoter fragments either fused to the reporter gene bgaB or used in gel mobility shift experiments with the purified CtsR protein revealed a possible target region where the repressor seemed to bind in vivo and in vitro. Our data demonstrate that the CtsR protein acts as a global repressor of the clpC operon, as well as other class III heat shock genes, by preventing unstressed transcription from either the sigmaB- or sigmaA-dependent promoter and might be inactivated or dissociate under inducing stress conditions.
Collapse
Affiliation(s)
- E Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| | | |
Collapse
|