1
|
Vijayrajratnam S, Milek S, Maggi S, Ashen K, Ferrell M, Hasanovic A, Holgerson A, Kannaiah S, Singh M, Ghosal D, Jensen GJ, Vogel JP. Membrane association and polar localization of the Legionella pneumophila T4SS DotO ATPase mediated by two nonredundant receptors. Proc Natl Acad Sci U S A 2024; 121:e2401897121. [PMID: 39352935 PMCID: PMC11474061 DOI: 10.1073/pnas.2401897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
The Legionella pneumophila Dot/Icm type IVB secretion system (T4BSS) is a large, multisubunit complex that exports a vast array of substrates into eukaryotic host cells. DotO, a distant homolog of the T4ASS ATPase VirB4, associates with the bacterial inner membrane despite lacking hydrophobic transmembrane domains. Employing a genetic approach, we found DotO's membrane association is mediated by three inner-membrane Dot/Icm components, IcmT, and a combined DotJ-DotI complex (referred to as DotJI). Although deletion of icmT or dotJI individually does not affect DotO's membrane association, the simultaneous inactivation of all three genes results in increased amounts of soluble DotO. Nevertheless, deleting each receptor separately profoundly affects positioning of DotO, disrupting its link with the Dot/Icm complex at the bacterial poles, rendering the receptors nonredundant. Furthermore, a collection of dotO point mutants that we isolated established that DotO's N-terminal domain interacts with the membrane receptors and is involved in dimerization, whereas DotO's C-terminal ATPase domain primarily contributes to the protein's formation of oligomers. Modeling data revealed the complex interaction between DotO and its receptors is responsible for formation of DotO's unique "hexamer of dimers" configuration, which is a defining characteristic of VirB4 family members.
Collapse
Affiliation(s)
| | - Sonja Milek
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich 8008, Switzerland
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kaleigh Ashen
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110
| | - Micah Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Ahmet Hasanovic
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110
| | - Agnieszka Holgerson
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110
| | | | - Manpreet Singh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110
| |
Collapse
|
2
|
Zoued A, Duneau JP, Cascales E. Bacterial One- and Two-Hybrid Assays to Monitor Transmembrane Helix Interactions. Methods Mol Biol 2024; 2715:259-271. [PMID: 37930534 DOI: 10.1007/978-1-0716-3445-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In transenvelope multiprotein machines such as bacterial secretion systems, protein-protein interactions not only occur between soluble domains but might also be mediated by helix-helix contacts in the inner membrane. Several assays have been therefore developed to test homotypic and heterotypic interactions between transmembrane α-helices in their native membrane environment. Here, we provide detailed protocols for two genetic assays, TOXCAT and GALLEX, which are based on the reconstitution of dimeric regulators allowing the control of expression of reporter genes.
Collapse
Affiliation(s)
- Abdelrahim Zoued
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ, CNRS, Marseille, France
- Centre International de Recherche en Infectiologie, UMR5308, Université Claude Bernard Lyon 1 - INSERM - CNRS, Lyon, France
| | - Jean-Pierre Duneau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ, CNRS, Marseille, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ, CNRS, Marseille, France.
| |
Collapse
|
3
|
Murthy AC, Aleksanyan N, Morton GM, Toyoda HC, Kalashyan M, Chen S, Ragucci AE, Broulidakis MP, Swerdlow KJ, Bui MNN, Muccioli M, Berkmen MB. Characterization of ConE, the VirB4 Homolog of the Integrative and Conjugative Element ICE Bs1 of Bacillus subtilis. J Bacteriol 2023; 205:e0003323. [PMID: 37219457 PMCID: PMC10294652 DOI: 10.1128/jb.00033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Conjugation is a major form of horizontal gene transfer, contributing to bacterial evolution and the acquisition of new traits. During conjugation, a donor cell transfers DNA to a recipient through a specialized DNA translocation channel classified as a type IV secretion system (T4SS). Here, we focused on the T4SS of ICEBs1, an integrative and conjugative element in Bacillus subtilis. ConE, encoded by ICEBs1, is a member of the VirB4 family of ATPases, the most conserved component of T4SSs. ConE is required for conjugation and localizes to the cell membrane, predominantly at the cell poles. In addition to Walker A and B boxes, VirB4 homologs have conserved ATPase motifs C, D, and E. Here, we created alanine substitutions in five conserved residues within or near ATPase motifs in ConE. Mutations in all five residues drastically decreased conjugation frequency but did not affect ConE protein levels or localization, indicating that an intact ATPase domain is critical for DNA transfer. Purified ConE is largely monomeric with some oligomers and lacks enzymatic activity, suggesting that ATP hydrolysis may be regulated or require special solution conditions. Finally, we investigated which ICEBs1 T4SS components interact with ConE using a bacterial two-hybrid assay. ConE interacts with itself, ConB, and ConQ, but these interactions are not required to stabilize ConE protein levels and largely do not depend on conserved residues within the ATPase motifs of ConE. The structure-function characterization of ConE provides more insight into this conserved component shared by all T4SSs. IMPORTANCE Conjugation is a major form of horizontal gene transfer and involves the transfer of DNA from one bacterium to another through the conjugation machinery. Conjugation contributes to bacterial evolution by disseminating genes involved in antibiotic resistance, metabolism, and virulence. Here, we characterized ConE, a protein component of the conjugation machinery of the conjugative element ICEBs1 of the bacterium Bacillus subtilis. We found that mutations in the conserved ATPase motifs of ConE disrupt mating but do not alter ConE localization, self-interaction, or levels. We also explored which conjugation proteins ConE interacts with and whether these interactions contribute to stabilizing ConE. Our work contributes to the understanding of the conjugative machinery of Gram-positive bacteria.
Collapse
Affiliation(s)
- Anastasia C. Murthy
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Naira Aleksanyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Georgeanna M. Morton
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Hunter C. Toyoda
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Meri Kalashyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Sirui Chen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Adelyn E. Ragucci
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
- Cancer Immunology and Virology Department, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew P. Broulidakis
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Kyle J. Swerdlow
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Minh N. N. Bui
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Maria Muccioli
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Melanie B. Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Abstract
Type IV secretion systems (T4SSs) are nanomachines that Gram-negative, Gram-positive bacteria, and some archaea use to transport macromolecules across their membranes into bacterial or eukaryotic host targets or into the extracellular milieu. They are the most versatile secretion systems, being able to deliver both proteins and nucleoprotein complexes into targeted cells. By mediating conjugation and/or competence, T4SSs play important roles in determining bacterial genome plasticity and diversity; they also play a pivotal role in the spread of antibiotic resistance within bacterial populations. T4SSs are also used by human pathogens such as Legionella pneumophila, Bordetella pertussis, Brucella sp., or Helicobacter pylori to sustain infection. Since they are essential virulence factors for these important pathogens, T4SSs might represent attractive targets for vaccines and therapeutics. The best-characterized conjugative T4SSs of Gram-negative bacteria are composed of twelve components that are conserved across many T4SSs. In this chapter, we will review our current structural knowledge on the T4SSs by describing the structures of the individual components and how they assemble into large macromolecular assemblies. With the combined efforts of X-ray crystallography, nuclear magnetic resonance (NMR), and more recently electron microscopy, structural biology of the T4SS has made spectacular progress during the past fifteen years and has unraveled the properties of unique proteins and complexes that assemble dynamically in a highly sophisticated manner.
Collapse
|
5
|
A unique cytoplasmic ATPase complex defines the Legionella pneumophila type IV secretion channel. Nat Microbiol 2018; 3:678-686. [PMID: 29784975 PMCID: PMC5970066 DOI: 10.1038/s41564-018-0165-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
Type IV secretion systems (T4SSs) are complex machines used by bacteria to deliver protein and DNA complexes into target host cells 1–5. Conserved ATPases are essential for T4SS function, but how they coordinate their activities to promote substrate transfer remains poorly understood. Here, we show that the DotB ATPase associates with the Dot/Icm T4SS at the Legionella cell pole through interactions with the DotO ATPase. The structure of the Dot/Icm apparatus was solved in situ by cryo-electron tomography at 3.5 nanometer resolution and the cytoplasmic complex was solved at 3.0 nanometer resolution. These structures revealed a cell-envelope-spanning channel that connects to the cytoplasmic complex. Further analysis revealed a hexameric assembly of DotO dimers associated with the inner membrane complex, and a DotB hexamer associated with the base of this cytoplasmic complex. The assembly of a DotB/DotO energy complex creates a cytoplasmic channel and directs the translocation of substrates through the T4SS. These data define distinct stages in Dot/Icm machine biogenesis, advance our understanding of channel activation, and identify an envelope-spanning T4SS channel.
Collapse
|
6
|
Logger L, Zoued A, Cascales E. Fusion Reporter Approaches to Monitoring Transmembrane Helix Interactions in Bacterial Membranes. Methods Mol Biol 2017; 1615:199-210. [PMID: 28667614 DOI: 10.1007/978-1-4939-7033-9_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
In transenvelope multiprotein machines such as bacterial secretion systems, protein-protein interactions not only occur between soluble domains but might also be mediated by helix-helix contacts in the inner membrane. Here we describe genetic assays commonly used to test interactions between transmembrane α-helices in their native membrane environment. These assays are based on the reconstitution of dimeric regulators allowing the control of expression of reporter genes. We provide detailed protocols for the TOXCAT and GALLEX assays used to monitor homotypic and heterotypic transmembrane helix-helix interactions.
Collapse
Affiliation(s)
- Laureen Logger
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ-CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Abdelrahim Zoued
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ-CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Division of Infectious Diseases and Harvard Medical School, Department of Microbiology and Immunobiology, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ-CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| |
Collapse
|
7
|
Auchtung JM, Aleksanyan N, Bulku A, Berkmen MB. Biology of ICEBs1, an integrative and conjugative element in Bacillus subtilis. Plasmid 2016; 86:14-25. [PMID: 27381852 DOI: 10.1016/j.plasmid.2016.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Horizontal gene transfer plays a profound role in bacterial evolution by propelling the rapid transfer of genes and gene cassettes. Integrative and conjugative elements (ICEs) are one important mechanism driving horizontal gene transfer. ICEs, also known as conjugative transposons, reside on the host chromosome but can excise to form a conjugative DNA circle that is capable of transfer to other cells. Analysis of the large number of completed bacterial genome sequences has revealed many previously unrecognized ICEs, including ICEBs1, found in the Gram-positive model bacterium Bacillus subtilis. The discovery of ICEBs1 in an organism with such an impressive array of molecular tools for genetics and molecular biology was fortuitous. Significant insights into ICE biology have resulted since its discovery <15years ago. In this review, we describe aspects of ICEBs1 biology, such as excision, conjugative transfer, and reintegration, likely to be conserved across many ICEs. We will also highlight some of the more unexpected aspects of ICEBs1 biology, such as its ability to undergo plasmid-like replication after excision and its ability to mobilize plasmids lacking dedicated mobilization functions. A molecular understanding of ICEBs1 has led to additional insights into signals and mechanisms that promote horizontal gene transfer and shape bacterial evolution.
Collapse
Affiliation(s)
- Jennifer M Auchtung
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | - Naira Aleksanyan
- Department of Chemistry and Biochemistry, Suffolk University, 8 Ashburton Place, Boston, MA 02108, USA.
| | - Artemisa Bulku
- Department of Chemistry and Biochemistry, Suffolk University, 8 Ashburton Place, Boston, MA 02108, USA.
| | - Melanie B Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, 8 Ashburton Place, Boston, MA 02108, USA.
| |
Collapse
|
8
|
Abstract
Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (oriT), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the trans-envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer (tra) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.
Collapse
|
9
|
Abstract
Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.
Collapse
Affiliation(s)
- Vidya Chandran Darbari
- Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
10
|
Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 2014; 39:81-95. [PMID: 25154632 DOI: 10.1111/1574-6976.12085] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Alejandro Peña
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| |
Collapse
|
11
|
Padavannil A, Jobichen C, Qinghua Y, Seetharaman J, Velazquez-Campoy A, Yang L, Pan SQ, Sivaraman J. Dimerization of VirD2 binding protein is essential for Agrobacterium induced tumor formation in plants. PLoS Pathog 2014; 10:e1003948. [PMID: 24626239 PMCID: PMC3953389 DOI: 10.1371/journal.ppat.1003948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
The Type IV Secretion System (T4SS) is the only bacterial secretion system known to translocate both DNA and protein substrates. The VirB/D4 system from Agrobacterium tumefaciens is a typical T4SS. It facilitates the bacteria to translocate the VirD2-T-DNA complex to the host cell cytoplasm. In addition to protein-DNA complexes, the VirB/D4 system is also involved in the translocation of several effector proteins, including VirE2, VirE3 and VirF into the host cell cytoplasm. These effector proteins aid in the proper integration of the translocated DNA into the host genome. The VirD2-binding protein (VBP) is a key cytoplasmic protein that recruits the VirD2-T-DNA complex to the VirD4-coupling protein (VirD4 CP) of the VirB/D4 T4SS apparatus. Here, we report the crystal structure and associated functional studies of the C-terminal domain of VBP. This domain mainly consists of α-helices, and the two monomers of the asymmetric unit form a tight dimer. The structural analysis of this domain confirms the presence of a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) fold. Biophysical studies show that VBP is a dimer in solution and that the HEPN domain is the dimerization domain. Based on structural and mutagenesis analyses, we show that substitution of key residues at the interface disrupts the dimerization of both the HEPN domain and full-length VBP. In addition, pull-down analyses show that only dimeric VBP can interact with VirD2 and VirD4 CP. Finally, we show that only Agrobacterium harboring dimeric full-length VBP can induce tumors in plants. This study sheds light on the structural basis of the substrate recruiting function of VBP in the T4SS pathway of A. tumefaciens and in other pathogenic bacteria employing similar systems.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Qinghua
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jayaraman Seetharaman
- X4 Beamline, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit IQFR-CSIC-BIFI, and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain, and Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - Liu Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shen Q. Pan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
12
|
Structural organisation of the type IV secretion systems. Curr Opin Microbiol 2013; 17:24-31. [PMID: 24581689 PMCID: PMC3969286 DOI: 10.1016/j.mib.2013.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 02/04/2023]
Abstract
Type IV secretion systems are nanomachines that transport substrates through bacterial membranes. Structures of components obtained by crystallography are presented. Higher resolution core complex structures revealed localisations of protein components. Docking of known and modelled atomic structures uncovers interactions between components.
Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNAs and/or proteins through the membranes of bacteria. Because of their complexity and multi-protein organisation, T4S systems have been extremely challenging to study structurally. However in the past five years significant milestones have been achieved by X-ray crystallography and cryo-electron microscopy. This review describes some of the more recent advances: the structures of some of the protein components of the T4S systems and the complete core complex structure that was determined using electron microscopy.
Collapse
|
13
|
Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 2013; 70:289-302. [PMID: 24129002 PMCID: PMC3913187 DOI: 10.1016/j.plasmid.2013.09.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
The conjugative transfer mechanism of broad-host-range, Enterococcus sex pheromone and Clostridium plasmids is reviewed. Comparisons with Gram-negative type IV secretion systems are presented. The current understanding of the unique Streptomyces double stranded DNA transfer mechanism is reviewed.
Bacterial conjugation presents the most important means to spread antibiotic resistance and virulence factors among closely and distantly related bacteria. Conjugative plasmids are the mobile genetic elements mainly responsible for this task. All the genetic information required for the horizontal transmission is encoded on the conjugative plasmids themselves. Two distinct concepts for horizontal plasmid transfer in Gram-positive bacteria exist, the most prominent one transports single stranded plasmid DNA via a multi-protein complex, termed type IV secretion system, across the Gram-positive cell envelope. Type IV secretion systems have been found in virtually all unicellular Gram-positive bacteria, whereas multicellular Streptomycetes seem to have developed a specialized system more closely related to the machinery involved in bacterial cell division and sporulation, which transports double stranded DNA from donor to recipient cells. This review intends to summarize the state of the art of prototype systems belonging to the two distinct concepts; it focuses on protein key players identified so far and gives future directions for research in this emerging field of promiscuous interbacterial transport.
Collapse
|
14
|
Liu MA, Kwong SM, Jensen SO, Brzoska AJ, Firth N. Biology of the staphylococcal conjugative multiresistance plasmid pSK41. Plasmid 2013; 70:42-51. [PMID: 23415796 DOI: 10.1016/j.plasmid.2013.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/27/2022]
Abstract
Plasmid pSK41 is a large, low-copy-number, conjugative plasmid from Staphylococcus aureus that is representative of a family of staphylococcal plasmids that confer multiple resistances to a wide range of antimicrobial agents. The plasmid consists of a conserved plasmid backbone containing the genes for plasmid housekeeping functions, which is punctuated by copies of IS257 that flank a Tn4001-hybrid structure and cointegrated plasmids that harbour resistance genes. This review summarises the current understanding of the biology of pSK41, focussing on the systems responsible for its replication, maintenance and transmission, and their regulation.
Collapse
Affiliation(s)
- Michael A Liu
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
15
|
Abstract
Bacteria have evolved several secretion machineries to bring about transport of various virulence factors, nutrients, nucleic acids and cell-surface appendages that are essential for their pathogenesis. T4S (Type IV secretion) systems are versatile secretion systems found in various Gram-negative and Gram-positive bacteria and in few archaea. They are large multisubunit translocons secreting a diverse array of substrates varying in size and nature from monomeric proteins to nucleoprotein complexes. T4S systems have evolved from conjugation machineries and are implicated in antibiotic resistance gene transfer and transport of virulence factors in Legionella pneumophila causing Legionnaires’ disease, Brucella suis causing brucellosis and Helicobacter pylori causing gastroduodenal diseases. The best-studied are the Agrobacterium tumefaciens VirB/D4 and the Escherichia coli plasmid pKM101 T4S systems. Recent structural advances revealing the cryo-EM (electron microscopy) structure of the core translocation assembly and high-resolution structure of the outer-membrane pore of T4S systems have made paradigm shifts in the understanding of T4S systems. The present paper reviews the advances made in biochemical and structural studies and summarizes our current understanding of the molecular architecture of this mega-assembly.
Collapse
|
16
|
Peña A, Matilla I, Martín-Benito J, Valpuesta JM, Carrascosa JL, de la Cruz F, Cabezón E, Arechaga I. The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J Biol Chem 2012; 287:39925-32. [PMID: 23035111 DOI: 10.1074/jbc.m112.413849] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VirB4 proteins are ATPases essential for pilus biogenesis and protein transport in type IV secretion systems. These proteins contain a motor domain that shares structural similarities with the motor domains of DNA translocases, such as the VirD4/TrwB conjugative coupling proteins and the chromosome segregation pump FtsK. Here, we report the three-dimensional structure of full-length TrwK, the VirB4 homologue in the conjugative plasmid R388, determined by single-particle electron microscopy. The structure consists of a hexameric double ring with a barrel-shaped structure. The C-terminal half of VirB4 proteins shares a striking structural similarity with the DNA translocase TrwB. Docking the atomic coordinates of the crystal structures of TrwB and FtsK into the EM map revealed a better fit for FtsK. Interestingly, we have found that like TrwB, TrwK is able to bind DNA with a higher affinity for G4 quadruplex structures than for single-stranded DNA. Furthermore, TrwK exerts a dominant negative effect on the ATPase activity of TrwB, which reflects an interaction between the two proteins. Our studies provide new insights into the structure-function relationship and the evolution of these DNA and protein translocases.
Collapse
Affiliation(s)
- Alejandro Peña
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), UC-CSIC-SODERCAN, Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Walldén K, Williams R, Yan J, Lian PW, Wang L, Thalassinos K, Orlova EV, Waksman G. Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci U S A 2012; 109:11348-53. [PMID: 22745169 PMCID: PMC3396474 DOI: 10.1073/pnas.1201428109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Type IV secretion (T4S) systems mediate the transfer of proteins and DNA across the cell envelope of bacteria. These systems play important roles in bacterial pathogenesis and in horizontal transfer of antibiotic resistance. The VirB4 ATPase of the T4S system is essential for both the assembly of the system and substrate transfer. In this article, we present the crystal structure of the C-terminal domain of Thermoanaerobacter pseudethanolicus VirB4. This structure is strikingly similar to that of another T4S ATPase, VirD4, a protein that shares only 12% sequence identity with VirB4. The VirB4 domain purifies as a monomer, but the full-length protein is observed in a monomer-dimer equilibrium, even in the presence of nucleotides and DNAs. We also report the negative stain electron microscopy structure of the core complex of the T4S system of the Escherichia coli pKM101 plasmid, with VirB4 bound. In this structure, VirB4 is also monomeric and bound through its N-terminal domain to the core's VirB9 protein. Remarkably, VirB4 is observed bound to the side of the complex where it is ideally placed to play its known regulatory role in substrate transfer.
Collapse
Affiliation(s)
- Karin Walldén
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, London WC1E 7HX, United Kingdom; and
| | - Robert Williams
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, London WC1E 7HX, United Kingdom; and
| | - Jun Yan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Pei W. Lian
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, London WC1E 7HX, United Kingdom; and
| | - Luchun Wang
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, London WC1E 7HX, United Kingdom; and
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, London WC1E 7HX, United Kingdom; and
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, London WC1E 7HX, United Kingdom; and
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
Enterococcus faecalis PrgJ, a VirB4-like ATPase, mediates pCF10 conjugative transfer through substrate binding. J Bacteriol 2012; 194:4041-51. [PMID: 22636769 DOI: 10.1128/jb.00648-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Enterococcus faecalis prg and pcf genes of plasmid pCF10 encode a type IV secretion system (T4SS) required for conjugative transfer. PrgJ is a member of the VirB4 family of ATPases that are universally associated with T4SSs. Here, we report that purified PrgJ dimers displayed ATP binding and hydrolysis activities. A PrgJ nucleoside triphosphate (NTP) binding site mutation (K471E) slightly diminished ATP binding but abolished ATP hydrolysis in vitro and blocked pCF10 transfer in vivo. As shown with affinity pulldown assays, PrgJ and the K471E mutant protein interacted with the substrate receptor PcfC and with relaxase PcfG and accessory factor PcfF, which together form the relaxosome at the oriT sequence to initiate plasmid processing. The purified PrgJ and K471E proteins also bound single- and double-stranded DNA substrates without sequence specificity in vitro, and both PrgJ derivatives bound pCF10 in vivo by a mechanism dependent on an intact oriT sequence and cosynthesis of PcfC, PcfF, and PcfG, as shown by a formaldehyde-cross-linking assay. Our findings support a model in which the PcfC receptor coordinates with the PrgJ ATPase to drive early steps of pCF10 processing/transfer: (i) PcfC first binds the pCF10 relaxosome through contacts with PcfF, PcfG, and DNA; (ii) PcfC delivers the plasmid substrate to PrgJ; and (iii) PrgJ catalyzes substrate transfer to the membrane translocase. Substrate engagement with a VirB4-like subunit has not been previously described; consequently, our studies point to a novel function for these signature T4SS ATPases in mediating early steps of type IV secretion.
Collapse
|
19
|
Villamil Giraldo AM, Sivanesan D, Carle A, Paschos A, Smith MA, Plesa M, Coulton J, Baron C. Type IV secretion system core component VirB8 from Brucella binds to the globular domain of VirB5 and to a periplasmic domain of VirB6. Biochemistry 2012; 51:3881-90. [PMID: 22515661 DOI: 10.1021/bi300298v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type IV secretion systems are macromolecular assemblies in the cell envelopes of bacteria that function in macromolecular translocation. Structural biology approaches have provided insights into the interaction of core complex components, but information about proteins that undergo transient interactions with membrane components has not been forthcoming. We have pursued an unbiased approach using peptide arrays and phage display to identify interaction partners and interaction domains of type IV secretion system assembly factor VirB8. These approaches identified the globular domain from the VirB5 protein to interact with VirB8. This interaction was confirmed in cross-linking, pull-down, and fluorescence resonance energy transfer (FRET)-based interaction assays. In addition, using phage display analysis, we identified different regions of VirB6 as potential interaction partners of VirB8. Using a FRET-based interaction assay, we provide the first direct experimental evidence of the interaction of a VirB6 periplasmic domain with VirB8. These results will allow us to conduct directed structural biological work and structure-function analyses aimed at defining the molecular details and biological significance of these interactions with VirB8 in the future.
Collapse
Affiliation(s)
- Ana Maria Villamil Giraldo
- Department of Biochemistry, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev 2012; 36:563-99. [PMID: 22229763 DOI: 10.1111/j.1574-6976.2012.00324.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.
Collapse
|
21
|
Abstract
Pertussis toxin, produced and secreted by the whooping cough agent Bordetella pertussis, is one of the most complex soluble bacterial proteins. It is actively secreted through the B. pertussis cell envelope by the Ptl secretion system, a member of the widespread type IV secretion systems. The toxin is composed of five subunits (named S1 to S5 according to their decreasing molecular weights) arranged in an A-B structure. The A protomer is composed of the enzymatically active S1 subunit, which catalyzes ADP-ribosylation of the α subunit of trimeric G proteins, thereby disturbing the metabolic functions of the target cells, leading to a variety of biological activities. The B oligomer is composed of 1S2:1S3:2S4:1S5 and is responsible for binding of the toxin to the target cell receptors and for intracellular trafficking via receptor-mediated endocytosis and retrograde transport. The toxin is one of the most important virulence factors of B. pertussis and is a component of all current vaccines against whooping cough.
Collapse
Affiliation(s)
- Camille Locht
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Univ Lille Nord de France, France.
| | | | | |
Collapse
|
22
|
Li M, Shen X, Yan J, Han H, Zheng B, Liu D, Cheng H, Zhao Y, Rao X, Wang C, Tang J, Hu F, Gao GF. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Mol Microbiol 2011; 79:1670-83. [PMID: 21244532 PMCID: PMC3132442 DOI: 10.1111/j.1365-2958.2011.07553.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pathogenicity islands (PAIs), a distinct type of genomic island (GI), play important roles in the rapid adaptation and increased virulence of pathogens. 89K is a newly identified PAI in epidemic Streptococcus suis isolates that are related to the two recent large-scale outbreaks of human infection in China. However, its mechanism of evolution and contribution to the epidemic spread of S. suis 2 remain unknown. In this study, the potential for mobilization of 89K was evaluated, and its putative transfer mechanism was investigated. We report that 89K can spontaneously excise to form an extrachromosomal circular product. The precise excision is mediated by an 89K-borne integrase through site-specific recombination, with help from an excisionase. The 89K excision intermediate acts as a substrate for lateral transfer to non-89K S. suis 2 recipients, where it reintegrates site-specifically into the target site. The conjugal transfer of 89K occurred via a GI type IV secretion system (T4SS) encoded in 89K, at a frequency of 10(-6) transconjugants per donor. This is the first demonstration of horizontal transfer of a Gram-positive PAI mediated by a GI-type T4SS. We propose that these genetic events are important in the emergence, pathogenesis and persistence of epidemic S. suis 2 strains.
Collapse
Affiliation(s)
- Ming Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Durand E, Waksman G, Receveur-Brechot V. Structural insights into the membrane-extracted dimeric form of the ATPase TraB from the Escherichia coli pKM101 conjugation system. BMC STRUCTURAL BIOLOGY 2011; 11:4. [PMID: 21266026 PMCID: PMC3032639 DOI: 10.1186/1472-6807-11-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/25/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Type IV secretion (T4S) systems are involved in secretion of virulence factors such as toxins or transforming molecules, or bacterial conjugation. T4S systems are composed of 12 proteins named VirB1-B11 and VirD4. Among them, three ATPases are involved in the assembly of the T4S system and/or provide energy for substrate transfer, VirB4, VirB11 and VirD4. The X-ray crystal structures of VirB11 and VirD4 have already been solved but VirB4 has proven to be reluctant to any structural investigation so far. RESULTS Here, we have used small-angle X-ray scattering to obtain the first structural models for the membrane-extracted, dimeric form of the TraB protein, the VirB4 homolog encoded by the E. coli pKM101 plasmid, and for the monomeric soluble form of the LvhB4 protein, the VirB4 homolog of the T4S system encoded by the Legionella pneumophila lvh operon. We have obtained the low resolution structures of the full-length TraB and of its N- and C-terminal halves. From these SAXS models, we derive the internal organisation of TraB. We also show that the two TraB N- and C-terminal domains are independently involved in the dimerisation of the full-length protein. CONCLUSIONS These models provide the first structural insights into the architecture of VirB4 proteins. In particular, our results highlight the modular arrangement and functional relevance of the dimeric-membrane-bound form of TraB.
Collapse
Affiliation(s)
- Eric Durand
- Institute of Structural and Molecular Biology, UCL/Birkbeck, Malet Street, London WC1E 7HX, UK
- LISM-CNRS - UPR9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, UCL/Birkbeck, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
24
|
Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 2010; 192:4923-34. [PMID: 20656905 DOI: 10.1128/jb.00557-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Agrobacterium VirB2 pilin is required for assembly of the VirB/VirD4 type IV secretion system (T4SS). The propilin is processed by signal sequence cleavage and covalent linkage of the N and C termini, and the cyclized pilin integrates into the inner membrane (IM) as a pool for assembly of the secretion channel and T pilus. Here, by use of the substituted cysteine accessibility method (SCAM), we defined the VirB2 IM topology and then identified distinct contributions of the T4SS ATPase subunits to the pilin structural organization. Labeling patterns of Cys-substituted pilins exposed to the membrane-impermeative, thiol-reactive reagent 3-(N-maleimidopropionyl)biocytin (MPB) supported a topology model in which two hydrophobic stretches comprise transmembrane domains, an intervening hydrophilic loop (residues 90 to 94) is cytoplasmic, and the hydrophilic N and C termini joined at residues 48 and 121 form a periplasmic loop. Interestingly, the VirB4 ATPase, but not a Walker A nucleoside triphosphate (NTP) binding motif mutant, induced (i) MPB labeling of Cys94, a residue that in the absence of the ATPase is located in the cytoplasmic loop, and (ii) release of pilin from the IM upon osmotic shock. These findings, coupled with evidence for VirB2-VirB4 complex formation by coimmunoprecipitation, support a model in which VirB4 functions as a dislocation motor to extract pilins from the IM during T4SS biogenesis. The VirB11 ATPase functioned together with VirB4 to induce a structural change in the pilin that was detectable by MPB labeling, suggestive of a role for VirB11 as a modulator of VirB4 dislocase activity.
Collapse
|
25
|
Abstract
Type IV secretion systems (T4SSs) are large protein complexes which traverse the cell envelope of many bacteria. They contain a channel through which proteins or protein–DNA complexes can be translocated. This translocation is driven by a number of cytoplasmic ATPases which might energize large conformational changes in the translocation complex. The family of T4SSs is very versatile, shown by the great variety of functions among family members. Some T4SSs are used by pathogenic Gram-negative bacteria to translocate a wide variety of virulence factors into the host cell. Other T4SSs are utilized to mediate horizontal gene transfer, an event that greatly facilitates the adaptation to environmental changes and is the basis for the spread of antibiotic resistance among bacteria. Here we review the recent advances in the characterization of the architecture and mechanism of substrate transfer in a few representative T4SSs with a particular focus on their diversity of structure and function.
Collapse
Affiliation(s)
- Karin Wallden
- Institute of Structural and Molecular Biology, UCL and Birkbeck, London WC1E 7HX, UK
| | | | | |
Collapse
|
26
|
An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 2009; 191:4316-29. [PMID: 19395482 DOI: 10.1128/jb.00029-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpL(M), an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpL(M) and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of beta-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpL(M) is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impL(M) mutants with substitutions or deletions in the Walker A motif failed to complement the impL(M) deletion mutant for Hcp secretion, which provided evidence that ImpL(M) may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpL(M) and another essential T6SS component, ImpK(L). Topology and biochemical fractionation analyses suggested that ImpK(L) is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpL(M)-ImpK(L) interaction domains suggested that ImpL(M) interacts with ImpK(L) via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpL(M) interacts with ImpK(L), and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.
Collapse
|
27
|
ATPase activity and oligomeric state of TrwK, the VirB4 homologue of the plasmid R388 type IV secretion system. J Bacteriol 2008; 190:5472-9. [PMID: 18539740 DOI: 10.1128/jb.00321-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type IV secretion systems (T4SS) mediate the transfer of DNA and protein substrates to target cells. TrwK, encoded by the conjugative plasmid R388, is a member of the VirB4 family, comprising the largest and most conserved proteins of T4SS. VirB4 was suggested to be an ATPase involved in energizing pilus assembly and substrate transport. However, conflicting experimental evidence concerning VirB4 ATP hydrolase activity was reported. Here, we demonstrate that TrwK is able to hydrolyze ATP in vitro in the absence of its potential macromolecular substrates and other T4SS components. The kinetic parameters of its ATPase activity have been characterized. The TrwK oligomerization state was investigated by analytical ultracentrifugation and electron microscopy, and its effects on ATPase activity were analyzed. The results suggest that the hexameric form of TrwK is the catalytically active state, much like the structurally related protein TrwB, the conjugative coupling protein.
Collapse
|
28
|
Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P. VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 2007; 189:6551-63. [PMID: 17631630 PMCID: PMC2045169 DOI: 10.1128/jb.00480-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vir-type IV secretion system of Agrobacterium is assembled from 12 proteins encoded by the virB operon and virD4. VirB1 is one of the least-studied proteins encoded by the virB operon. Its N terminus is a lytic transglycosylase. The C-terminal third of the protein, VirB1*, is cleaved from VirB1 and secreted to the outside of the bacterial cell, suggesting an additional function. We show that both nopaline and octopine strains produce abundant amounts of VirB1* and perform detailed studies on nopaline VirB1*. Both domains are required for wild-type virulence. We show here that the nopaline type VirB1* is essential for the formation of the T pilus, a subassembly of the vir-T4SS composed of processed and cyclized VirB2 (major subunit) and VirB5 (minor subunit). A nopaline virB1 deletion strain does not produce T pili. Complementation with full-length VirB1 or C-terminal VirB1*, but not the N-terminal lytic transglycosylase domain, restores T pili containing VirB2 and VirB5. T-pilus preparations also contain extracellular VirB1*. Protein-protein interactions between VirB1* and VirB2 and VirB5 were detected in the yeast two-hybrid assay. We propose that VirB1 is a bifunctional protein required for virT4SS assembly. The N-terminal lytic transglycosylase domain provides localized lysis of the peptidoglycan cell wall to allow insertion of the T4SS. The C-terminal VirB1* promotes T-pilus assembly through protein-protein interactions with T-pilus subunits.
Collapse
Affiliation(s)
- John Zupan
- Department of Plant and Microbial Biology, Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | | | |
Collapse
|
29
|
Parschat K, Overhage J, Strittmatter AW, Henne A, Gottschalk G, Fetzner S. Complete nucleotide sequence of the 113-kilobase linear catabolic plasmid pAL1 of Arthrobacter nitroguajacolicus Rü61a and transcriptional analysis of genes involved in quinaldine degradation. J Bacteriol 2007; 189:3855-67. [PMID: 17337569 PMCID: PMC1913324 DOI: 10.1128/jb.00089-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/27/2007] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of the linear catabolic plasmid pAL1 from the 2-methylquinoline (quinaldine)-degrading strain Arthrobacter nitroguajacolicus Rü61a comprises 112,992 bp. A total of 103 open reading frames (ORFs) were identified on pAL1, 49 of which had no annotatable function. The ORFs were assigned to the following functional groups: (i) catabolism of quinaldine and anthranilate, (ii) conjugation, and (iii) plasmid maintenance and DNA replication and repair. The genes for conversion of quinaldine to anthranilate are organized in two operons that include ORFs presumed to code for proteins involved in assembly of the quinaldine-4-oxidase holoenzyme, namely, a MobA-like putative molybdopterin cytosine dinucleotide synthase and an XdhC-like protein that could be required for insertion of the molybdenum cofactor. Genes possibly coding for enzymes involved in anthranilate degradation via 2-aminobenzoyl coenzyme A form another operon. These operons were expressed when cells were grown on quinaldine or on aromatic compounds downstream in the catabolic pathway. Single-stranded 3' overhangs of putative replication intermediates of pAL1 were predicted to form elaborate secondary structures due to palindromic and superpalindromic terminal sequences; however, the two telomeres appear to form different structures. Sequence analysis of ORFs 101 to 103 suggested that pAL1 codes for one or two putative terminal proteins, presumed to be covalently bound to the 5' termini, and a multidomain telomere-associated protein (Tap) comprising 1,707 amino acids. Even if the putative proteins encoded by ORFs 101 to 103 share motifs with the Tap and terminal proteins involved in telomere patching of Streptomyces linear replicons, their overall sequences and domain structures differ significantly.
Collapse
Affiliation(s)
- Katja Parschat
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Baron C. VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem Cell Biol 2007; 84:890-9. [PMID: 17215876 DOI: 10.1139/o06-148] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type IV secretion systems are used by many gram-negative bacteria for the translocation of macromolecules (proteins, DNA, or DNA-protein complexes) across the cell envelope. Among them are many pathogens for which type IV secretion systems are essential virulence factors. Type IV secretion systems comprise 8-12 conserved proteins, which assemble into a complex spanning the inner and the outer membrane, and many assemble extracellular appendages, such as pili, which initiate contact with host and recipient cells followed by substrate translocation. VirB8 is an essential assembly factor for all type IV secretion systems. Biochemical, cell biological, genetic, and yeast two-hybrid analyses showed that VirB8 undergoes multiple interactions with other type IV secretion system components and that it directs polar assembly of the membrane-spanning complex in the model organism Agrobacterium tumefaciens. The availability of the VirB8 X-ray structure has enabled a detailed structure-function analysis, which identified sites for the binding of VirB4 and VirB10 and for self-interaction. Due to its multiple interactions, VirB8 is an excellent model for the analysis of assembly factors of multiprotein complexes. In addition, VirB8 is a possible target for drugs that target its protein-protein interactions, which would disarm bacteria by depriving them of their essential virulence functions.
Collapse
Affiliation(s)
- Christian Baron
- McMaster University, Department of Biology and Antimicrobial Research Centre, 1280 Main St. West, Hamilton, ON LS8 4K1, Canada.
| |
Collapse
|
31
|
Draper O, Middleton R, Doucleff M, Zambryski PC. Topology of the VirB4 C terminus in the Agrobacterium tumefaciens VirB/D4 type IV secretion system. J Biol Chem 2006; 281:37628-35. [PMID: 17038312 DOI: 10.1074/jbc.m606403200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative type IV secretion systems (T4SSs) transfer proteins and DNA to eukaryotic and/or prokaryotic recipients resulting in pathogenesis or conjugative DNA transfer. VirB4, one of the most conserved proteins in these systems, has both energetic and structural roles in substrate translocation. We previously predicted a structural model for the large C-terminal domain (residues 425-789) of VirB4 of Agrobacterium tumefaciens. Here we have defined a homology-based structural model for Agrobacterium VirB11. Both VirB4 and VirB11 models predict hexameric oligomers. Yeast two-hybrid interactions define peptides in the C terminus of VirB4 and the N terminus of VirB11 that interact with each other. These interactions were mapped onto the homology models to predict direct interactions between the hexameric interfaces of VirB4 and VirB11 such that the VirB4 C terminus stacks above VirB11 in the periplasm. In support of this, fractionation and Western blotting show that the VirB4 C terminus is localized to the membrane and periplasm rather than the cytoplasm of cells. Additional high resolution yeast two-hybrid results demonstrate interactions between the C terminus of VirB4 and the periplasmic portions of VirB1, VirB8, and VirB10. Genetic studies reveal dominant negative interactions and thus function of the VirB4 C terminus in vivo. The above data are integrated with the existing body of literature to propose a structural, periplasmic role for the C-terminal half of the Agrobacterium VirB4 protein.
Collapse
Affiliation(s)
- Olga Draper
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
32
|
Busler VJ, Torres VJ, McClain MS, Tirado O, Friedman DB, Cover TL. Protein-protein interactions among Helicobacter pylori cag proteins. J Bacteriol 2006; 188:4787-800. [PMID: 16788188 PMCID: PMC1482994 DOI: 10.1128/jb.00066-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.
Collapse
Affiliation(s)
- Valerie J Busler
- Department of Microbiology and Immunology, Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
33
|
Schröder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 2005; 54:1-25. [PMID: 15907535 DOI: 10.1016/j.plasmid.2005.02.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The mating pair formation (Mpf) system functions as a secretion machinery for intercellular DNA transfer during bacterial conjugation. The components of the Mpf system, comprising a minimal set of 10 conserved proteins, form a membrane-spanning protein complex and a surface-exposed sex pilus, which both serve to establish intimate physical contacts with a recipient bacterium. To function as a DNA secretion apparatus the Mpf complex additionally requires the coupling protein (CP). The CP interacts with the DNA substrate and couples it to the secretion pore formed by the Mpf system. Mpf/CP conjugation systems belong to the family of type IV secretion systems (T4SS), which also includes DNA-uptake and -release systems, as well as effector protein translocation systems of bacterial pathogens such as Agrobacterium tumefaciens (VirB/VirD4) and Helicobacter pylori (Cag). The increased efforts to unravel the molecular mechanisms of type IV secretion have largely advanced our current understanding of the Mpf/CP system of bacterial conjugation systems. It has become apparent that proteins coupled to DNA rather than DNA itself are the actively transported substrates during bacterial conjugation. We here present a unified and updated view of the functioning and the molecular architecture of the Mpf/CP machinery.
Collapse
Affiliation(s)
- Gunnar Schröder
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
34
|
Christie PJ, Cascales E. Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol 2005; 22:51-61. [PMID: 16092524 PMCID: PMC3921681 DOI: 10.1080/09687860500063316] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The type IV secretion systems (T4SS) are widely distributed among the gram-negative and -positive bacteria. These systems mediate the transfer of DNA and protein substrates across the cell envelope to bacterial or eukaryotic cells generally through a process requiring direct cell-to-cell contact. Bacteria have evolved T4SS for survival during establishment of pathogenic or symbiotic relationships with eukaryotic hosts. The Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation machines serve as models for detailed mechanistic studies aimed at elucidating the nature of translocation signals, machine assembly pathways and architectures, and the dynamics of substrate translocation. The A. tumefaciens VirB/D4 T4SS are polar-localized organelles composed of a secretion channel and an extracellular T pilus. These T4SS are assembled from 11 or more subunits. whose membrane topologies, intersubunit contacts and, in some cases, 3-dimensional structures are known. Recently, powerful in vivo assays have identified C-terminal translocation signals, defined for the first time the translocation route for a DNA substrate through a type IV secretion channel, and supplied evidence that ATP energy consumption contributes to a late stage of machine morphogenesis. Together, these recent findings describe the mechanics of type IV secretion in unprecedented detail.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, UT-Houston Medical School, Houston, Texas 77030, USA.
| | | |
Collapse
|
35
|
Abstract
Bartonellae are arthropod-borne bacterial pathogens that typically cause persistent infection of erythrocytes and endothelial cells in their mammalian hosts. In human infection, these host-cell interactions result in a broad range of clinical manifestations. Most remarkably, bartonellae can trigger massive proliferation of endothelial cells, leading to vascular tumour formation. The recent availability of infection models and bacterial molecular genetic techniques has fostered research on the pathogenesis of the bartonellae and has advanced our understanding of the virulence mechanisms that underlie the host-cell tropism, the subversion of host-cell functions during bacterial persistence, as well as the formation of vascular tumours by these intriguing pathogens.
Collapse
Affiliation(s)
- Christoph Dehio
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
36
|
Yuan Q, Carle A, Gao C, Sivanesan D, Aly KA, Höppner C, Krall L, Domke N, Baron C. Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 2005; 280:26349-59. [PMID: 15901731 DOI: 10.1074/jbc.m502347200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Type IV secretion systems mediate the translocation of virulence factors (proteins and/or DNA) from Gram-negative bacteria into eukaryotic cells. A complex of 11 conserved proteins (VirB1-VirB11) spans the inner and the outer membrane and assembles extracellular T-pili in Agrobacterium tumefaciens. Here we report a sequence of protein interactions required for the formation of complexes between VirB2 and VirB5, which precedes their incorporation into pili. The NTPase Walker A active site of the inner membrane protein VirB4 is required for virulence, but an active site VirB4 variant stabilized VirB3 and VirB8 and enabled T-pilus formation. Analysis of VirB protein complexes extracted from the membranes with mild detergent revealed that VirB2-VirB5 complex formation depended on VirB4, which identified a novel T-pilus assembly step. Bicistron expression demonstrated direct interaction of VirB4 with VirB8, and analyses with purified proteins showed that VirB5 bound to VirB8 and VirB10. VirB4 therefore localizes at the basis of a trans-envelope interaction sequence, and by stabilization of VirB8 it mediates the incorporation of VirB5 and VirB2 into extracellular pili.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Biology, McMaster University, Hamilton, Ontario LS8 4K1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Atmakuri K, Cascales E, Christie PJ. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 2005; 54:1199-211. [PMID: 15554962 PMCID: PMC3869561 DOI: 10.1111/j.1365-2958.2004.04345.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria use type IV secretion systems (T4SS) to translocate DNA (T-DNA) and protein substrates across the cell envelope. By transfer DNA immunoprecipitation (TrIP), we recently showed that T-DNA translocates through the Agrobacterium tumefaciens VirB/D4 T4SS by forming close contacts sequentially with the VirD4 receptor, VirB11 ATPase, the inner membrane subunits VirB6 and VirB8 and, finally, VirB2 pilin and VirB9. Here, by TrIP, we show that nucleoside triphosphate binding site (Walker A motif) mutations do not disrupt VirD4 substrate binding or transfer to VirB11, suggesting that these early reactions proceed independently of ATP binding or hydrolysis. In contrast, VirD4, VirB11 and VirB4 Walker A mutations each arrest substrate transfer to VirB6 and VirB8, suggesting that these subunits energize this transfer reaction by an ATP-dependent mechanism. By co-immunoprecipitation, we supply evidence for VirD4 interactions with VirB4 and VirB11 independently of other T4SS subunits or intact Walker A motifs, and with the bitopic inner membrane subunit VirB10. We reconstituted substrate transfer from VirD4 to VirB11 and to VirB6 and VirB8 by co-synthesis of previously identified 'core' components of the VirB/D4 T4SS. Our findings define genetic requirements for DNA substrate binding and the early transfer reactions of a bacterial type IV translocation pathway.
Collapse
|
38
|
Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:219-34. [PMID: 15546668 DOI: 10.1016/j.bbamcr.2004.02.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/03/2004] [Accepted: 02/03/2004] [Indexed: 11/27/2022]
Abstract
The translocation of DNA across biological membranes is an essential process for many living organisms. In bacteria, type IV secretion systems (T4SS) are used to deliver DNA as well as protein substrates from donor to target cells. The T4SS are structurally complex machines assembled from a dozen or more membrane proteins in response to environmental signals. In Gram-negative bacteria, the conjugation machines are composed of a cell envelope-spanning secretion channel and an extracellular pilus. These dynamic structures (i) direct formation of stable contacts-the mating junction-between donor and recipient cell membranes, (ii) transmit single-stranded DNA as a nucleoprotein particle, as well as protein substrates, across donor and recipient cell membranes, and (iii) mediate disassembly of the mating junction following substrate transfer. This review summarizes recent progress in our understanding of the mechanistic details of DNA trafficking with a focus on the paradigmatic Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation systems.
Collapse
|
39
|
Middleton R, Sjölander K, Krishnamurthy N, Foley J, Zambryski P. Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. Proc Natl Acad Sci U S A 2005; 102:1685-90. [PMID: 15668378 PMCID: PMC547840 DOI: 10.1073/pnas.0409399102] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Agrobacterium T-DNA transporter belongs to a growing class of evolutionarily conserved transporters, called type IV secretion systems (T4SSs). VirB4, 789 aa, is the largest T4SS component, providing a rich source of possible structural domains. Here, we use a variety of bioinformatics methods to predict that the C-terminal domain of VirB4 (including the Walker A and B nucleotide-binding motifs) is related by divergent evolution to the cytoplasmic domain of TrwB, the coupling protein required for conjugative transfer of plasmid R388 from Escherichia coli. This prediction is supported by detailed sequence and structure analyses showing conservation of functionally and structurally important residues between VirB4 and TrwB. The availability of a solved crystal structure for TrwB enables the construction of a comparative model for VirB4 and the prediction that, like TrwB, VirB4 forms a hexamer. These results lead to a model in which VirB4 acts as a docking site at the entrance of the T4SS channel and acts in concert with VirD4 and VirB11 to transport substrates (T-strand linked to VirD2 or proteins such as VirE2, VirE3, or VirF) through the T4SS.
Collapse
Affiliation(s)
- Rebecca Middleton
- Department of Plant and Microbial Biology, Koshland Hall, Evans Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
40
|
Iyer LM, Makarova KS, Koonin EV, Aravind L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 2004; 32:5260-79. [PMID: 15466593 PMCID: PMC521647 DOI: 10.1093/nar/gkh828] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, it has been shown that a predicted P-loop ATPase (the HerA or MlaA protein), which is highly conserved in archaea and also present in many bacteria but absent in eukaryotes, has a bidirectional helicase activity and forms hexameric rings similar to those described for the TrwB ATPase. In this study, the FtsK-HerA superfamily of P-loop ATPases, in which the HerA clade comprises one of the major branches, is analyzed in detail. We show that, in addition to the FtsK and HerA clades, this superfamily includes several families of characterized or predicted ATPases which are predominantly involved in extrusion of DNA and peptides through membrane pores. The DNA-packaging ATPases of various bacteriophages and eukaryotic double-stranded DNA viruses also belong to the FtsK-HerA superfamily. The FtsK protein is the essential bacterial ATPase that is responsible for the correct segregation of daughter chromosomes during cell division. The structural and evolutionary relationship between HerA and FtsK and the nearly perfect complementarity of their phyletic distributions suggest that HerA similarly mediates DNA pumping into the progeny cells during archaeal cell division. It appears likely that the HerA and FtsK families diverged concomitantly with the archaeal-bacterial division and that the last universal common ancestor of modern life forms had an ancestral DNA-pumping ATPase that gave rise to these families. Furthermore, the relationship of these cellular proteins with the packaging ATPases of diverse DNA viruses suggests that a common DNA pumping mechanism might be operational in both cellular and viral genome segregation. The herA gene forms a highly conserved operon with the gene for the NurA nuclease and, in many archaea, also with the orthologs of eukaryotic double-strand break repair proteins MRE11 and Rad50. HerA is predicted to function in a complex with these proteins in DNA pumping and repair of double-stranded breaks introduced during this process and, possibly, also during DNA replication. Extensive comparative analysis of the 'genomic context' combined with in-depth sequence analysis led to the prediction of numerous previously unnoticed nucleases of the NurA superfamily, including a specific version that is likely to be the endonuclease component of a novel restriction-modification system. This analysis also led to the identification of previously uncharacterized nucleases, such as a novel predicted nuclease of the Sir2-type Rossmann fold, and phosphatases of the HAD superfamily that are likely to function as partners of the FtsK-HerA superfamily ATPases.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
41
|
Shamaei-Tousi A, Cahill R, Frankel G. Interaction between protein subunits of the type IV secretion system of Bartonella henselae. J Bacteriol 2004; 186:4796-801. [PMID: 15231811 PMCID: PMC438546 DOI: 10.1128/jb.186.14.4796-4801.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we used the yeast two-hybrid system to identify interactions between protein subunits of the virB type IV secretion system of Bartonella henselae. We report interactions between inner membrane and periplasmic proteins, the pilus polypeptide, and the core complex and a novel interaction between VirB3 and VirB5.
Collapse
Affiliation(s)
- Alireza Shamaei-Tousi
- Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
42
|
Cascales E, Christie PJ. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 2004; 304:1170-3. [PMID: 15155952 PMCID: PMC3882297 DOI: 10.1126/science.1095211] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria use conjugation systems, a subfamily of the type IV secretion systems, to transfer DNA to recipient cells. Despite 50 years of research, the architecture and mechanism of action of the channel mediating DNA transfer across the bacterial cell envelope remains obscure. By use of a sensitive, quantifiable assay termed transfer DNA immunoprecipitation (TrIP), we identify contacts between a DNA substrate (T-DNA) and 6 of 12 components of the VirB/D4 conjugation system of the phytopathogen Agrobacterium tumefaciens. Our results define the translocation pathway for a DNA substrate through a bacterial conjugation machine, specifying the contributions of each subunit of the secretory apparatus to substrate passage.
Collapse
|
43
|
Terradot L, Durnell N, Li M, Li M, Ory J, Labigne A, Legrain P, Colland F, Waksman G. Biochemical characterization of protein complexes from the Helicobacter pylori protein interaction map: strategies for complex formation and evidence for novel interactions within type IV secretion systems. Mol Cell Proteomics 2004; 3:809-19. [PMID: 15133060 DOI: 10.1074/mcp.m400048-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have investigated a large set of interactions from the Helicobacter pylori protein interaction map previously identified by high-throughput yeast two-hybrid (htY2H)-based methods. This study had two aims: i) to validate htY2H as a source of protein-protein interaction complexes for high-throughput biochemical and structural studies of the H. pylori interactome; and ii) to validate biochemically interactions shown by htY2H to involve components of the H. pylori type IV secretion systems. Thus, 17 interactions involving 31 proteins and protein fragments were studied, and a general strategy was designed to produce protein-interacting partners for biochemical and structural characterization. We show that htY2H is a valid source of protein-protein complexes for high-throughput proteome-scale characterization of the H. pylori interactome, because 76% of the interactions tested were confirmed biochemically. Of the interactions involving type IV secretion proteins, three could be confirmed. One interaction is between two components of the type IV secretion apparatus, ComB10 and ComB4, which are VirB10 and VirB4 homologs, respectively. Another interaction is between a type IV component (HP0525, a VirB11 homolog) and a non-type IV secretion protein (HP01451), indicating that proteins other than the core VirB (1-11)-VirD4 proteins may play a role in type IV secretion. Finally, a third interaction was biochemically confirmed between CagA, a virulence factor secreted by the type IV secretion system encoded by the Cag pathogenicity island, and a non-type IV secretion protein, HP0496.
Collapse
Affiliation(s)
- Laurent Terradot
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Hye-Jeong Yeo
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
45
|
Gilmour MW, Taylor DE. A subassembly of R27-encoded transfer proteins is dependent on TrhC nucleoside triphosphate-binding motifs for function but not formation. J Bacteriol 2004; 186:1606-13. [PMID: 14996790 PMCID: PMC355986 DOI: 10.1128/jb.186.6.1606-1613.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transfer of plasmid DNA molecules between bacterial cells is achieved by a large array of conjugative transfer proteins which assemble into both cytoplasmic and membrane-associated complexes. TrhC is a membrane-associated protein that is required for the transfer of the IncHI1 resistance plasmid R27. Homologous proteins are encoded in all known conjugative systems, and each contains characteristic nucleoside triphosphate (NTP)-binding domains. An assembly of R27-encoded proteins was previously visualized by use of a TrhC-green fluorescent protein fusion, which appeared as discrete membrane-associated fluorescent foci. We have utilized this experimental system to determine the requirements for assembly of this TrhC-associated protein complex, and we found that 12 of the other 18 R27 transfer proteins are required for focus formation. An individual focus possibly represents a subassembly comprised of some or all of these transfer proteins. These data support the notion that the transfer apparatus is a multicomponent structure. In contrast, substitutions and deletions within TrhC NTP-binding motifs had minor effects on focus formation, but these mutations did affect plasmid transfer and bacteriophage susceptibility. These results indicate that TrhC requires intact NTP-binding motifs to function during conjugative transfer but that these motifs are not essential for the assembly of TrhC into a complex with other transfer proteins.
Collapse
Affiliation(s)
- Matthew W Gilmour
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | |
Collapse
|
46
|
Abstract
Bacteria use type IV secretion systems for two fundamental objectives related to pathogenesis--genetic exchange and the delivery of effector molecules to eukaryotic target cells. Whereas gene acquisition is an important adaptive mechanism that enables pathogens to cope with a changing environment during invasion of the host, interactions between effector and host molecules can suppress defence mechanisms, facilitate intracellular growth and even induce the synthesis of nutrients that are beneficial to bacterial colonization. Rapid progress has been made towards defining the structures and functions of type IV secretion machines, identifying the effector molecules, and elucidating the mechanisms by which the translocated effectors subvert eukaryotic cellular processes during infection.
Collapse
Affiliation(s)
- Eric Cascales
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
47
|
Ge H, Chuang YYE, Zhao S, Tong M, Tsai MH, Temenak JJ, Richards AL, Ching WM. Comparative genomics of Rickettsia prowazekii Madrid E and Breinl strains. J Bacteriol 2004; 186:556-65. [PMID: 14702324 PMCID: PMC305770 DOI: 10.1128/jb.186.2.556-565.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia prowazekii, the causative agent of epidemic typhus, has been responsible for millions of human deaths. Madrid E is an attenuated strain of R. prowazekii, while Breinl is a virulent strain. The genomic DNA sequence of Madrid E has recently been published. To study the genomic variations between Madrid E (reference) and Breinl (test) DNAs, cohybridization experiments were performed on a DNA microarray containing all 834 protein-coding genes of Madrid E. Of the 834 genes assessed, 24 genes showed 1.5- to 2.0-fold increases in hybridization signals in Breinl DNA compared to Madrid E DNA, indicating the presence of genomic variations in approximately 3% of the total genes. Eighteen of these 24 genes are predicted to be involved in different functions. Southern blot analysis of five genes, virB4, ftsK, rfbE, lpxA, and rpoH, suggested the presence of an additional paralog(s) in Breinl, which might be related to the observed increase in hybridization signals. Studies by real-time reverse transcription-PCR revealed an increase in expression of the above-mentioned five genes and five other genes. In addition to the elevated hybridization signals of 24 genes observed in the Breinl strain, one gene (rp084) showed only 1/10 the hybridization signal of Madrid E. Further analysis of this gene by PCR and sequencing revealed a large deletion flanking the whole rp084 gene and part of the rp083 gene in the virulent Breinl strain. The results of this first rickettsial DNA microarray may provide some important information for the elucidation of pathogenic mechanisms of R. prowazekii.
Collapse
Affiliation(s)
- Hong Ge
- Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yeo HJ, Yuan Q, Beck MR, Baron C, Waksman G. Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc Natl Acad Sci U S A 2003; 100:15947-52. [PMID: 14673074 PMCID: PMC307673 DOI: 10.1073/pnas.2535211100] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type IV secretion systems mediate intercellular transfer of macro-molecules via a mechanism ancestrally related to that of bacterial conjugation machineries. TraC of the IncN plasmid pKM101 belongs to the VirB5 family of proteins, an essential component of most type IV secretion systems. Here, we present the structure of TraC. VirB5/TraC is a single domain protein, which consists of a three helix bundle and a loose globular appendage. Structure-based site-directed mutagenesis followed by functional studies indicates that VirB5 proteins participate in protein-protein interactions important for pilus assembly and function.
Collapse
Affiliation(s)
- Hye-Jeong Yeo
- Institute of Structural Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Seubert A, Hiestand R, de la Cruz F, Dehio C. A bacterial conjugation machinery recruited for pathogenesis. Mol Microbiol 2003; 49:1253-66. [PMID: 12940985 DOI: 10.1046/j.1365-2958.2003.03650.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type IV secretion systems (T4SS) are multicomponent transporters of Gram-negative bacteria adapted to functions as diverse as DNA transfer in bacterial conjugation or the delivery of effector proteins into eukaryotic target cells in pathogenesis. The generally modest sequence conservation between T4SS may reflect their evolutionary distance and/or functional divergence. Here, we show that the establishment of intraerythrocytic parasitism by Bartonella tribocorum requires a putative T4SS, which shares an unprecedented level of sequence identity with the Trw conjugation machinery of the broad-host-range antibiotic resistance plasmid R388 (up to 80% amino acid identity for individual T4SS components). The highly conserved T4SS loci are collinear except for the presence of numerous tandem gene duplications in B. tribocorum, which mostly encode variant forms of presumed surface-exposed pilus subunits. Conservation is not only structural, but also functional: R388 mutated in either trwD or trwH encoding essential T4SS components could be trans-complemented for conjugation by the homologues of the B. tribocorum system. Conservation also includes the transcription regulatory circuit: both T4SS loci encode a highly homologous and interchangeable KorA/KorB repressor system that negatively regulates the expression of all T4SS components. This striking example of adaptive evolution reveals the capacity of T4SS to assume dedicated functions in either DNA transfer or pathogenesis over rather short evolutionary distance and implies a novel role for the conjugation systems of widespread broad-host-range plasmids in the evolution of bacterial pathogens.
Collapse
Affiliation(s)
- Anja Seubert
- Division of Molecular Microbiology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Annick Gauthier
- Biotechnology Laboratory and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|