1
|
Gupta R, Rohde KH. Implementation of a mycobacterial CRISPRi platform in Mycobacterium abscessus and demonstration of the essentiality of ftsZ Mab. Tuberculosis (Edinb) 2023; 138:102292. [PMID: 36495774 DOI: 10.1016/j.tube.2022.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium abscessus (Mab) is a highly drug-resistant non-tuberculous mycobacterial species that causes debilitating TB-like pulmonary infections. The lack of genetic tools has hampered characterization of its extensive repertoire of virulence factors, antimicrobial resistance mechanisms, and drug targets. In this study, we evaluated the performance of a mycobacterial single plasmid CRISPRi-dCas9 system optimized for M. tuberculosis and M. smegmatis for inducible gene silencing in Mab. The efficacy of CRISPRi-mediated repression of two antibiotic resistance genes (blaMab, whiB7Mab) and two putative essential genes (ftsZMab,topAMab) was determined by measuring mRNA transcript levels and phenotypic outcomes. While our results support the utility of this mycobacterial CRISPRi dCas9Sth1 single-plasmid platform for inducible silencing of specific target genes in Mab, they also highlighted several caveats and nuances that may warrant species-specific optimization for Mab. We observed overall lower levels of gene repression in Mab including variable silencing of different target genes despite use of PAMs of similar predicted strength. In addition, leaky gene repression in the absence of inducer was noted for some genes but not others. Nonetheless, using CRISPRi we demonstrated the silencing of multiple target genes and validated ftsZMab as an essential gene and promising drug target for the first time.
Collapse
Affiliation(s)
- Rashmi Gupta
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL, 32827, USA.
| | - Kyle H Rohde
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL, 32827, USA.
| |
Collapse
|
2
|
Gupta KR, Gwin CM, Rahlwes KC, Biegas KJ, Wang C, Park JH, Liu J, Swarts BM, Morita YS, Rego EH. An essential periplasmic protein coordinates lipid trafficking and is required for asymmetric polar growth in mycobacteria. eLife 2022; 11:80395. [PMID: 36346214 PMCID: PMC9678360 DOI: 10.7554/elife.80395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Mycobacteria, including the human pathogen Mycobacterium tuberculosis, grow by inserting new cell wall material at their poles. This process and that of division are asymmetric, producing a phenotypically heterogeneous population of cells that respond non-uniformly to stress (Aldridge et al., 2012; Rego et al., 2017). Surprisingly, deletion of a single gene - lamA - leads to more symmetry, and to a population of cells that is more uniformly killed by antibiotics (Rego et al., 2017). How does LamA create asymmetry? Here, using a combination of quantitative time-lapse imaging, bacterial genetics, and lipid profiling, we find that LamA recruits essential proteins involved in cell wall synthesis to one side of the cell - the old pole. One of these proteins, MSMEG_0317, here renamed PgfA, was of unknown function. We show that PgfA is a periplasmic protein that interacts with MmpL3, an essential transporter that flips mycolic acids in the form of trehalose monomycolate (TMM), across the plasma membrane. PgfA interacts with a TMM analog suggesting a direct role in TMM transport. Yet our data point to a broader function as well, as cells with altered PgfA levels have differences in the abundance of other lipids and are differentially reliant on those lipids for survival. Overexpression of PgfA, but not MmpL3, restores growth at the old poles in cells missing lamA. Together, our results suggest that PgfA is a key determinant of polar growth and cell envelope composition in mycobacteria, and that the LamA-mediated recruitment of this protein to one side of the cell is a required step in the establishment of cellular asymmetry.
Collapse
Affiliation(s)
- Kuldeepkumar R Gupta
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Celena M Gwin
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Kathryn C Rahlwes
- Department of Microbiology, University of MassachusettsAmherstUnited States
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan UniversityMount PleasantUnited States,Biochemistry, Cell, and Molecular Biology Program, Central Michigan UniversityMount PleasantUnited States
| | - Chunyan Wang
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States,Microbial Sciences Institute, Yale UniversityWest HavenUnited States
| | - Jin Ho Park
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States,Microbial Sciences Institute, Yale UniversityWest HavenUnited States
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan UniversityMount PleasantUnited States,Biochemistry, Cell, and Molecular Biology Program, Central Michigan UniversityMount PleasantUnited States
| | - Yasu S Morita
- Department of Microbiology, University of MassachusettsAmherstUnited States
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
3
|
Wang J, Liu Y, Liu Y, Du K, Xu S, Wang Y, Krupovic M, Chen X. A novel family of tyrosine integrases encoded by the temperate pleolipovirus SNJ2. Nucleic Acids Res 2019; 46:2521-2536. [PMID: 29361162 PMCID: PMC5861418 DOI: 10.1093/nar/gky005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/08/2018] [Indexed: 01/19/2023] Open
Abstract
Genomes of halophilic archaea typically contain multiple loci of integrated mobile genetic elements (MGEs). Despite the abundance of these elements, however, mechanisms underlying their site-specific integration and excision have not been investigated. Here, we identified and characterized a novel recombination system encoded by the temperate pleolipovirus SNJ2, which infects haloarchaeon Natrinema sp. J7-1. SNJ2 genome is inserted into the tRNAMet gene and flanked by 14 bp direct repeats corresponding to attachment core sites. We showed that SNJ2 encodes an integrase (IntSNJ2) that excises the proviral genome from its host cell chromosome, but requires two small accessory proteins, Orf2 and Orf3, for integration. These proteins were co-transcribed with IntSNJ2 to form an operon. Homology searches showed that IntSNJ2-type integrases are widespread in haloarchaeal genomes and are associated with various integrated MGEs. Importantly, we confirmed that SNJ2-like recombination systems are encoded by haloarchaea from three different genera and are critical for integration and excision. Finally, phylogenetic analysis suggested that IntSNJ2-type recombinases belong to a novel family of archaeal integrases distinct from previously characterized recombinases, including those from the archaeal SSV- and pNOB8-type families.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingchun Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Kaixin Du
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuqi Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuchen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mart Krupovic
- Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Bowyer J, Zhao J, Subsoontorn P, Wong W, Rosser S, Bates D. Mechanistic Modeling of a Rewritable Recombinase Addressable Data Module. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:1161-1170. [PMID: 27244749 DOI: 10.1109/tbcas.2016.2526668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many of the most important applications predicted to arise from Synthetic Biology will require engineered cellular memory with the capability to store data in a rewritable and reversible manner upon induction by transient stimuli. DNA recombination provides an ideal platform for cellular data storage and has allowed the development of a rewritable recombinase addressable data (RAD) module, capable of efficient data storage within a chromosome. Here, we develop the first detailed mechanistic model of DNA recombination, and validate it against a new set of in vitro data on recombination efficiencies across a range of different concentrations of integrase and gp3. Investigation of in vivo recombination dynamics using our model reveals the importance of fully accounting for all mechanistic features of DNA recombination in order to accurately predict the effect of different switching strategies on RAD module performance, and highlights its usefulness as a design tool for building future synthetic circuitry.
Collapse
|
6
|
Sharadamma N, Harshavardhana Y, Ravishankar A, Anand P, Chandra N, Muniyappa K. Molecular Dissection of Mycobacterium tuberculosis Integration Host Factor Reveals Novel Insights into the Mode of DNA Binding and Nucleoid Compaction. Biochemistry 2015; 54:4142-60. [DOI: 10.1021/acs.biochem.5b00447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Apoorva Ravishankar
- Department of
Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Praveen Anand
- Department of
Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- Department of
Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Muniyappa
- Department of
Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Sharadamma N, Harshavardhana Y, Ravishankar A, Anand P, Chandra N, Muniyappa K. Molecular dissection of Mycobacterium tuberculosis integration host factor reveals novel insights into the mode of DNA binding and nucleoid compaction. J Biol Chem 2014; 289:34325-40. [PMID: 25324543 DOI: 10.1074/jbc.m114.608596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ΔihfA and ΔihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHFαβ. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.
Collapse
Affiliation(s)
| | | | - Apoorva Ravishankar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Praveen Anand
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. J Mol Biol 2014; 426:2703-16. [PMID: 24857859 PMCID: PMC4111918 DOI: 10.1016/j.jmb.2014.05.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. Phage integrases are site-specific recombinases that mediate controlled and precise DNA integration and excision. The serine integrases, such as ϕC31 integrase, can be used for efficient recombination in heterologous hosts as they use short recombination substrates, they are directional and they do not require host factors. Both serine and tyrosine integrases, such as λ integrase, are versatile tools for DNA cloning and assembly in vivo and in vitro. Controlled expression of orthologous serine integrases and their cognate recombination directionality factors can be used to generate living biocomputers. Serine integrases are increasingly being exploited for synthetic biology applications.
Collapse
Affiliation(s)
- Paul C M Fogg
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean Colloms
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh EH9 3JR, UK
| | - Marshall Stark
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
10
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
11
|
Singh S, Plaks JG, Homa NJ, Amrich CG, Héroux A, Hatfull GF, VanDemark AP. The structure of Xis reveals the basis for filament formation and insight into DNA bending within a mycobacteriophage intasome. J Mol Biol 2013; 426:412-22. [PMID: 24112940 DOI: 10.1016/j.jmb.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
The recombination directionality factor, Xis, is a DNA bending protein that determines the outcome of integrase-mediated site-specific recombination by redesign of higher-order protein-DNA architectures. Although the attachment site DNA of mycobacteriophage Pukovnik is likely to contain four sites for Xis binding, Xis crystals contain five subunits in the asymmetric unit, four of which align into a Xis filament and a fifth that is generated by an unusual domain swap. Extensive intersubunit contacts stabilize a bent filament-like arrangement with Xis monomers aligned head to tail. The structure implies a DNA bend of ~120°, which is in agreement with DNA bending measured in vitro. Formation of attR-containing intasomes requires only Int and Xis, distinguishing Pukovnik from lambda. Therefore, we conclude that, in Pukovnik, Xis-induced DNA bending is sufficient to promote intramolecular Int-mediated bridges during intasome formation.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph G Plaks
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas J Homa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; Present address: N. J. Homa, 426 CARL Building, Duke University, Durham, NC 27710, USA.
| | - Christopher G Amrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
12
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
13
|
Savinov A, Pan J, Ghosh P, Hatfull GF. The Bxb1 gp47 recombination directionality factor is required not only for prophage excision, but also for phage DNA replication. Gene 2011; 495:42-8. [PMID: 22227494 DOI: 10.1016/j.gene.2011.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
Mycobacteriophage Bxb1 encodes a serine-integrase that catalyzes both integrative and excisive site-specific recombination. However, excision requires a second phage-encoded protein, gp47, which serves as a recombination directionality factor (RDF). The viability of a Bxb1 mutant containing an S153A substitution in gp47 that eliminates the RDF activity of Bxb1 gp47 shows that excision is not required for Bxb1 lytic growth. However, the inability to construct a Δ47 deletion mutant of Bxb1 suggests that gp47 provides a second function that is required for lytic growth, although the possibility of an essential cis-acting site cannot be excluded. Characterization of a mutant prophage of mycobacteriophage L5 in which gene 54 - a homologue of Bxb1 gene 47 - is deleted shows that it also is defective in induced lytic growth, and exhibits a strong defect in DNA replication. Bxb1 gp47 and its relatives are also unusual in containing conserved motifs associated with a phosphoesterase function, although we have not been able to show robust phosphoesterase activity of the proteins, and amino acid substitutions with the conserved motifs do not interfere with RDF activity. We therefore propose that Bxb1 gp47 and its relatives provide an important function in phage DNA replication that has been co-opted by the integration machinery of the serine-integrases to control the directionality of recombination.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | | | | | | |
Collapse
|
14
|
Abstract
Viruses are powerful tools for investigating and manipulating their hosts, but the enormous size and amazing genetic diversity of the bacteriophage population have emerged as something of a surprise. In light of the evident importance of mycobacteria to human health--especially Mycobacterium tuberculosis, which causes tuberculosis--and the difficulties that have plagued their genetic manipulation, mycobacteriophages are especially appealing subjects for discovery, genomic characterization, and manipulation. With more than 70 complete genome sequences available, the mycobacteriophages have provided a wealth of information on the diversity of phages that infect a common bacterial host, revealed the pervasively mosaic nature of phage genome architectures, and identified a huge number of genes of unknown function. Mycobacteriophages have provided key tools for tuberculosis genetics, and new methods for simple construction of mycobacteriophage recombinants will facilitate postgenomic explorations into mycobacteriophage biology.
Collapse
Affiliation(s)
- Graham F Hatfull
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
15
|
Ojha AK, Trivelli X, Guerardel Y, Kremer L, Hatfull GF. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J Biol Chem 2010; 285:17380-9. [PMID: 20375425 PMCID: PMC2878501 DOI: 10.1074/jbc.m110.112813] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/02/2010] [Indexed: 02/02/2023] Open
Abstract
Mycobacterial species, like other microbes, spontaneously form multicellular drug-tolerant biofilms when grown in vitro in detergent-free liquid media. The structure of Mycobacterium tuberculosis biofilms is formed through genetically programmed pathways and is built upon a large abundance of novel extracellular free mycolic acids (FM), although the mechanism of FM synthesis remained unclear. Here we show that the FM in Mycobacterium smegmatis biofilms is produced through the enzymatic release from constitutively present mycolyl derivatives. One of the precursors for FM is newly synthesized trehalose dimycolate (TDM), which is cleaved by a novel TDM-specific serine esterase, Msmeg_1529. Disruption of Msmeg_1529 leads to undetectable hydrolytic activity, reduced levels of FM in the mutant, and retarded biofilm growth. Furthermore, enzymatic hydrolysis of TDM remains conserved in M. tuberculosis, suggesting the presence of a TDM-specific esterase in this pathogen. Overall, this study provides the first evidence for an enzymatic release of free mycolic acids from cell envelope mycolates during mycobacterial growth.
Collapse
Affiliation(s)
- Anil K Ojha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | |
Collapse
|
16
|
Control of directionality in bacteriophage mv4 site-specific recombination: functional analysis of the Xis factor. J Bacteriol 2009; 192:624-35. [PMID: 19948798 DOI: 10.1128/jb.00986-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase of the temperate bacteriophage mv4 catalyzes site-specific recombination between the phage attP site and the host attB site during Lactobacillus delbrueckii lysogenization. The mv4 prophage is excised during the induction of lytic growth. Excisive site-specific recombination between the attR and attL sites is also catalyzed by the phage-encoded recombinase, but the directionality of the recombination is determined by a second phage-encoded protein, the recombination directionality factor (RDF). We have identified and functionally characterized the RDF involved in site-specific excision of the prophage genome. The mv4 RDF, (mv4)Xis, is encoded by the second gene of the early lytic operon. It is a basic protein of 56 amino acids. Electrophoretic mobility shift assays demonstrated that (mv4)Xis binds specifically to the attP and attR sites via two DNA-binding sites, introducing a bend into the DNA. In vitro experiments and in vivo recombination assays with plasmids in Escherichia coli and Lactobacillus plantarum demonstrated that (mv4)Xis is absolutely required for inter- or intramolecular recombination between the attR and attL sites. In contrast to the well-known phage site-specific recombination systems, the integrative recombination between the attP and attB sites seems not to be inhibited by the presence of (mv4)Xis.
Collapse
|
17
|
Abstract
The importance of plasmids for molecular research cannot be underestimated. These double-stranded DNA units that replicate independently of the chromosomal DNA are as valuable to bacterial geneticists as a carpenter's hammer. Fortunately, today the mycobacterial research community has a number of these genetic tools at its disposal, and the development of these tools has greatly accelerated the study of mycobacterial pathogens. However, working with mycobacterial cloning plasmids is still not always as straightforward as working with Escherichia coli plasmids, and therefore a number of precautions and potential pitfalls will be discussed in this chapter.
Collapse
Affiliation(s)
- Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, College of Pharmacy, Rm 412, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612-7231, USA.
| | | |
Collapse
|
18
|
Abstract
The temperate bacteriophages lambda and P22 share similarities in their site-specific recombination reactions. Both require phage-encoded integrase (Int) proteins for integrative recombination and excisionase (Xis) proteins for excision. These proteins bind to core-type, arm-type, and Xis binding sites to facilitate the reaction. lambda and P22 Xis proteins are both small proteins (lambda Xis, 72 amino acids; P22 Xis, 116 amino acids) and have basic isoelectric points (for P22 Xis, 9.42; for lambda Xis, 11.16). However, the P22 Xis and lambda Xis primary sequences lack significant similarity at the amino acid level, and the linear organizations of the P22 phage attachment site DNA-binding sites have differences that could be important in quaternary intasome structure. We purified P22 Xis and studied the protein in vitro by means of electrophoretic mobility shift assays and footprinting, cross-linking, gel filtration stoichiometry, and DNA bending assays. We identified one protected site that is bent approximately 137 degrees when bound by P22 Xis. The protein binds cooperatively and at high protein concentrations protects secondary sites that may be important for function. Finally, we aligned the attP arms containing the major Xis binding sites from bacteriophages lambda, P22, L5, HP1, and P2 and the conjugative transposon Tn916. The similarity in alignments among the sites suggests that Xis-containing bacteriophage arms may form similar structures.
Collapse
|
19
|
Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. MICROBIOLOGY-SGM 2007; 153:2711-2723. [PMID: 17660435 PMCID: PMC2884959 DOI: 10.1099/mic.0.2007/008904-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mycobacteriophage Tweety is a newly isolated phage of Mycobacterium smegmatis. It has a viral morphology with an isometric head and a long flexible tail, and forms turbid plaques from which stable lysogens can be isolated. The Tweety genome is 58 692 bp in length, contains 109 protein-coding genes, and shows significant but interrupted nucleotide sequence similarity with the previously described mycobacteriophages Llij, PMC and Che8. However, overall the genome possesses mosaic architecture, with gene products being related to other mycobacteriophages such as Che9d, Omega and Corndog. A gene encoding an integrase of the tyrosine-recombinase family is located close to the centre of the genome, and a putative attP site has been identified within a short intergenic region immediately upstream of int. This Tweety attP–int cassette was used to construct a new set of integration-proficient plasmid vectors that efficiently transform both fast- and slow-growing mycobacteria through plasmid integration at a chromosomal locus containing a tRNALys gene. These vectors are maintained well in the absence of selection and are completely compatible with integration vectors derived from mycobacteriophage L5, enabling the simple construction of complex recombinants with genes integrated simultaneously at different chromosomal positions.
Collapse
Affiliation(s)
- Thuy T. Pham
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marisa L. Pedulla
- Department of Biology, Montana Tech, University of Montana, Butte, MT 59701, USA
| | - Roger W. Hendrix
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F. Hatfull
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Ghosh P, Wasil LR, Hatfull GF. Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol 2007; 4:e186. [PMID: 16719562 PMCID: PMC1470463 DOI: 10.1371/journal.pbio.0040186] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 04/05/2006] [Indexed: 12/22/2022] Open
Abstract
Mycobacteriophage Bxb1 integrates its DNA at the
attB site of the
Mycobacterium smegmatis genome using the viral
attP site and a phage-encoded integrase generating the recombinant junctions
attL and
attR. The Bxb1 integrase is a member of the serine recombinase family of site-specific recombination proteins and utilizes small (<50 base pair) substrates for recombination, promoting strand exchange without the necessity for complex higher order macromolecular architectures. To elucidate the regulatory mechanism for the integration and excision reactions, we have identified a Bxb1-encoded recombination directionality factor (RDF), the product of gene
47. Bxb1 gp47 is an unusual RDF in that it is relatively large (˜28 kDa), unrelated to all other RDFs, and presumably performs dual functions since it is well conserved in mycobacteriophages that utilize unrelated integration systems. Furthermore, unlike other RDFs, Bxb1 gp47 does not bind DNA and functions solely through direct interaction with integrase–DNA complexes. The nature and consequences of this interaction depend on the specific DNA substrate to which integrase is bound, generating electrophoretically stable tertiary complexes with either
attB or
attP that are unable to undergo integrative recombination, and weakly bound, electrophoretically unstable complexes with either
attL or
attR that gain full potential for excisive recombination.
The authors identify a protein that employs a new mechanism to regulate the directionality of integration of a mycobacteriophage integrase into its host genome.
Collapse
Affiliation(s)
- Pallavi Ghosh
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura R Wasil
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F Hatfull
- 1Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Piuri M, Hatfull GF. A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol 2006; 62:1569-85. [PMID: 17083467 PMCID: PMC1796659 DOI: 10.1111/j.1365-2958.2006.05473.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2006] [Indexed: 11/30/2022]
Abstract
The predominant morphotype of mycobacteriophage virions has a DNA-containing capsid attached to a long flexible non-contractile tail, features characteristic of the Siphoviridae. Within these phage genomes the tape measure protein (tmp) gene can be readily identified due to the well-established relationship between the length of the gene and the length of the phage tail--because these phages typically have long tails, the tmp gene is usually the largest gene in the genome. Many of these mycobacteriophage Tmp's contain small motifs with sequence similarity to host proteins. One of these motifs (motif 1) corresponds to the Rpf proteins that have lysozyme activity and function to stimulate growth of dormant bacteria, while the others (motifs 2 and 3) are related to proteins of unknown function, although some of the related proteins of the host are predicted to be involved in cell wall catabolism. We show here that motif 3-containing proteins have peptidoglycan-hydrolysing activity and that while this activity is not required for phage viability, it facilitates efficient infection and DNA injection into stationary phase cells. Tmp's of mycobacteriophages may thus have acquired these motifs in order to avoid a selective disadvantage that results from changes in peptidoglycan in non-growing cells.
Collapse
Affiliation(s)
- Mariana Piuri
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of PittsburghPittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of PittsburghPittsburgh, PA 15260, USA
| |
Collapse
|
22
|
Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR, Hatfull GF. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 2006; 123:861-73. [PMID: 16325580 DOI: 10.1016/j.cell.2005.09.012] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 07/27/2005] [Accepted: 09/07/2005] [Indexed: 11/20/2022]
Abstract
Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2. GroEL2 is essential--presumably providing the housekeeping chaperone functions--while groEL1 is nonessential, contains the attB site for phage Bxb1 integration, and encodes a putative chaperone with unusual structural features. Inactivation of the Mycobacterium smegmatis groEL1 gene by phage Bxb1 integration allows normal planktonic growth but prevents the formation of mature biofilms. GroEL1 modulates synthesis of mycolates--long-chain fatty acid components of the mycobacterial cell wall--specifically during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis. Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation.
Collapse
Affiliation(s)
- Anil Ojha
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
23
|
Bibb LA, Hancox MI, Hatfull GF. Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol 2005; 55:1896-910. [PMID: 15752208 DOI: 10.1111/j.1365-2958.2005.04517.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mycobacterium tuberculosis prophage-like element phiRv1 encodes a site-specific recombination system utilizing an integrase of the serine recombinase family. Recombination occurs between a putative attP site and the host chromosome, but is unusual in that the attB site lies within a redundant repetitive element (REP13E12) of which there are seven copies in the M. tuberculosis genome; four of these elements contain attB sites suitable for phiRv1 integration in vivo. Although the mechanism of directional control of large serine integrases is poorly understood, a recombination directionality factor (RDF) has been identified that is required for phiRv1 integrase-mediated excisive recombination in vivo. Here we describe defined in vitro recombination reactions for both phiRv1 integrase-mediated integration and excision and show that the phiRv1 RDF is not only required for excision but inhibits integrative recombination; neither reaction requires DNA supercoiling, host factors, or high-energy cofactors. Integration, excision and excise-mediated inhibition of integration require simple substrates sites, indicating that the control of directionality does not involve the manipulation of higher-order protein-DNA architectures as described for the tyrosine integrases.
Collapse
Affiliation(s)
- Lori A Bibb
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
24
|
Saviola B, Bishai WR. Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res 2004; 32:e11. [PMID: 14718555 PMCID: PMC373307 DOI: 10.1093/nar/gnh005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to create a system in which two independent plasmids can be integrated into a mycobacterial chromosome, a mycobacterial plasmid was constructed containing the phage attachment site attP from the mycobacteriophage L5 genome and additionally containing the bacterial attachment site, attB. This plasmid will integrate into the mycobacterial chromosome via recombination of the plasmid-borne attP site with the chromosomal attB site in the presence of a mycobacterial vector carrying the L5 integrase (int) gene. The integrated plasmid has a plasmid-borne attB site that is preserved and will accept the integration of additional mycobacterial plasmids containing the L5 attP site. This system should be useful in the construction of novel mycobacterial strains. In particular, this system provides a method by which several recombinant antigens or reporter constructs can be sequentially inserted into a mycobacterial strain and subsequently tested.
Collapse
Affiliation(s)
- Beatrice Saviola
- Basic Medical Sciences, College of Osteopathic Medicine, Western University, 309 E. Second Street, Pomona, CA 91766-1854, USA.
| | | |
Collapse
|
25
|
Kana BD, Mizrahi V. Molecular genetics of Mycobacterium tuberculosis in relation to the discovery of novel drugs and vaccines. Tuberculosis (Edinb) 2004; 84:63-75. [PMID: 14670347 DOI: 10.1016/j.tube.2003.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic systems that allow mycobacterial genomes to be mutagenized in a targeted or random fashion have provided the means for developing new tools for the diagnosis, prevention and treatment of tuberculosis by allowing potential targets to be identified and validated. In this review, we highlight key historical developments in the field of mycobacterial genetics, which have yielded the powerful repertoire of genetic tools that are now in hand and provide examples that illustrate their use in exploring specific aspects of mycobacterial metabolism.
Collapse
Affiliation(s)
- Bavesh D Kana
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, National Health Laboratory Service and School of Pathology, University of the Witwatersrand, NHLS P.O. Box 1038, Room 311 James Gear Building, Johannesburg 2000, South Africa
| | | |
Collapse
|
26
|
Pashley CA, Parish T. Efficient switching of mycobacteriophage L5-based integrating plasmids inMycobacterium tuberculosis. FEMS Microbiol Lett 2003; 229:211-5. [PMID: 14680701 DOI: 10.1016/s0378-1097(03)00823-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We previously used a mycobacteriophage L5-derived integrating vector to demonstrate that glnE and aroK are essential genes in Mycobacterium tuberculosis by showing that we were unable to excise the integrated vector when it carried the only functional copy of these genes. We tested three systems to replace the integrated copy with alternative alleles. The most efficient method was to transform the strain with a second copy of the integrating vector. Excision of the resident vector and integration of the incoming vector occurred at an extremely high efficiency. This technique will allow us to study the role and functionality of essential genes in this important human pathogen.
Collapse
Affiliation(s)
- Carey A Pashley
- Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary's School of Medicine and Dentistry, London E1 2AD, UK
| | | |
Collapse
|
27
|
Abstract
Mycobacteriophage L5 is a temperate phage that forms lysogens in Mycobacterium smegmatis. These lysogens carry an integrated L5 prophage inserted at a specific chromosomal location and undergo subsequent excision during induction of lytic growth. Both the integrative and excisive site-specific recombination events are catalyzed by the phage-encoded tyrosine integrase (Int-L5) and require the host-encoded protein, mIHF. The directionality of these recombination events is determined by a second phage-encoded protein, Excise, the product of gene 36 (Xis-L5); integration occurs efficiently in the absence of Xis-L5 while excision is dependent upon it. We show here that Xis-L5 binds to attR DNA, introduces a DNA bend, and facilitates the formation of an intasome-R complex. This complex, which requires mIHF, Xis-L5 and Int-L5, readily recombines with a second intasome formed by Int-L5, mIHF and attL DNA (intasome-L) to generate the attP and attB products of excision. Xis-L5 also strongly inhibits Int-L5-mediated integrative recombination but does not prevent either the protein-DNA interactions that form the attP intasome (intasome-P) or the capture of attB, but acts later in the reaction presumably by preventing the formation of a recombinagenic synaptic intermediate. The mechanism of action of Xis-L5 appears to be purely architectural, influencing the assembly of protein-DNA structures solely through its DNA-binding and DNA-bending properties.
Collapse
Affiliation(s)
- John A Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
28
|
Bibb LA, Hatfull GF. Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol Microbiol 2002; 45:1515-26. [PMID: 12354222 DOI: 10.1046/j.1365-2958.2002.03130.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The genomes of Mycobacterium tuberculosis H37Rv and CDC1551 each contain two prophage-like elements, phiRv1 and phiRv2. The phiRv1 element is not only absent from Mycobacterium bovis BCG but is in different locations within the two sequenced M. tuberculosis genomes; in both cases phiRv1 is inserted into a REP13E12 repeated sequence, which presumably contains the bacterial attachment site, attB, for phiRv1. Although phiRv1 is probably too small to encode infectious phage particles, it may nevertheless have an active integration/excision system and be capable of moving from one chromosomal position to another. We show here that the M. tuberculosis H37Rv phiRv1 element does indeed encode an active site-specific recombination system in which an integrase of the serine recombinase family (Rv1586c) catalyses integration and excision and a small, basic phiRv1-encoded protein (Rv1584c) controls the directionality of re-combination. Integration-proficient plasmid vectors derived from phiRv1 efficiently transform BCG, can utilize four of the seven REP13E12 sites present in BCG as attachment sites, and can occupy more than one site simultaneously.
Collapse
Affiliation(s)
- Lori A Bibb
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
29
|
Parish T, Lewis J, Stoker NG. Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis (Edinb) 2002; 81:359-64. [PMID: 11800587 DOI: 10.1054/tube.2001.0312] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED SWTTING: Demonstrating that a gene is essential is always difficult, but this is particularly true for a slow-growing organism such as Mycobacterium tuberculosis. One method currently used is to show that homologous recombination leading to gene inactivation only occurs in the presence of a second copy of the gene, but obtaining statistically significant data can be prohibitively difficult. L5-based integrating plasmids have been widely used in the genetic analysis of mycobacteria. The L5 excisionase has been used in Mycobacterium smegmatis to excise and recover these plasmids from chromosome. OBJECTIVE Our aims were to establish whether the L5 excisionase could function in M. tuberculosis to remove an L5-based integrated plasmid and, if so, to use this technology as the basis for an improved method for determining whether a gene is essential. DESIGN We took two strains of M. tuberculosis carrying the essential gene glnE integrated into the chromosome on an L5-based plasmid, one of which lacked the functional chromosomal copy of the gene. We transformed these with vectors expressing the L5 excisionase and looked for loss of the integrated plasmid. RESULTS We obtained efficient excision of an integrated vector from the wild-type strain. However, when the integrated vector carried the only functional copy of the essential gene glnE, the numbers of colonies recovered were reduced to background levels. CONCLUSION The L5 excisionase does function in M. tuberculosis and can be used to confirm the essentiality of a gene. This technology also allows further analysis of essential genes that is difficult or impossible using current methods.
Collapse
Affiliation(s)
- T Parish
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | | | |
Collapse
|
30
|
Lewis JA, Hatfull GF. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res 2001; 29:2205-16. [PMID: 11376138 PMCID: PMC55702 DOI: 10.1093/nar/29.11.2205] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/12/2022] Open
Abstract
Similarity between the DNA substrates and products of integrase-mediated site-specific recombination reactions results in a single recombinase enzyme being able to catalyze both the integration and excision reactions. The control of directionality in these reactions is achieved through a class of small accessory factors that favor one reaction while interfering with the other. These proteins, which we will refer to collectively as recombination directionality factors (RDFs), play architectural roles in reactions catalyzed by their cognate recombinases and have been identified in conjunction with both tyrosine and serine integrases. Previously identified RDFs are typically small, basic and have diverse amino acid sequences. A subset of RDFs, the cox genes, also function as transcriptional regulators. We present here a compilation of all the known RDF proteins as well as those identified through database mining that we predict to be involved in conferring recombination directionality. Analysis of this group of proteins shows that they can be grouped into distinct sub-groups based on their sequence similarities and that they are likely to have arisen from several independent evolutionary lineages. This compilation will prove useful in recognizing new proteins that confer directionality upon site-specific recombination reactions encoded by plasmids, transposons, phages and prophages.
Collapse
Affiliation(s)
- J A Lewis
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
31
|
Mediavilla J, Jain S, Kriakov J, Ford ME, Duda RL, Jacobs WR, Hendrix RW, Hatfull GF. Genome organization and characterization of mycobacteriophage Bxb1. Mol Microbiol 2000; 38:955-70. [PMID: 11123671 DOI: 10.1046/j.1365-2958.2000.02183.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacteriophage Bxb1 is a temperate phage of Mycobacterium smegmatis. The morphology of Bxb1 particles is similar to that of mycobacteriophages L5 and D29, although Bxb1 differs from these phages in other respects. First, it is heteroimmune with L5 and efficiently forms plaques on an L5 lysogen. Secondly, it has a different host range and fails to infect slow-growing mycobacteria, using a receptor system that is apparently different from that of L5 and D29. Thirdly, it is the first mycobacteriophage to be described that forms a large prominent halo around plaques on a lawn of M. smegmatis. The sequence of the Bxb1 genome shows that it possesses a similar overall organization to the genomes of L5 and D29 and shares weak but detectable DNA sequence similarity to these phages within the structural genes. However, Bxb1 uses a different system of integration and excision, a repressor with different specificity to that of L5 and encodes a large number of novel gene products including several with enzymatic functions that could degrade or modify the mycobacterial cell wall.
Collapse
Affiliation(s)
- J Mediavilla
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Peña CE, Kahlenberg JM, Hatfull GF. Assembly and activation of site-specific recombination complexes. Proc Natl Acad Sci U S A 2000; 97:7760-5. [PMID: 10869430 PMCID: PMC16618 DOI: 10.1073/pnas.140014297] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-specific recombination is responsible for a broad range of biological phenomena, including DNA inversion, resolution of transposition intermediates, and the integration and excision of bacteriophage genomes. Integration of mycobacteriophage L5 is catalyzed by a phage-encoded integrase with recombination occurring between specific attachment sites on the phage and mycobacterial chromosomes (attP and attB, respectively). Although some site-specific recombination systems simply involve binding of the recombinase to the sites of strand exchange, synapsis, and recombination, phage systems typically require the assembly of higher-order structures within which the recombinational potential of integrase is activated. The requirement for these structures derives from the necessity to regulate the directionality of recombination-either integration or excision-which must be closely coordinated with other aspects of the phage growth cycles. We show herein that there are multiple pathways available for the assembly of L5 recombination complexes, including the early synapsis of the attP and attB DNAs. This process is in contrast to the model for lambda integration and illustrates the different usage of molecular machineries to accomplish the same biological outcome.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|