1
|
Kumari P, Yadav S, Sarkar S, Satheeshkumar PK. Cleavage of cell junction proteins as a host invasion strategy in leptospirosis. Appl Microbiol Biotechnol 2024; 108:119. [PMID: 38204132 PMCID: PMC10781872 DOI: 10.1007/s00253-023-12945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suhani Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sresha Sarkar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Titball RW. The Molecular Architecture and Mode of Action of Clostridium perfringens ε-Toxin. Toxins (Basel) 2024; 16:180. [PMID: 38668605 PMCID: PMC11053738 DOI: 10.3390/toxins16040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Clostridium perfringens ε-toxin has long been associated with a severe enterotoxaemia of livestock animals, and more recently, was proposed to play a role in the etiology of multiple sclerosis in humans. The remarkable potency of the toxin has intrigued researchers for many decades, who suggested that this indicated an enzymatic mode of action. Recently, there have been major breakthroughs by finding that it is a pore-forming toxin which shows exquisite specificity for cells bearing the myelin and lymphocyte protein (MAL) receptor. This review details the molecular structures of the toxin, the evidence which identifies MAL as the receptor and the possible roles of other cell membrane components in toxin binding. The information on structure and mode of action has allowed the functions of individual amino acids to be investigated and has led to the creation of mutants with reduced toxicity that could serve as vaccines. In spite of this progress, there are still a number of key questions around the mode of action of the toxin which need to be further investigated.
Collapse
|
3
|
Mitochondria and Lysosomes Participate in Vip3Aa-Induced Spodoptera frugiperda Sf9 Cell Apoptosis. Toxins (Basel) 2020; 12:toxins12020116. [PMID: 32069858 PMCID: PMC7076775 DOI: 10.3390/toxins12020116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 11/28/2022] Open
Abstract
Vip3Aa, a soluble protein produced by certain Bacillus thuringiensis strains, is capable of inducing apoptosis in Sf9 cells. However, the apoptosis mechanism triggered by Vip3Aa is unclear. In this study, we found that Vip3Aa induces mitochondrial dysfunction, as evidenced by signs of collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, release of cytochrome c, and caspase-9 and -3 activation. Meanwhile, our results indicated that Vip3Aa reduces the ability of lysosomes in Sf9 cells to retain acridine orange. Moreover, pretreatment with Z-Phe-Tyr-CHO (a cathepsin L inhibitor) or pepstatin (a cathepsin D inhibitor) increased Sf9 cell viability, reduced cytochrome c release, and decreased caspase-9 and -3 activity. In conclusion, our findings suggested that Vip3Aa promotes Sf9 cell apoptosis by mitochondrial dysfunction, and lysosomes also play a vital role in the action of Vip3Aa.
Collapse
|
4
|
Vázquez-Iglesias L, Estefanell-Ucha B, Barcia-Castro L, Páez de la Cadena M, Álvarez-Chaver P, Ayude-Vázquez D, Rodríguez-Berrocal FJ. A simple electroelution method for rapid protein purification: isolation and antibody production of alpha toxin from Clostridium septicum. PeerJ 2017; 5:e3407. [PMID: 28652930 PMCID: PMC5483040 DOI: 10.7717/peerj.3407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Clostridium septicum produces a number of diseases in human and farm animals which, in most of the cases, are fatal without clinical intervention. Alpha toxin is an important agent and the unique lethal virulent factor produced by Clostridium septicum. This toxin is haemolytic, highly lethal and necrotizing activities but is being used as an antigen to develop animal vaccines. The aim of this study was to isolate the alpha toxin of Clostridium septicum and produce highly specific antibodies against it. In this work, we have developed a simple and efficient method for alpha toxin purification, based on electroelution that can be used as a time-saving method for purifying proteins. This technique avoids contamination by other proteins that could appear during other protein purification techniques such chromatography. The highly purified toxin was used to produce polyclonal antibodies. The specificity of the antibodies was tested by western blot and these antibodies can be applied to the quantitative determination of alpha toxin by slot blot.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Borja Estefanell-Ucha
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Leticia Barcia-Castro
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - María Páez de la Cadena
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Paula Álvarez-Chaver
- Unidad de Proteómica, Servicio de Determinación Estructural, Proteómica y Genómica, CACTI, Universidad de Vigo, Spain
| | - Daniel Ayude-Vázquez
- Department of Biochemistry, Genetics and Immunology, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | | |
Collapse
|
5
|
Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology? J Immunol Res 2017; 2017:7904821. [PMID: 28316999 PMCID: PMC5337874 DOI: 10.1155/2017/7904821] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/31/2016] [Accepted: 02/02/2017] [Indexed: 02/06/2023] Open
Abstract
Aim. Evaluation of the impact of gut microflora on the pathophysiology of MS. Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy and Lactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS. Conclusions. The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis.
Collapse
|
6
|
Chakravorty A, Awad MM, Cheung JK, Hiscox TJ, Lyras D, Rood JI. The pore-forming α-toxin from clostridium septicum activates the MAPK pathway in a Ras-c-Raf-dependent and independent manner. Toxins (Basel) 2015; 7:516-34. [PMID: 25675415 PMCID: PMC4344638 DOI: 10.3390/toxins7020516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/02/2015] [Indexed: 12/13/2022] Open
Abstract
Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host’s innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and release of reactive oxygen species. Nonetheless, the signalling events that occur prior to the initiation of oncosis are poorly characterised. Our aims were to characterise the ability of α-toxin to activate the host mitogen activated protein kinase (MAPK) signalling pathway both in vitro and in vivo. Treatment of Vero cells with purified α-toxin activated the extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 arms of the MAPK pathway and stimulated the release of TNF-α in a dose-dependent manner. Studies using inhibitors of all three MAPK components suggested that activation of ERK occurred in a Ras-c-Raf dependent manner, whereas activation of JNK and p38 occurred by a Ras-independent mechanism. Toxin-mediated activation was dependent on efficient receptor binding and pore formation and on an influx of extracellular calcium ions. In the mouse myonecrosis model we showed that the MAPK pathway was activated in tissues of infected mice, implying that it has an important role in the disease process.
Collapse
Affiliation(s)
- Anjana Chakravorty
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Milena M Awad
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Jackie K Cheung
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Thomas J Hiscox
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Julian I Rood
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Bokori-Brown M, Kokkinidou MC, Savva CG, Fernandes da Costa S, Naylor CE, Cole AR, Moss DS, Basak AK, Titball RW. Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies. Protein Sci 2013; 22:650-9. [PMID: 23504825 PMCID: PMC3649266 DOI: 10.1002/pro.2250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/08/2013] [Indexed: 12/24/2022]
Abstract
Clostridium perfringens epsilon toxin (Etx) is a pore-forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx-H149A), previously reported to have reduced, but not abolished, toxicity. The three-dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx-H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx-H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx-H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx-H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx-H149A identified a glycan (β-octyl-glucoside) binding site in domain III of Etx-H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni. PLoS Pathog 2013; 9:e1003216. [PMID: 23555242 PMCID: PMC3605176 DOI: 10.1371/journal.ppat.1003216] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/09/2013] [Indexed: 11/24/2022] Open
Abstract
Aerolysins are virulence factors belonging to the β pore-forming toxin (β-PFT) superfamily that are abundantly distributed in bacteria. More rarely, β-PFTs have been described in eukaryotic organisms. Recently, we identified a putative cytolytic protein in the snail, Biomphalaria glabrata, whose primary structural features suggest that it could belong to this β-PFT superfamily. In the present paper, we report the molecular cloning and functional characterization of this protein, which we call Biomphalysin, and demonstrate that it is indeed a new eukaryotic β-PFT. We show that, despite weak sequence similarities with aerolysins, Biomphalysin shares a common architecture with proteins belonging to this superfamily. A phylogenetic approach revealed that the gene encoding Biomphalysin could have resulted from horizontal transfer. Its expression is restricted to immune-competent cells and is not induced by parasite challenge. Recombinant Biomphalysin showed hemolytic activity that was greatly enhanced by the plasma compartment of B. glabrata. We further demonstrated that Biomphalysin with plasma is highly toxic toward Schistosoma mansoni sporocysts. Using in vitro binding assays in conjunction with Western blot and immunocytochemistry analyses, we also showed that Biomphalysin binds to parasite membranes. Finally, we showed that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing. These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni. Schistosomiasis is the second most widespread tropical parasitic disease after malaria. It is caused by flatworms of the genus Schistosoma. Its life cycle is complex and requires certain freshwater snail species as intermediate host. Given the limited options for treating S. mansoni infections, much research has focused on a better understanding of the immunobiological interactions between the invertebrate host Biomphalaria glabrata and its parasite S. mansoni. A number of studies published over the last two decades have contributed greatly to our understanding of B. glabrata innate immune mechanisms involved in the defense against parasite. However, most studies have focused on the identification of recognition molecules or immune receptors involved in the host/parasite interplay. In the present study, we report the first functional description of a mollusk immune effector protein involved in killing S. mansoni, a protein related to the β pore forming toxin that we named Biomphalysin.
Collapse
|
9
|
Knapp O, Maier E, Mkaddem SB, Benz R, Bens M, Chenal A, Geny B, Vandewalle A, Popoff MR. Clostridium septicum alpha-toxin forms pores and induces rapid cell necrosis. Toxicon 2009; 55:61-72. [PMID: 19632260 DOI: 10.1016/j.toxicon.2009.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
Alpha-toxin is the unique lethal virulent factor produced by Clostridium septicum, which causes traumatic or non-traumatic gas gangrene and necrotizing enterocolitis in humans. Here, we analyzed channel formation of the recombinant septicum alpha-toxin and characterized its activity on living cells. Recombinant septicum alpha-toxin induces the formation of ion-permeable channels with a single-channel conductance of about 175pS in 0.1M KCl in lipid bilayer membranes, which is typical for a large diffusion pore. Septicum alpha-toxin channels remained mostly in the open configuration, displayed no lipid specificity, and exhibited slight anion selectivity. Septicum alpha-toxin caused a rapid decrease in the transepithelial electrical resistance of MDCK cell monolayers grown on filters, and induced a rapid cell necrosis in a variety of cell lines, characterized by cell permeabilization to propidium iodide without DNA fragmentation and activation of caspase-3. Septicum alpha-toxin also induced a rapid K(+) efflux and ATP depletion. Incubation of the cells in K(+)-enriched medium delayed cell death caused by septicum alpha-toxin or epsilon-toxin, another potent pore-forming toxin, suggesting that the rapid loss of intracellular K(+) represents an early signal of pore-forming toxins-mediated cell necrosis.
Collapse
Affiliation(s)
- Oliver Knapp
- Institut Pasteur, Bactéries anaérobies et Toxines, 28 rue du Dr Roux, F-75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pore-forming activity of alpha-toxin is essential for clostridium septicum-mediated myonecrosis. Infect Immun 2009; 77:943-51. [PMID: 19139192 DOI: 10.1128/iai.01267-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium septicum alpha-toxin is a beta-barrel pore-forming cytolysin that is functionally similar to aerolysin. Residues important in receptor binding, oligomerization, and pore formation have been identified; however, little is known about the activity of the toxin in an infection, although it is essential for disease. We have now shown that deletion of a small portion of the transmembrane domain, so that the toxin is no longer able to form pores, completely abrogates its ability to contribute to disease, as does replacement of the sole cysteine residue with leucine. However, although previous biochemical and cytotoxicity assays clearly indicated that mutations in residues important in oligomerization, binding, and prepore conversion greatly reduced activity or rendered the toxin inactive, once the mutated toxins were overexpressed by the natural host in the context of an infection it was found they were able to cause disease in a mouse model of myonecrosis. These results highlight the importance of testing the activity of virulence determinants in the normal host background and in an infectious disease context and provide unequivocal evidence that it is the ability of alpha-toxin to form a pore that confers its toxicity in vivo.
Collapse
|
11
|
Andreeva-Kovalevskaya ZI, Solonin AS, Sineva EV, Ternovsky VI. Pore-forming proteins and adaptation of living organisms to environmental conditions. BIOCHEMISTRY (MOSCOW) 2009; 73:1473-92. [DOI: 10.1134/s0006297908130087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Melton-Witt JA, Bentsen LM, Tweten RK. Identification of functional domains of Clostridium septicum alpha toxin. Biochemistry 2007; 45:14347-54. [PMID: 17128973 PMCID: PMC2561313 DOI: 10.1021/bi061334p] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alpha toxin (AT) is the major virulence factor of Clostridium septicum that is a proteolytically activated pore-forming toxin that belongs to the aerolysin-like family of toxins. AT is predicted to be a three-domain molecule on the basis of its functional and sequence similarity with aerolysin, for which the crystal structure has been determined. In this study, we have substituted the entire primary structure of AT with alanine or cysteine to identify those amino acids that comprise functional domains involved in receptor binding, oligomerization, and pore formation. These studies revealed that receptor binding is restricted to domain 1 of the AT structure, whereas domains 1 and 3 are involved in oligomerization. These studies also revealed the presence of a putative functional region of AT proximal to the receptor-binding domain but distal from the pore-forming domain that is proposed to regulate the insertion of the transmembrane beta-hairpin of the prepore oligomer.
Collapse
Affiliation(s)
| | | | - Rodney K. Tweten
- To whom correspondence should be addressed: Department of Microbiology and Immunology, 940 Stanton L. Young Blvd., The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190. Tel.:405-271-2133; Fax: 405-271-3117; E-mail:
| |
Collapse
|
13
|
Andreeva ZI, Nesterenko VF, Yurkov IS, Budarina ZI, Sineva EV, Solonin AS. Purification and cytotoxic properties of Bacillus cereus hemolysin II. Protein Expr Purif 2005; 47:186-93. [PMID: 16380268 DOI: 10.1016/j.pep.2005.10.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/25/2005] [Accepted: 10/30/2005] [Indexed: 10/25/2022]
Abstract
The hemolysin II from Bacillus cereus, HlyII, is a member of the beta-barrel pore-forming toxin family of secreted microbial proteins that includes the Staphylococcus aureus alpha-toxin. Compared with other proteins of the family, hemolysin II has 90 extra amino acids at its C-terminus. To examine more closely the cytotoxic and pore-forming properties of the protein, we have cloned and expressed it in Escherichia coli. We developed a purification procedure for the matured HlyII protein from both culture media and cell extracts using a combination of cation exchange and affinity chromatography together with gel-filtration. In both cases, the fully processed HlyII protein was purified as confirmed by N-terminal sequence analysis. The HlyII protein exhibits cytolytic activity of different extent on erythrocytes from various kinds of mammals. The results presented here show for the first time that two types of human cells are sensitive to HlyII action. In view of its broad cytotoxic activity as well as the ability to interact with artificial membranes, we assume that HlyII needs no specific receptor to bind to cell membranes.
Collapse
Affiliation(s)
- Zhanna I Andreeva
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, pr. Nauki, 5, Moscow Region 142290, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Hong Y, Kang JY, Kim YU, Shin DJ, Choy HE, Maeda Y, Kinoshita T. New mutant Chinese hamster ovary cell representing an unknown gene for attachment of glycosylphosphatidylinositol to proteins. Biochem Biophys Res Commun 2005; 335:1060-9. [PMID: 16102723 DOI: 10.1016/j.bbrc.2005.07.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Aerolysin, a secreted bacterial toxin from Aeromonas hydrophila, binds to glycosylphosphatidylinositol (GPI)-anchored protein and kills the cells by forming pores. Both GPI and N-glycan moieties of GPI-anchored proteins are involved in efficient binding of aerolysin. We isolated various Chinese hamster ovary (CHO) mutant cells resistant to aerolysin. Among them, CHOPA41.3 mutant cells showed several-fold decreased expression of GPI-anchored proteins. After transfection of N-acetylglucosamine transferase I (GnT1) cDNA, aerolysin was efficiently bound to the cells, indicating that the resistance against aerolysin in this cells was mainly ascribed to the defect of N-glycan maturation. CHOPA41.3 cells also accumulated GPI intermediates lacking ethanolamine phosphate modification on the first mannose. After stable transfection of PIG-N cDNA encoding GPI-ethanolamine phosphate transferase1, a profile of accumulated GPI intermediates became similar to that of GPI transamidase mutant cells. It indicated, therefore, that CHOPA41.3 cells are defective in GnT1, ethanolamine phosphate modification of the first mannose, and attachment of GPI to proteins. The GPI accumulation in CHOPA41.3 cells carrying PIG-N cDNA was not normalized after transfection with cDNAs of all known components in GPI transamidase complex. Microsomes from CHOPA41.3 cells had normal GPI transamidase activity. Taken together, there is an unknown gene required for efficient attachment of GPI to proteins.
Collapse
Affiliation(s)
- Yeongjin Hong
- Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
15
|
Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:91-142. [PMID: 15561302 DOI: 10.1016/j.pbiomolbio.2004.01.009] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pore-forming protein toxins (PFTs) are one of Nature's most potent biological weapons. An essential feature of their toxicity is the remarkable property that PFTs can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. There are now more than a dozen PFTs for which crystal structures have been determined and the nature of the conformational changes they must undergo is beginning to be understood. Although they differ markedly in their primary, secondary, tertiary and quaternary structures, nearly all can be classified into one of two families based on the types of pores they are thought to form: alpha-PFTs or beta-PFTs. Recent work suggests a number of common features in the mechanism of membrane insertion may exist for each class.
Collapse
Affiliation(s)
- Michael W Parker
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
16
|
Hang'ombe MB, Kohda T, Mukamoto M, Kozaki S. Relationship between Clostridium septicum alpha-toxin activity and binding to erythrocyte membranes. J Vet Med Sci 2005; 67:69-74. [PMID: 15699597 DOI: 10.1292/jvms.67.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of Clostridium septicum alpha-toxin was determined in erythrocytes of various animals, with sensitivities observed in the order of mouse, rat, canine, equine, rabbit, chicken, bovine, swine and ovine. Temperature and protease treatment affected the sensitivity of erythrocytes to alpha-toxin. Proteinase K treatment decreased the sensitivity of murine, canine, equine and bovine erythrocytes, but ovine erythrocytes did not change the sensitivity to alpha-toxin activity. On the other hand, the activity of alpha-toxin on swine erythrocytes increased after treatment with proteinase K, trypsin, chymotrypsin or lysyl endopeptidase. Toxin overlay assay showed that alpha-toxin bound to erythrocyte membrane proteins with a molecular mass of 30 to 45-kDa in mouse, equine, bovine, swine and chicken, whereas in rat erythrocyte membranes the toxin reacted with 100-kDa protein. The treatment of murine and swine erythrocyte membranes with phosphatidylinositol-specific phospholipase C resulted in liberation of the toxin-binding protein from the individual membranes in a native state. These results show that alpha-toxin associates with specific erythrocyte membrane proteins in any animal species, and are subsets of glycosylphosphatidylinositol-anchored proteins in various animal species. These results may reflect distinct characteristics of the hemolytic activity of alpha-toxin in response to various erythrocytes.
Collapse
Affiliation(s)
- Mudenda B Hang'ombe
- Laboratory of Veterinary Epidemiology, Department of Veterinary Science, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka, Japan
| | | | | | | |
Collapse
|
17
|
Shin DJ, Lee JJ, Choy HE, Hong Y. Generation and characterization of Clostridium septicum alpha toxin mutants and their use in diagnosing paroxysmal nocturnal hemoglobinuria. Biochem Biophys Res Commun 2004; 324:753-60. [PMID: 15474491 DOI: 10.1016/j.bbrc.2004.09.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Indexed: 11/20/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchors various proteins to the membrane of eukaryotic cells. Paroxysmal nocturnal hemoglobinuria (PNH) is a hematopoietic stem cell disorder that is primarily due to the lack of GPI-anchored proteins on the surface of blood cells. To detect the GPI-deficient cells in PNH patients, we modified alpha toxin, a pore-forming toxin of the Gram-positive bacterium Clostridium septicum. We first showed that aerolysin, a homologous toxin from Aeromonas hydrophila, bound to both of Chinese hamster ovary cells deficient of N-glycan maturation as well as GPI biosynthesis at a significant level. However, alpha toxin bound to the mutant cells of N-glycosylation, but not to GPI-deficient cells. It suggested that alpha toxin could be used as a specific probe to differentiate only GPI-deficient cells. As a diagnostic probe, alpha toxin must be the least cytotoxic while maintaining its affinity for GPI. Thus, we constructed several mutants. Of these, the mutants carrying the Y155G or S189C/S238C substitutions bound to GPI as well as the wild-type toxin. These mutants also efficiently underwent proteolytic activation and aggregated into oligomers on the cell surface, which are events that precede the formation of a pore in the host cell membrane, leading to cell death. Nevertheless, these mutants almost completely failed to kill host cells. It was revealed that the substitutions affect the events that follow oligomerization. The S189C/S238C mutant toxin differentiated GPI-deficient granulocyte and PMN, but not red blood cells, of a PNH patient from GPI-positive cells at least as sensitively as the commercial monoclonal antibodies that recognize the CD59 or CD55 GPI proteins on blood cells. Thus, this modified bacterial toxin can be employed instead of costly monoclonal antibodies to diagnose PNH patients.
Collapse
Affiliation(s)
- Dong-Jun Shin
- Department of Microbiology, Genomic Research Center for Enteropathogenic Bacteria, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Melton JA, Parker MW, Rossjohn J, Buckley JT, Tweten RK. The Identification and Structure of the Membrane-spanning Domain of the Clostridium septicum Alpha Toxin. J Biol Chem 2004; 279:14315-22. [PMID: 14715670 DOI: 10.1074/jbc.m313758200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha toxin (AT) is a pore-forming toxin produced by Clostridium septicum that belongs to the unique aerolysin-like family of pore-forming toxins. The location and structure of the transmembrane domains of these toxins have remained elusive. Using deletion mutagenesis, cysteine-scanning mutagenesis and multiple spectrofluorimetric methods a membrane-spanning amphipathic beta-hairpin of AT has been identified. Spectrofluorimetric analysis of cysteine-substituted residues modified with an environmentally sensitive fluorescent probe via the cysteine sulfydryl showed that the side chains of residues 203-232 alternated between the aqueous milieu and the membrane core when the AT oligomer was inserted into membranes, consistent with the formation of an amphipathic transmembrane beta-hairpin. AT derivatives that contained deletions that removed up to 90% of the beta-hairpin did not form a pore but were similar to native toxin in all other aspects of the mechanism. Furthermore, a mutant of AT that contained an engineered disulfide, predicted to restrict the movement of the beta-hairpin, functioned similarly to native toxin except that it did not form a pore unless the disulfide bond was reduced. Together these studies revealed the location and structure of the membrane-spanning domain of AT.
Collapse
Affiliation(s)
- Jody A Melton
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | |
Collapse
|
19
|
Hong Y, Ohishi K, Inoue N, Kang JY, Shime H, Horiguchi Y, van der Goot F, Sugimoto N, Kinoshita T. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin. EMBO J 2002; 21:5047-56. [PMID: 12356721 PMCID: PMC129030 DOI: 10.1093/emboj/cdf508] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aerolysin of the Gram-negative bacterium Aeromonas hydrophila consists of small (SL) and large (LL) lobes. The alpha-toxin of Gram-positive Clostridium septicum has a single lobe homologous to LL. These toxins bind to glycosylphosphatidylinositol (GPI)-anchored proteins and generate pores in the cell's plasma membrane. We isolated CHO cells resistant to aerolysin, with the aim of obtaining GPI biosynthesis mutants. One mutant unexpectedly expressed GPI-anchored proteins, but nevertheless bound aerolysin poorly and was 10-fold less sensitive than wild-type cells. A cDNA of N-acetylglucosamine transferase I (GnTI) restored the binding of aerolysin to this mutant. Therefore, N-glycan is involved in the binding. Removal of mannoses by alpha-mannosidase II was important for the binding of aerolysin. In contrast, the alpha-toxin killed GnTI-deficient and wild-type CHO cells equally, indicating that its binding to GPI-anchored proteins is independent of N-glycan. Because SL bound to wild-type but not to GnTI-deficient cells, and because a hybrid toxin consisting of SL and the alpha-toxin killed wild-type cells 10-fold more efficiently than GnTI- deficient cells, SL with its binding site for N-glycan contributes to the high binding affinity of aerolysin.
Collapse
Affiliation(s)
| | | | - Norimitsu Inoue
- Departments of Immunoregulation and
Bacterial Toxinology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Division of Advanced Medical Bacteriology, Department of Molecular and Applied Medicine, Medical School of Osaka University, Suita, Osaka, Japan and Department of Genetics and Microbiology, University of Geneva, Geneva, Switzerland Present address: Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan Corresponding author e-mail:
| | | | - Hiroaki Shime
- Departments of Immunoregulation and
Bacterial Toxinology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Division of Advanced Medical Bacteriology, Department of Molecular and Applied Medicine, Medical School of Osaka University, Suita, Osaka, Japan and Department of Genetics and Microbiology, University of Geneva, Geneva, Switzerland Present address: Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan Corresponding author e-mail:
| | - Yasuhiko Horiguchi
- Departments of Immunoregulation and
Bacterial Toxinology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Division of Advanced Medical Bacteriology, Department of Molecular and Applied Medicine, Medical School of Osaka University, Suita, Osaka, Japan and Department of Genetics and Microbiology, University of Geneva, Geneva, Switzerland Present address: Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan Corresponding author e-mail:
| | - F.Gisou van der Goot
- Departments of Immunoregulation and
Bacterial Toxinology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Division of Advanced Medical Bacteriology, Department of Molecular and Applied Medicine, Medical School of Osaka University, Suita, Osaka, Japan and Department of Genetics and Microbiology, University of Geneva, Geneva, Switzerland Present address: Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan Corresponding author e-mail:
| | - Nakaba Sugimoto
- Departments of Immunoregulation and
Bacterial Toxinology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Division of Advanced Medical Bacteriology, Department of Molecular and Applied Medicine, Medical School of Osaka University, Suita, Osaka, Japan and Department of Genetics and Microbiology, University of Geneva, Geneva, Switzerland Present address: Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan Corresponding author e-mail:
| | - Taroh Kinoshita
- Departments of Immunoregulation and
Bacterial Toxinology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Division of Advanced Medical Bacteriology, Department of Molecular and Applied Medicine, Medical School of Osaka University, Suita, Osaka, Japan and Department of Genetics and Microbiology, University of Geneva, Geneva, Switzerland Present address: Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan Corresponding author e-mail:
| |
Collapse
|
20
|
Wichroski MJ, Melton JA, Donahue CG, Tweten RK, Ward GE. Clostridium septicum alpha-toxin is active against the parasitic protozoan Toxoplasma gondii and targets members of the SAG family of glycosylphosphatidylinositol-anchored surface proteins. Infect Immun 2002; 70:4353-61. [PMID: 12117945 PMCID: PMC128134 DOI: 10.1128/iai.70.8.4353-4361.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As is the case with many other protozoan parasites, glycosylphosphatidylinositol (GPI)-anchored proteins dominate the surface of Toxoplasma gondii tachyzoites. The mechanisms by which T. gondii GPI-anchored proteins are synthesized and transported through the unusual triple-membrane structure of the parasite pellicle to the plasma membrane remain largely unknown. As a first step in developing tools to study these processes, we show here that Clostridium septicum alpha-toxin, a pore-forming toxin that targets GPI-anchored protein receptors on the surface of mammalian cells, is active against T. gondii tachyzoites (50% effective concentration, 0.2 nM). Ultrastructural studies reveal that a tight physical connection between the plasma membrane and the underlying membranes of the inner membrane complex is locally disrupted by toxin treatment, resulting in a massive outward extension of the plasma membrane and ultimately lysis of the parasite. Toxin treatment also causes swelling of the parasite endoplasmic reticulum, providing the first direct evidence that alpha-toxin is a vacuolating toxin. Alpha-toxin binds to several parasite GPI-anchored proteins, including surface antigen 3 (SAG3) and SAG1. Interestingly, differences in the toxin-binding profiles between the virulent RH and avirulent P strain were observed. Alpha-toxin may prove to be a powerful experimental tool for molecular genetic analysis of GPI anchor biosynthesis and GPI-anchored protein trafficking in T. gondii and other susceptible protozoa.
Collapse
Affiliation(s)
- Michael J Wichroski
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington 05405, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Like a variety of other pathogenic bacteria, Aeromonas hydrophila secretes a pore-forming toxin that contribute to its virulence. The last decade has not only increased our knowledge about the structure of this toxin, called aerolysin, but has also shed light on how it interacts with its target cell and how the cell reacts to this stress. Whereas pore-forming toxins are generally thought to lead to brutal death by osmotic lysis of the cell, based on what is observed for erythrocytes, recent studies have started to reveal far more complicated pathways leading to death of nucleated mammalian cells.
Collapse
Affiliation(s)
- M Fivaz
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
22
|
Tweten RK. Clostridium perfringens beta toxin and Clostridium septicum alpha toxin: their mechanisms and possible role in pathogenesis. Vet Microbiol 2001; 82:1-9. [PMID: 11423190 DOI: 10.1016/s0378-1135(01)00372-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Clostridium septicum alpha toxin and the Clostridium perfringens beta toxin are examples of pore-forming toxins that exhibit several different features. The cell types that are targeted by these toxins reflect the effect these toxins have on the host during infection with either organism. Alpha toxin elicits a rapid shock-like syndrome, whereas beta toxin appears to induce a variety of neurological effects. The effects of the purified toxins appear to mimic some of the features of the animal and human diseases caused by C. septicum and C. perfringens. This review, examines the current state of knowledge for the cytolytic mechanism, role in pathogenesis and structure of these two toxins.
Collapse
Affiliation(s)
- R K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, P.O. Box 26901, Oklahoma City 73190, OK, USA.
| |
Collapse
|
23
|
Fivaz M, Abrami L, Tsitrin Y, van der Goot FG. Aerolysin from Aeromonas hydrophila and related toxins. Curr Top Microbiol Immunol 2001; 257:35-52. [PMID: 11417121 DOI: 10.1007/978-3-642-56508-3_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M Fivaz
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
24
|
Nelson KL, Buckley JT. Channel formation by the glycosylphosphatidylinositol-anchored protein binding toxin aerolysin is not promoted by lipid rafts. J Biol Chem 2000; 275:19839-43. [PMID: 10770947 DOI: 10.1074/jbc.m002785200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins may be concentrated in membrane microdomains (lipid rafts) that are also enriched in cholesterol and sphingolipids. The glycosyl anchor of these proteins is a specific, high affinity receptor for the channel-forming protein aerolysin. We wished to determine if the presence of rafts promotes the activity of aerolysin. Treatment of T lymphocytes with methyl-beta-cyclodextrin, which destroys lipid rafts by sequestering cholesterol, had no measurable effect on the sensitivity of the cells to aerolysin; nor did similar treatment of erythrocytes decrease the rate at which they were lysed by the toxin. We also studied the rate of aerolysin-induced channel formation in liposomes containing glycosylphosphatidylinositol-anchored placental alkaline phosphatase, which we show is a receptor for aerolysin. In liposomes containing sphingolipids as well as glycerophospholipids and cholesterol, most of the enzyme was Triton X-100-insoluble, indicating that it was localized in rafts, whereas in liposomes prepared without sphingolipids, all of the enzyme was soluble. Aerolysin was no more active against liposomes containing rafts than against those that did not. We conclude that lipid rafts do not promote channel formation by aerolysin.
Collapse
Affiliation(s)
- K L Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Box 3055, Victoria, British Columbia V8W 3P6, Canada
| | | |
Collapse
|
25
|
Abstract
The past three years have shed light on how the pore-forming toxin aerolysin binds to its target cell and then hijacks cellular devices to promote its own polymerization and pore formation. This selective permeabilization of the plasma membrane has unexpected intracellular consequences that might explain the importance of aerolysin in Aeromonas pathogenicity.
Collapse
Affiliation(s)
- L Abrami
- Dept of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
26
|
Abstract
Aeromonas species produce an array of virulence factors, and the pathogenesis of Aeromonas infections is therefore complex and multifactorial. Aeromonas-associated gastroenteritis is especially a problem in young children. The potential involvement of enterotoxins in the pathogenesis of Aeromonas infections is discussed.
Collapse
Affiliation(s)
- A K Chopra
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | |
Collapse
|
27
|
Gordon VM, Nelson KL, Buckley JT, Stevens VL, Tweten RK, Elwood PC, Leppla SH. Clostridium septicum alpha toxin uses glycosylphosphatidylinositol-anchored protein receptors. J Biol Chem 1999; 274:27274-80. [PMID: 10480947 DOI: 10.1074/jbc.274.38.27274] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha toxin produced by Clostridium septicum is a channel-forming protein that is an important contributor to the virulence of the organism. Chinese hamster ovary (CHO) cells are sensitive to low concentrations of the toxin, indicating that they contain toxin receptors. Using retroviral mutagenesis, a mutant CHO line (BAG15) was generated that is resistant to alpha toxin. FACS analysis showed that the mutant cells have lost the ability to bind the toxin, indicating that they lack an alpha toxin receptor. The mutant cells are also resistant to aerolysin, a channel-forming protein secreted by Aeromonas spp., which is structurally and functionally related to alpha toxin and which is known to bind to glycosylphosphatidylinositol (GPI)-anchored proteins, such as Thy-1. We obtained evidence that the BAG15 cells lack N-acetylglucosaminyl-phosphatidylinositol deacetylase-L, needed for the second step in GPI anchor biosynthesis. Several lymphocyte cell lines lacking GPI-anchored proteins were also shown to be less sensitive to alpha toxin. On the other hand, the sensitivity of CHO cells to alpha toxin was increased when the cells were transfected with the GPI-anchored folate receptor. We conclude that alpha toxin, like aerolysin, binds to GPI-anchored protein receptors. Evidence is also presented that the two toxins bind to different subsets of GPI-anchored proteins.
Collapse
Affiliation(s)
- V M Gordon
- Oral Infection and Immunity Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
MacKenzie CR, Hirama T, Buckley JT. Analysis of receptor binding by the channel-forming toxin aerolysin using surface plasmon resonance. J Biol Chem 1999; 274:22604-9. [PMID: 10428840 DOI: 10.1074/jbc.274.32.22604] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aerolysin is a channel-forming bacterial toxin that binds to glycosylphosphatidylinositol (GPI) anchors on host cell-surface structures. The nature of the receptors and the location of the receptor-binding sites on the toxin molecule were investigated using surface plasmon resonance. Aerolysin bound to the GPI-anchored proteins Thy-1, variant surface glycoprotein, and contactin with similar rate constants and affinities. Enzymatic removal of N-linked sugars from Thy-1 did not affect toxin binding, indicating that these sugars are not involved in the high affinity interaction with aerolysin. Aerolysin is a bilobal protein, and both lobes were shown to be required for optimal binding. The large lobe by itself bound Thy-1 with an affinity that was at least 10-fold weaker than that of the whole toxin, whereas the small lobe bound the GPI-anchored protein at least 1000-fold more weakly than the intact toxin. Mutation analyses provided further evidence that both lobes were involved in GPI anchor binding, with certain single amino acid substitutions in either domain leading to reductions in affinity of as much as 100-fold. A variant with single amino acid substitutions in both lobes of the protein was completely unable to bind the receptor. The membrane protein glycophorin, which is heavily glycosylated but not GPI-anchored, bound weakly to immobilized proaerolysin, suggesting that interactions with cell-surface carbohydrate structures other than GPI anchors may partially mediate toxin binding to host cells.
Collapse
Affiliation(s)
- C R MacKenzie
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | | |
Collapse
|