1
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
2
|
Zhang W, Cao Y, Li H, Rasmey AHM, Zhang K, Shi L, Ge B. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea. Appl Microbiol Biotechnol 2024; 108:398. [PMID: 38940906 PMCID: PMC11213811 DOI: 10.1007/s00253-024-13238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
- Qian Xinan Branch of Guizhou Provincial Tobacco Company, 60 Ruijin Southern Road, Xingyi, 562499, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guiyang, 550081, China
| | - Hua Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 & 33 Fucheng Road, Beijing, 100048, China
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Elsalam 1, Cairo-Suez Road, Suez, 43221, Egypt
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
3
|
Shen M, Zhang Y, Wu F, Shen M, Zhang S, Guo Y, Gan J, Wang R. Knockdown of hCINAP sensitizes colorectal cancer cells to ionizing radiation. Cell Cycle 2024; 23:233-247. [PMID: 38551450 PMCID: PMC11057657 DOI: 10.1080/15384101.2024.2309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/08/2023] [Indexed: 05/01/2024] Open
Abstract
Colorectal cancer (CRC) poses a significant challenge in terms of treatment due to the prevalence of radiotherapy resistance. However, the underlying mechanisms responsible for radio-resistance in CRC have not been thoroughly explored. This study aimed to shed light on the role of human coilin interacting nuclear ATPase protein (hCINAP) in radiation-resistant HT-29 and SW480 CRC cells (HT-29-IR and SW480-IR) and investigate its potential implications. Firstly, radiation-resistant CRC cell lines were established by subjecting HT-29 and SW480 cells to sequential radiation exposure. Subsequent analysis revealed a notable increase in hCINAP expression in radiation-resistant CRC cells. To elucidate the functional role of hCINAP in radio-resistance, knockdown experiments were conducted. Remarkably, knockdown of hCINAP resulted in an elevation of reactive oxygen species (ROS) generation upon radiation treatment and subsequent activation of apoptosis mediated by mitochondria. These observations indicate that hCINAP depletion enhances the radiosensitivity of CRC cells. Conversely, when hCINAP was overexpressed, it was found to enhance the radio-resistance of CRC cells. This suggests that elevated hCINAP expression contributes to the development of radio-resistance. Further investigation revealed an interaction between hCINAP and ATPase family AAA domain containing 3A (ATAD3A). Importantly, ATAD3A was identified as an essential factor in hCINAP-mediated radio-resistance. These findings establish the involvement of hCINAP and its interaction with ATAD3A in the regulation of radio-resistance in CRC cells. Overall, the results of this study demonstrate that upregulating hCINAP expression may improve the survival of radiation-exposed CRC cells. Understanding the intricate molecular mechanisms underlying hCINAP function holds promise for potential strategies in targeted radiation therapy for CRC. These findings emphasize the importance of further research to gain a comprehensive understanding of hCINAP's precise molecular mechanisms and explore its potential as a therapeutic target in overcoming radio-resistance in CRC. By unraveling the complexities of hCINAP and its interactions, novel therapeutic approaches may be developed to enhance the efficacy of radiation therapy and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Meizhu Shen
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong Zhang
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang Wu
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meizhen Shen
- Department of Radiotheraphy, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sen Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jialiang Gan
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Zhang Y, Jiang L, Qin N, Cao M, Liang X, Wang R. hCINAP is potentially a direct target gene of HIF-1 and is required for hypoxia-induced EMT and apoptosis in cervical cancer cells. Biochem Cell Biol 2021; 99:203-213. [PMID: 32830518 DOI: 10.1139/bcb-2020-0090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The early metastasis of cervical cancer is a multistep process requiring the cancer cells to adapt to the signal input from different tissue environments, including hypoxia. Hypoxia-induced epithelial-to-mesenchymal transition (EMT) plays a critical role in the ability to invade surrounding tissues. However, the molecular mechanisms underlying EMT in cervical cancer remain to be elucidated. Herein, we show that hypoxia-inducible factor-1alpha (HIF-1α) and aryl hydrocarbon receptor nuclear translocator (ARNT) are recruited to the human coilin-interacting nuclear ATPase protein (hCINAP) promoter and initiate hCINAP expression in hypoxia. Ablation of hCINAP decreased the migratory capacity and EMT of cervical cancer cells under hypoxic conditions. Furthermore, hCINAP regulated EMT through the Akt–mTOR signaling pathway, and inhibits hypoxia-induced p53-dependent apoptosis. Our data collectively show that hCINAP may have essential roles in the metastasis of cervical cancer and could be a potential target for curing cervical cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Jiang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Nianqun Qin
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Mi Cao
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiujuan Liang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|
5
|
Li L, Zhu XM, Shi HB, Feng XX, Liu XH, Lin FC. MoFap7, a ribosome assembly factor, is required for fungal development and plant colonization of Magnaporthe oryzae. Virulence 2020; 10:1047-1063. [PMID: 31814506 PMCID: PMC6930019 DOI: 10.1080/21505594.2019.1697123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fap7, an important ribosome assembly factor, plays a vital role in pre-40S small ribosomal subunit synthesis in Saccharomyces cerevisiae via its ATPase activity. Currently, the biological functions of its homologs in filamentous fungi remain elusive. Here, MoFap7, a homologous protein of ScFap7, was identified in the rice blast fungus Magnaporthe oryzae, which is a devastating fungal pathogen in rice and threatens food security worldwide. ΔMofap7 mutants exhibited defects in growth and development, conidial morphology, appressorium formation and infection, and were sensitive to oxidative stress. In addition, site-directed mutagenesis analysis confirmed that the conserved Walker A motif and Walker B motif in MoFap7 are essential for the biological functions of M. oryzae. We further analyzed the regulation mechanism of MoFap7 in pathogenicity. MoFap7 was found to interact with MoMst50, a regulator functioning in the MAPK Pmk1 signaling pathway, that participates in modulating plant penetration and cell-to-cell invasion by regulating the phosphorylation of MoPmk1. Moreover, MoFap7 interacted with the GTPases MoCdc42 and MoRac1 to control growth and conidiogenesis. Taken together, the results of this study provide novel insights into MoFap7-mediated orchestration of the development and pathogenesis of filamentous fungi.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Xue-Ming Zhu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Huan-Bin Shi
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiao-Xiao Feng
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Slovak R, Setzer C, Roiuk M, Bertels J, Göschl C, Jandrasits K, Beemster GTS, Busch W. Ribosome assembly factor Adenylate Kinase 6 maintains cell proliferation and cell size homeostasis during root growth. THE NEW PHYTOLOGIST 2020; 225:2064-2076. [PMID: 31665812 PMCID: PMC7028144 DOI: 10.1111/nph.16291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/19/2019] [Indexed: 05/06/2023]
Abstract
From the cellular perspective, organ growth is determined by production and growth of cells. Uncovering how these two processes are coordinated is essential for understanding organogenesis and regulation of organ growth. We utilized phenotypic and genetic variation of 252 natural accessions of Arabidopsis thaliana to conduct genome-wide association studies (GWAS) for identifying genes underlying root growth variation; using a T-DNA line candidate approach, we identified one gene involved in root growth control and characterized its function using microscopy, root growth kinematics, G2/M phase cell count, ploidy levels and ribosome polysome profiles. We identified a factor contributing to root growth control: Arabidopsis Adenylate Kinase 6 (AAK6). AAK6 is required for normal cell production and normal cell elongation, and its natural genetic variation is involved in determining root growth differences between Arabidopsis accessions. A lack of AAK6 reduces cell production in the aak6 root apex, but this is partially compensated for by longer mature root cells. Thereby, aak6 mutants exhibit compensatory cell enlargement, a phenomenon unexpected in roots. Moreover, aak6 plants accumulate 80S ribosomes while the polysome profile remains unchanged, consistent with a phenotype of perturbed ribosome biogenesis. In conclusion, AAK6 impacts ribosome abundance, cell production and thereby root growth.
Collapse
Affiliation(s)
- Radka Slovak
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Claudia Setzer
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
| | - Mykola Roiuk
- Max F. Perutz Laboratories (MFPL)Vienna Biocenter (VBC)Dr Bohr‐Gasse 91030ViennaAustria
| | - Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES)Department of BiologyUniversity of AntwerpGroenenborgerlaan 1712020AntwerpenBelgium
| | - Christian Göschl
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
| | - Katharina Jandrasits
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
| | - Gerrit T. S. Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES)Department of BiologyUniversity of AntwerpGroenenborgerlaan 1712020AntwerpenBelgium
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
- Plant Molecular and Cellular Biology LaboratorySalk Institute For Biological Studies10010 N Torrey Pines RdLa JollaCA92037USA
| |
Collapse
|
7
|
Cui L, Liu Y, Yang Y, Ye S, Luo H, Qiu B, Gao X. The drnf1 Gene from the Drought-Adapted Cyanobacterium Nostoc flagelliforme Improved Salt Tolerance in Transgenic Synechocystis and Arabidopsis Plant. Genes (Basel) 2018; 9:genes9090441. [PMID: 30181517 PMCID: PMC6162714 DOI: 10.3390/genes9090441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023] Open
Abstract
Environmental abiotic stresses are limiting factors for less tolerant organisms, including soil plants. Abiotic stress tolerance-associated genes from prokaryotic organisms are supposed to have a bright prospect for transgenic application. The drought-adapted cyanobacterium Nostoc flagelliforme is arising as a valuable prokaryotic biotic resource for gene excavation. In this study, we evaluated the salt-tolerant function and application potential of a candidate gene drnf1 from N. flagelliforme, which contains a P-loop NTPase (nucleoside-triphosphatase) domain, through heterologous expression in two model organisms Synechocystis sp. PCC 6803 and Arabidopsis thaliana. It was found that DRNF1 could confer significant salt tolerance in both transgenic organisms. In salt-stressed transgenic Synechocystis, DRNF1 could enhance the respiration rate; slow-down the accumulation of exopolysaccharides; up-regulate the expression of salt tolerance-related genes at a higher level, such as those related to glucosylglycerol synthesis, Na+/H+ antiport, and sugar metabolism; and maintain a better K+/Na+ homeostasis, as compared to the wild-type strain. These results imply that DRNF1 could facilitate salt tolerance by affecting the respiration metabolism and indirectly regulating the expression of important salt-tolerant genes. Arabidopsis was employed to evaluate the salt tolerance-conferring potential of DRNF1 in plants. The results show that it could enhance the seed germination and shoot growth of transgenic plants under saline conditions. In general, a novel prokaryotic salt-tolerant gene from N. flagelliforme was identified and characterized in this study, enriching the candidate gene pool for genetic engineering in plants.
Collapse
Affiliation(s)
- Lijuan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yinghui Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yiwen Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Shuifeng Ye
- Shanghai Agrobiological Gene Center, Shanghai 201106, China.
| | - Hongyi Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Baosheng Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Xiang Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
8
|
Peña C, Schütz S, Fischer U, Chang Y, Panse VG. Prefabrication of a ribosomal protein subcomplex essential for eukaryotic ribosome formation. eLife 2016; 5. [PMID: 27929371 PMCID: PMC5148605 DOI: 10.7554/elife.21755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
Spatial clustering of ribosomal proteins (r-proteins) through tertiary interactions is a striking structural feature of the eukaryotic ribosome. However, the functional importance of these intricate inter-connections, and how they are established is currently unclear. Here, we reveal that a conserved ATPase, Fap7, organizes interactions between neighboring r-proteins uS11 and eS26 prior to their delivery to the earliest ribosome precursor, the 90S. In vitro, uS11 only when bound to Fap7 becomes competent to recruit eS26 through tertiary contacts found between these r-proteins on the mature ribosome. Subsequently, Fap7 ATPase activity unloads the uS11:eS26 subcomplex onto its rRNA binding site, and therefore ensures stoichiometric integration of these r-proteins into the 90S. Fap7-depletion in vivo renders uS11 susceptible to proteolysis, and precludes eS26 incorporation into the 90S. Thus, prefabrication of a native-like r-protein subcomplex drives efficient and accurate construction of the eukaryotic ribosome. DOI:http://dx.doi.org/10.7554/eLife.21755.001
Collapse
Affiliation(s)
- Cohue Peña
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Vikram G Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Dephoure N, Hwang S, O'Sullivan C, Dodgson SE, Gygi SP, Amon A, Torres EM. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 2014; 3:e03023. [PMID: 25073701 PMCID: PMC4129440 DOI: 10.7554/elife.03023] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aneuploidy causes severe developmental defects and is a near universal feature of tumor cells. Despite its profound effects, the cellular processes affected by aneuploidy are not well characterized. Here, we examined the consequences of aneuploidy on the proteome of aneuploid budding yeast strains. We show that although protein levels largely scale with gene copy number, subunits of multi-protein complexes are notable exceptions. Posttranslational mechanisms attenuate their expression when their encoding genes are in excess. Our proteomic analyses further revealed a novel aneuploidy-associated protein expression signature characteristic of altered metabolism and redox homeostasis. Indeed aneuploid cells harbor increased levels of reactive oxygen species (ROS). Interestingly, increased protein turnover attenuates ROS levels and this novel aneuploidy-associated signature and improves the fitness of most aneuploid strains. Our results show that aneuploidy causes alterations in metabolism and redox homeostasis. Cells respond to these alterations through both transcriptional and posttranscriptional mechanisms. DOI:http://dx.doi.org/10.7554/eLife.03023.001 Nearly all tumor cells contain abnormal number of chromosomes. This state is called aneuploidy, and can also cause embryos to be miscarried, or to be born with severe developmental disorders. Proteins are produced from the genes contained within chromosomes, and so cells with too many chromosomes produce too many of some proteins. How do these cells cope with this excess? Previous work identified one strategy where a gene called UBP6 is mutated to prevent it from working correctly. The UBP6 gene normally encodes a protein that removes a small tag (called ubiquitin) from other proteins. This tag normally marks other proteins that should be degraded; thus, if UBP6 is not working, more proteins are broken down. Dephoure et al. investigated the effect of aneuploidy on the proteins produced by 12 different types of yeast cell, which each had an extra chromosome. In general, the amount of each protein produced by these yeast increased depending on the number of extra copies of the matching genes found on the extra chromosome. However, this was not the case for around 20% of the proteins, which were found in lower amounts than expected. Dephoure et al. revealed that this was not because fewer proteins were made, but because more were broken down. These proteins may be targeted for degradation because they are unstable, as many of these proteins need to bind to other proteins to keep them stable—but these stabilizing proteins are not also over-produced. Aneuploidy in cells also has other effects, including changing the cells' metabolism so that the cells grow more slowly and do not respond as well to stress. However, Dephoure et al. found that, as well as reducing the number of proteins produced, deleting the UBP6 gene also increased the fitness of the cells. Targeting the protein encoded by the UBP6 gene, or others that also stop proteins being broken down, could therefore help to reduce the negative effects of aneuploidy for a cell. Whether targeting these genes or proteins could also help to treat the diseases and disorders that result from aneuploidy, such as Alzheimer's and Huntington's disease, remains to be investigated. DOI:http://dx.doi.org/10.7554/eLife.03023.002
Collapse
Affiliation(s)
- Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Sunyoung Hwang
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, United States
| | - Ciara O'Sullivan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, United States
| | - Stacie E Dodgson
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Eduardo M Torres
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
10
|
RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis. PLoS Biol 2014; 12:e1001860. [PMID: 24823650 PMCID: PMC4019466 DOI: 10.1371/journal.pbio.1001860] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/04/2014] [Indexed: 11/22/2022] Open
Abstract
The structure of a ribosome assembly factor in complex bound to a ribosomal protein uncovers a chaperoning function that uses RNA mimicry and is regulated by ATP hydrolysis. During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53–MDM2 pathway. This work presents the functional and structural characterization of the Fap7–Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation. Ribosomes are the cellular machines responsible for all protein synthesis. In eukaryotes, the assembly of ribosomes from their protein and RNA components is extremely complicated and involves more than 200 nonribosomal factors—three times the number of proteins in the mature complex. Among these factors, the Fap7 protein is particularly intriguing because it interacts with the small subunit ribosomal protein Rps14 and it exhibits adenylate kinase activity—a molecular function more commonly associated with regulating ATP/ADP levels than assembling protein–RNA complexes. Combining structural and biochemical analysis of the Rps14–Fap7 complex, we show that Fap7 uses protein side chains to mimic RNA contacts, rendering the interaction of Rps14 with ribosomal RNA or with Fap7 competitive and mutually exclusive. Once bound, Rps14 blocks the substrate-binding cavity of Fap7, and ATP hydrolysis will then break the Fap7–Rps14 complex apart. At the same time, the ribosome structure at the location where Rps14 binds is disrupted when the Fap7/Rps14 complex is formed, and this process is regulated by ATP binding and hydrolysis. Our model is thus that Fap7 temporarily removes Rps14 from the ribosome to enable a conformational change of the ribosomal RNA that is needed for the final maturation step of the small ribosomal subunit.
Collapse
|
11
|
Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and Metabolic Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Hellmich UA, Wöhnert J. Backbone resonance assignments for a homolog of the essential ribosome biogenesis factor Fap7 from P. horikoshii in its nucleotide-free and -bound forms. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:261-265. [PMID: 23054934 DOI: 10.1007/s12104-012-9423-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/07/2012] [Indexed: 06/01/2023]
Abstract
The protein "factor activating Pos9 (Skn7)", Fap7, is an essential protein in yeast and plays an important role in the biogenesis of the small ribosomal subunit. In eukaryotes, the final processing step of the small ribosomal subunit RNA is the endonucleolytic cleavage of 20S pre-rRNA at cleavage site D yielding mature 18S rRNA. Depletion of Fap7 in yeast leads to a dramatic accumulation of 20S pre-rRNA and a concomitant decrease in 18S rRNA in the cytoplasm. In addition, these cells contain higher levels of 60S, but decreased numbers of 40S ribosomal subunits. Fap7 contains a P-loop like motif placing it in a class with NTPases and kinases and a role for it as an adenylate kinase has been suggested. Up to now both the structure of Fap7 and its detailed function during ribosome biogenesis remain elusive. Here, we present the backbone NMR assignments of a Fap7 homolog from the thermophilic archaeon Pyrococcus horikoshii in its nucleotide free form and bound to the adenylate kinase inhibitor AP5A.
Collapse
Affiliation(s)
- Ute A Hellmich
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | |
Collapse
|
13
|
Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA-protein interactions during small ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 2013; 110:15253-8. [PMID: 24003121 DOI: 10.1073/pnas.1306389110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Factor activating Pos9 (Fap7) is an essential ribosome biogenesis factor important for the assembly of the small ribosomal subunit with an uncommon dual ATPase and adenylate kinase activity. Depletion of Fap7 or mutations in its ATPase motifs lead to defects in small ribosomal subunit rRNA maturation, the absence of ribosomal protein Rps14 from the assembled subunit, and retention of the nascent small subunit in a quality control complex with the large ribosomal subunit. The molecular basis for the role of Fap7 in ribosome biogenesis is, however, not yet understood. Here we show that Fap7 regulates multiple interactions between the precursor rRNA, ribosomal proteins, and ribosome assembly factors in a hierarchical manner. Fap7 binds to Rps14 with a very high affinity. Fap7 binding blocks both rRNA-binding elements of Rps14, suggesting that Fap7 inhibits premature interactions of Rps14 with RNA. The Fap7/Rps14 interaction is modulated by nucleotide binding to Fap7. Rps14 strongly activates the ATPase activity but not the adenylate kinase activity of Fap7, identifying Rps14 as an example of a ribosomal protein functioning as an ATPase-activating factor. In addition, Fap7 inhibits the RNA cleavage activity of Nob1, the endonuclease responsible for the final maturation step of the small subunit rRNA, in a nucleotide independent manner. Thus, Fap7 may regulate small subunit biogenesis at multiple stages.
Collapse
|
14
|
Sharma S, Watzinger P, Kötter P, Entian KD. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 2013; 41:5428-43. [PMID: 23558746 PMCID: PMC3664796 DOI: 10.1093/nar/gkt195] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 25S rRNA of yeast contains several base modifications in the functionally important regions. The enzymes responsible for most of these base modifications remained unknown. Recently, we identified Rrp8 as a methyltransferase involved in m1A645 modification of 25S rRNA. Here, we discovered a previously uncharacterized gene YBR141C to be responsible for second m1A2142 modification of helix 65 of 25S rRNA. The gene was identified by reversed phase–HPLC screening of all deletion mutants of putative RNA methyltransferase and was confirmed by gene complementation and phenotypic characterization. Because of the function of its encoded protein, YBR141C was named BMT2 (base methyltransferase of 25S RNA). Helix 65 belongs to domain IV, which accounts for most of the intersubunit surface of the large subunit. The 3D structure prediction of Bmt2 supported it to be an Ado Met methyltransferase belonging to Rossmann fold superfamily. In addition, we demonstrated that the substitution of G180R in the S-adenosyl-l-methionine–binding motif drastically reduces the catalytic function of the protein in vivo. Furthermore, we analysed the significance of m1A2142 modification in ribosome synthesis and translation. Intriguingly, the loss of m1A2142 modification confers anisomycin and peroxide sensitivity to the cells. Our results underline the importance of RNA modifications in cellular physiology.
Collapse
Affiliation(s)
- Sunny Sharma
- Institute of Molecular Biosciences, Goethe University Frankfurt 60438, Max-von-Laue Street 9, 60438 Frankfurt/M, Germany
| | | | | | | |
Collapse
|
15
|
Cámara MDLM, Bouvier LA, Canepa GE, Miranda MR, Pereira CA. Molecular and functional characterization of a Trypanosoma cruzi nuclear adenylate kinase isoform. PLoS Negl Trop Dis 2013; 7:e2044. [PMID: 23409202 PMCID: PMC3567042 DOI: 10.1371/journal.pntd.0002044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/17/2012] [Indexed: 01/30/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3′ UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes. Infection with Trypanosoma cruzi produces a condition known as Chagas disease which affects at least 17 million people. Adenylate kinases, so called myokinases, are involved in a wide variety of processes, mainly related to their role in nucleotide interconversion and energy management. Recently, nuclear isoforms have been described in several organisms. This “atypical” isoform in terms of primary structure was associated to ribosomes biogenesis in yeast and to Cajal body organization in humans. Moreover nuclear adenylate kinases are essential for maintaining cellular homeostasis. In this manuscript we characterized T. cruzi nuclear adenylate kinase (TcADKn). TcADKn localizes in the nucleolus or cell cytoplasm. Nuclear shuttling mechanisms were also studied for the first time, being dependent on nutrient availability, oxidative stress and by the equivalent of the mammalian TOR pathway in T. cruzi. Furthermore we characterized the signals involved in nuclear importation and exportation processes. In addition, TcADKn expression levels are regulated at an mRNA level, being its 3′UTR involved in this process. These findings are the first steps in the understanding of ribosome processing in trypanosomatids.
Collapse
Affiliation(s)
| | | | | | | | - Claudio A. Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas “Alfredo Lanari”, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
16
|
hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14. Oncogene 2012; 33:246-54. [PMID: 23246961 DOI: 10.1038/onc.2012.560] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 12/29/2022]
Abstract
The tumor-suppressor p53 provides a critical brake on tumor development. HDM2 (human double-minute 2), a p53 E3 ubiquitin ligase, is the principal cellular antagonist of p53. Mounting evidence has suggested that ribosomal proteins (RPs) modulate HDM2-p53 as a novel pathway for regulating p53 signaling. However, the upstream regulators that mediate RP-HDM2-p53 circuits remain poorly understood. Here we identify human coilin-interacting nuclear ATPase protein (hCINAP) as an interacting partner of ribosomal protein S14 (RPS14). RPS14 stabilized and activated p53 by inhibiting HDM2-mediated p53 polyubiquitination and degradation. More importantly, RPS14 was specifically modified with NEDD8 and hCINAP inhibited RPS14 NEDDylation by recruiting NEDD8-specific protease 1. The decrease in RPS14 NEDDylation led to reduced stability and incorrect localization of RPS14, thereby attenuating the interaction between RPS14 and HDM2. Free HDM2 stimulated p53 polyubiquitination and degradation. In conclusion, we demonstrate that hCINAP acts as a novel regulator of RPS14-HDM2-p53 by regulating the interaction between RPS14 and HDM2 through the control of RPS14 NEDDylation. These findings suggest that hCINAP is an important regulator of RP-HDM2-p53 pathway and a potential anticancer drug target.
Collapse
|
17
|
Feng X, Yang R, Zheng X, Zhang F. Identification of a novel nuclear-localized adenylate kinase 6 from Arabidopsis thaliana as an essential stem growth factor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:180-186. [PMID: 23121860 DOI: 10.1016/j.plaphy.2012.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 10/04/2012] [Indexed: 05/27/2023]
Abstract
Adenylate kinase (AK; EC 2.7.4.3) is highly conserved across a wide range of organisms, including Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens. While AK6 orthologs play important roles in the growth of yeast and worms, the physiological function of AK6 in A. thaliana is still unknown. In this study, we first cloned and expressed Arabidopsis adenylate kinase 6 (AAK6). Enzyme assays revealed that AAK6 has characteristic adenylate kinase properties, with ATP as the preferred phosphate donor and AMP as the best phosphate acceptor. A subcellular localization assay demonstrated that AAK6 had a predominant nuclear localization. Through biochemical purification and mass spectrometry analysis, a putative homolog of the S. cerevisiae Rps14 protein was identified as a partner of AAK6. Most importantly, we observed that aak6 T-DNA insertion mutants had decreased stem growth compared with wild-type plants. These data indicate that AAK6 exhibits adenylate kinase activity and is an essential growth factor in Arabidopsis.
Collapse
Affiliation(s)
- Xue Feng
- Capital Normal University Affiliated Li Ze Middle School, Beijing 100071, China
| | | | | | | |
Collapse
|
18
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
19
|
Drakou CE, Malekkou A, Hayes JM, Lederer CW, Leonidas DD, Oikonomakos NG, Lamond AI, Santama N, Zographos SE. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies. Proteins 2011; 80:206-20. [PMID: 22038794 DOI: 10.1002/prot.23186] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 08/01/2011] [Accepted: 08/27/2011] [Indexed: 11/11/2022]
Abstract
Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells.
Collapse
Affiliation(s)
- Christina E Drakou
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Athens 11635, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Peterson AW, Pendrak ML, Roberts DD. ATP binding to hemoglobin response gene 1 protein is necessary for regulation of the mating type locus in Candida albicans. J Biol Chem 2011; 286:13914-24. [PMID: 21372131 PMCID: PMC3077592 DOI: 10.1074/jbc.m110.180190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 02/28/2011] [Indexed: 11/06/2022] Open
Abstract
HBR1 (hemoglobin response gene 1) is an essential gene in Candida albicans that positively regulates mating type locus MTLα gene expression and thereby regulates cell type-specific developmental genes. Hbr1p contains a phosphate-binding loop (P-loop), a highly conserved motif characteristic of ATP- and GTP-binding proteins. Recombinant Hbr1p was isolated in an oligomeric state that specifically bound ATP with K(d) ∼2 μM. ATP but not ADP, AMP, GTP, or dATP specifically protected Hbr1p from proteolysis by trypsin. Site-directed mutagenesis of the highly conserved P-loop lysine (K22Q) and the less conserved glycine (G19S) decreased the binding affinity for soluble ATP and ATP immobilized through its γ-phosphate. ATP bound somewhat more avidly than ATPγS to wild type and mutant Hbr1p. Although Hbr1p exhibits sequence motifs characteristic of adenylate kinases, and adenylate kinase and ATPase activities have been reported for the apparent human ortholog of Hbr1p, assays for adenylate kinase activity, autophosphorylation, and ATPase activity proved negative. Overexpression of wild type but not the mutant forms of Hbr1p restored MTlα2 expression in an HBR1/hbr1 mutant, indicating that ATP binding to the P-loop is necessary for this function of Hbr1p.
Collapse
Affiliation(s)
- Alexander W. Peterson
- From the Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1500
| | - Michael L. Pendrak
- From the Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1500
| | - David D. Roberts
- From the Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1500
| |
Collapse
|
21
|
Zhang J, Zhang F, Zheng X. Depletion of hCINAP by RNA interference causes defects in Cajal body formation, histone transcription, and cell viability. Cell Mol Life Sci 2010; 67:1907-18. [PMID: 20186459 PMCID: PMC11115741 DOI: 10.1007/s00018-010-0301-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/25/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
hCINAP is a highly conserved and ubiquitously expressed protein in eukaryotic organisms and its overexpression decreases the average number of Cajal bodies (CBs) with diverse nuclear functions. Here, we report that hCINAP is associated with important components of CBs. Depletion of hCINAP by RNA interference causes defects in CB formation and disrupts subcellular localizations of its components including coilin, survival motor neurons protein, spliceosomal small nuclear ribonucleoproteins, and nuclear protein ataxia-telangiectasia. Moreover, knockdown of hCINAP expression results in marked reduction of histone transcription, lower levels of U small nuclear RNAs (U1, U2, U4, and U5), and a loss of cell viability. Detection of increased caspase-3 activities in hCINAP-depleted cells indicate that apoptosis is one of the reasons for the loss of viability. Altogether, these data suggest that hCINAP is essential for the formation of canonical CBs, histone transcription, and cell viability.
Collapse
Affiliation(s)
- Jinfang Zhang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, 100871 China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871 China
| | - Feiyun Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Capital Normal University, Beijing, 100037 China
| | - Xiaofeng Zheng
- National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, 100871 China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
22
|
Abstract
Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
23
|
Dzeja P, Terzic A. Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 2009; 10:1729-1772. [PMID: 19468337 PMCID: PMC2680645 DOI: 10.3390/ijms10041729] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 03/26/2009] [Accepted: 04/02/2009] [Indexed: 12/20/2022] Open
Abstract
Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.
Collapse
Affiliation(s)
- Petras Dzeja
- Author to whom correspondence should be addressed; E-mail:
(P.D.)
| | | |
Collapse
|
24
|
Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. EUKARYOTIC CELL 2009; 8:768-78. [PMID: 19304952 DOI: 10.1128/ec.00021-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bifunctional Saccharomyces cerevisiae Skn7 transcription factor regulates osmotic stress response genes as well as oxidative stress response genes; however, the mechanisms involved in these two types of regulation differ. Skn7 osmotic stress activity depends on the phosphorylation of the receiver domain aspartate, D427, by the Sln1 histidine kinase. In contrast, D427 and the SLN1-SKN7 phosphorelay are dispensable for the oxidative stress response, although the receiver domain is required. The majority of oxidative stress response genes regulated by Skn7 also are regulated by the redox-responsive transcription factor Yap1. It is therefore possible that the nuclearly localized Skn7 does not itself respond to the oxidant but simply cooperates with Yap1 when it translocates to the nucleus. We report here that oxidative stress leads to a phosphatase-sensitive, slow-mobility Skn7 variant. This suggests that Skn7 undergoes a posttranslational modification by phosphorylation following exposure to oxidant. Oxidant-dependent Skn7 phosphorylation was eliminated in strains lacking the Yap1 transcription factor. This suggests that the phosphorylation of Skn7 is regulated by Yap1. Mutations in the receiver domain of Skn7 were identified that affect its oxidative stress function. These mutations were found to compromise the association of Yap1 and Skn7 at oxidative stress response gene promoters. A working model is proposed in which the association of Yap1 with Skn7 in the nucleus is a prerequisite for Skn7 phosphorylation and the activation of oxidative stress response genes.
Collapse
|
25
|
Meng G, Zhai R, Liu B, Zheng X. Identification of a novel nuclear-localized adenylate kinase from Drosophila melanogaster. BIOCHEMISTRY (MOSCOW) 2008; 73:38-43. [PMID: 18294127 DOI: 10.1134/s0006297908010057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a step to further understand the role of adenylate kinase (AK) in the energy metabolism network, we identified, purified, and characterized a previously undescribed adenylate kinase in Drosophila melanogaster. The cDNA encodes a 175-amino acid protein, which shows 47.85% identity in 163 amino acids to human AK6. The recombinant protein was successfully expressed in Escherichia coli BL21(DE3) strain. Characterization of this protein by enzyme activity assay showed adenylate kinase activity. AMP and CMP were the preferred substrates, and UMP can also be phosphorylated to some extent, with ATP as the best phosphate donor. Subcellular localization study showed a predominantly nuclear localization. Therefore, based on the substrate specificity, the specific nuclear localization in the cell, and the sequence similarity with human AK6, we named this novel adenylate kinase identified from the fly DAK6.
Collapse
Affiliation(s)
- Geng Meng
- National Laboratory of Protein Engineering and Plant Genetic Engineering, Beijing, China
| | | | | | | |
Collapse
|
26
|
Abstract
GTPases are a universally conserved class of regulatory proteins involved in such diverse cellular functions as signal transduction, translation, cytoskeleton formation, and intracellular transport. GTPases are also required for ribosome assembly in eukaryotes and bacteria, where they present themselves as possible regulatory molecules. Strikingly, in bacteria they represent the largest class of essential assembly factors. A review of their common structural, biochemical and genetic interactions is presented and integrated with models for their function in ribosome assembly.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
27
|
Zhai R, Meng G, Zhao Y, Liu B, Zhang G, Zheng X. A novel nuclear-localized protein with special adenylate kinase properties from Caenorhabditis elegans. FEBS Lett 2006; 580:3811-7. [PMID: 16781712 DOI: 10.1016/j.febslet.2006.05.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 11/27/2022]
Abstract
The adrenal gland protein AD-004 like protein (ADLP) from Caenorhabditis elegans was cloned and expressed in Escherichia coli. Enzyme assays showed that ADLP has special adenylate kinase (AK) properties, with ATP and dATP as the preferred phosphate donors. In contrast to all other AK isoforms, AMP and dAMP were the preferred substrates of ADLP; CMP, TMP and shikimate acid were also good substrates. Subcellular localization studies showed a predominant nuclear localization for this protein, which is different from AK1-AK5, but similar to that of human AK6. These results suggest that ADLP is more likely a member of the AK6 family. Furthermore, RNAi experiments targeting ADLP were conducted and showed that RNAi treatment resulted in the suppression of worm growth.
Collapse
Affiliation(s)
- Ruitong Zhai
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
28
|
Granneman S, Nandineni MR, Baserga SJ. The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol 2005; 25:10352-64. [PMID: 16287850 PMCID: PMC1291222 DOI: 10.1128/mcb.25.23.10352-10364.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the proteins identified as being involved in ribosome biogenesis by high-throughput studies, a putative P-loop-type kinase termed Fap7 (YDL166c), was shown to be required for the conversion of 20S pre-rRNA to 18S rRNA. However, the mechanism underlying this function has remained unclear. Here we demonstrate that Fap7 is strictly required for cleavage of the 20S pre-rRNA at site D in the cytoplasm. Genetic depletion of Fap7 causes accumulation of only the 20S pre-rRNA, which could be detected not only in 43S preribosomes but also in 80S-sized complexes. Fap7 is not a structural component of 43S preribosomes but likely transiently interacts with them by directly binding to Rps14, a ribosomal protein that is found near the 3' end of the 18S rRNA. Consistent with an NTPase activity, conserved residues predicted to be required for nucleoside triphosphate (NTP) hydrolysis are essential for Fap7 function in vivo. We propose that Fap7 mediates cleavage of the 20S pre-rRNA at site D by directly interacting with Rps14 and speculate that it is an enzyme that functions as an NTP-dependent molecular switch in 18S rRNA maturation.
Collapse
Affiliation(s)
- Sander Granneman
- Yale University School of Medicine, Department of Molecular Biophysics and Biochemistry, 333 Cedar Street, SHM C-114, New Haven, CT 06520-8024, USA
| | | | | |
Collapse
|
29
|
Harashima S, Kaneko Y. Application of the PHO5-gene-fusion technology to molecular genetics and biotechnology in yeast. J Biosci Bioeng 2005; 91:325-38. [PMID: 16233000 DOI: 10.1263/jbb.91.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Accepted: 02/02/2001] [Indexed: 11/17/2022]
Abstract
Modern biological scientists employ numerous approaches for solving their problems. Among these approaches, the gene fusion is surely one of the well-established valuable tools in various fields of biological sciences. A wide range of applications have been developed to analyze a variety of biological phenomena such as transcriptional regulation, pre-mRNA processing, mRNA decay, translation, protein localization and even protein transport in both prokaryotic and eukaryotic organisms. Gene fusions were also used for the study of protein purification, protein structure, protein folding, protein-protein interaction and protein-DNA interaction. Here, we describe applications of gene fusion technology using the Saccharomyces cerevisiae PHO5 gene encoding repressible acid phosphatase to molecular genetics and biotechnology in S. cerevisiae. Using the PHO5 gene fusion as a reporter, we have identified several cis- and trans-acting genes of S. cerevisiae which are involved in splicing of pre-mRNA, biosynthesis of amino acids, ubiquitin-dependent protein degradation, signal transduction of oxygen and unsaturated fatty acid, regulation of transcription by the nucleosome and chromatin. The PHO5 gene fusions exhibiting the mating-type specific expression were also generated to develop a breeding technique for industrial yeast. It is concluded that the PHO5 gene fusion is extremely useful and should be further exploited to investigate various cellular steps of the eukaryotic gene expression.
Collapse
Affiliation(s)
- S Harashima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | | |
Collapse
|
30
|
Santama N, Ogg SC, Malekkou A, Zographos SE, Weis K, Lamond AI. Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus. J Biol Chem 2005; 280:36429-41. [PMID: 16079131 DOI: 10.1074/jbc.m501982200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coilin is a marker protein for the Cajal body, a subnuclear domain acting as a site for assembly and maturation of nuclear RNA-protein complexes. Using a yeast two-hybrid screen to identify coilin-interacting proteins, we have identified hCINAP (human coilin interacting nuclear ATPase protein), a nuclear factor of 172 amino acids with a P-loop nucleotide binding motif and ATPase activity. The hCINAP protein sequence is highly conserved across its full-length from human to plants and yeast and is ubiquitously expressed in all human tissues and cell lines tested. The yeast orthologue of CINAP is a single copy, essential gene. Tagged hCINAP is present in complexes containing coilin in mammalian cells and recombinant, Escherichia coli expressed hCINAP binds directly to coilin in vitro. The 214 carboxyl-terminal residues of coilin appear essential for the interaction with hCINAP. Both immunofluorescence and fluorescent protein tagging show that hCINAP is specifically nuclear and distributed in a widespread, diffuse nucleoplasmic pattern, excluding nucleoli, with some concentration also in Cajal bodies. Overexpression of hCINAP in HeLa cells results in a decrease in the average number of Cajal bodies per nucleus, consistent with it affecting either the stability of Cajal bodies and/or their rate of assembly. The hCINAP mRNA is an alternatively spliced transcript from the TAF9 locus, which encodes the basal transcription factor subunit TAFIID32. However, hCINAP and TAFIID32 mRNAs are translated from different ATG codons and use distinct reading frames, resulting in them having no identity in their respective protein sequences.
Collapse
Affiliation(s)
- Niovi Santama
- Department of Biological Sciences, University of Cyprus and Cyprus Institute of Neurology and Genetics, P.O. Box 20537, 1678 Nicosia, Cyprus.
| | | | | | | | | | | |
Collapse
|
31
|
Ren H, Wang L, Bennett M, Liang Y, Zheng X, Lu F, Li L, Nan J, Luo M, Eriksson S, Zhang C, Su XD. The crystal structure of human adenylate kinase 6: An adenylate kinase localized to the cell nucleus. Proc Natl Acad Sci U S A 2005; 102:303-8. [PMID: 15630091 PMCID: PMC544302 DOI: 10.1073/pnas.0407459102] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 11/29/2004] [Indexed: 11/18/2022] Open
Abstract
Adenylate kinases (AKs) play important roles in nucleotide metabolism in all organisms and in cellular energetics by means of phosphotransfer networks in eukaryotes. The crystal structure of a human AK named AK6 was determined by in-house sulfur single-wavelength anomalous dispersion phasing methods and refined to 2.0-A resolution with a free R factor of 21.8%. Sequence analyses revealed that human AK6 belongs to a distinct subfamily of AKs present in all eukaryotic organisms sequenced so far. Enzymatic assays show that human AK6 has properties similar with other AKs, particularly with AK5. Fluorescence microscopy showed that human AK6 is localized predominantly to the nucleus of HeLa cells. The identification of a nuclear-localized AK sheds light on nucleotide metabolism in the nucleus and the energetic communication between mitochondria and nucleus by means of phosphotransfer networks.
Collapse
Affiliation(s)
- Hui Ren
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tsuzi D, Maeta K, Takatsume Y, Izawa S, Inoue Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett 2004; 565:148-54. [PMID: 15135069 DOI: 10.1016/j.febslet.2004.03.091] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/11/2004] [Accepted: 03/25/2004] [Indexed: 11/29/2022]
Abstract
The GPX2 gene encodes a homologue of phospholipid hydroperoxide glutathione peroxidase in Saccharomyces cerevisiae. The GPX2 promoter contains three elements the sequence of which is completely consistent with the optimal sequence for the Yap1 response element (YRE). Here, we identify the intrinsic YRE that functions in the oxidative stress response of GPX2. In addition, we discovered a cis-acting element (5'-GGCCGGC-3') within the GPX2 promoter proximal to the functional YRE that is necessary for H(2)O(2)-induced expression of GPX2. We present evidence showing that Skn7 is necessary for the oxidative stress response of GPX2 and is able to bind to this sequence. We determine the optimal sequence for Skn7 to regulate GPX2 under conditions of oxidative stress to be 5'-GGC(C/T)GGC-3', and we designate this sequence the oxidative stress-responsive Skn7 response element.
Collapse
Affiliation(s)
- Daisuke Tsuzi
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
33
|
Pendrak ML, Yan SS, Roberts DD. Hemoglobin regulates expression of an activator of mating-type locus alpha genes in Candida albicans. EUKARYOTIC CELL 2004; 3:764-75. [PMID: 15189997 PMCID: PMC420132 DOI: 10.1128/ec.3.3.764-775.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 03/24/2004] [Indexed: 11/20/2022]
Abstract
Phenotypic switching from the white to the opaque phase is a necessary step for mating in the pathogenic fungus Candida albicans. Suppressing switching during vascular dissemination of the organism may be advantageous, because opaque cells are more susceptible to host defenses. A repressor of white-opaque switching, HBR1 (hemoglobin response gene 1), was identified based on its specific induction following growth in the presence of exogenous hemoglobin. Deletion of a single HBR1 allele allowed opaque phase switching and mating competence, accompanied by a lack of detectable MTL alpha1 and alpha2 gene expression and enhanced MTLa1 gene expression. Conversely, overexpression of Hbr1p or exposure to hemoglobin increased MTLalpha gene expression. The a1/alpha2 repressed target gene CAG1 was derepressed in the same mutant in a hemoglobin-sensitive manner. Regulation of CAG1 by hemoglobin required an intact MTLa1 gene. Several additional Mtlp targets were perturbed in HBR1 mutants in a manner consistent with commitment to an a mating phenotype, including YEL007w, MFalpha, HST6, and RAM2. Therefore, Hbr1 is part of a host factor-regulated signaling pathway that controls white-opaque switching and mating in the absence of allelic deletion at the MTL locus.
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| | | | | |
Collapse
|
34
|
Pendrak ML, Yan SS, Roberts DD. Sensing the host environment: recognition of hemoglobin by the pathogenic yeast Candida albicans. Arch Biochem Biophys 2004; 426:148-56. [PMID: 15158665 DOI: 10.1016/j.abb.2004.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/06/2004] [Indexed: 01/10/2023]
Abstract
Adhesion to host cells and tissues is important for several steps in the pathogenesis of disseminated Candida albicans infections. Although such adhesion is evident in vivo and for C. albicans grown in vitro in complex medium, some adhesive activities are absent when cultures are grown in defined media. However, addition of hemoglobin to defined media restores binding and adhesion to several host proteins. This activity of hemoglobin is independent of iron acquisition and is mediated by a cell surface hemoglobin receptor. In addition to regulating expression of adhesion receptors, hemoglobin rapidly induces expression of several genes. One of these, a heme oxygenase, allows the pathogen to utilize exogenous heme or hemoglobin to acquire iron and to produce the cytoprotective molecules alpha-biliverdin and carbon monoxide. The specific recognition of and responses to hemoglobin demonstrate a unique adaptation of C. albicans to be both a commensal and an opportunistic pathogen in humans.
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA
| | | | | |
Collapse
|
35
|
Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 2004; 5:R7. [PMID: 14759257 PMCID: PMC395751 DOI: 10.1186/gb-2004-5-2-r7] [Citation(s) in RCA: 695] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 12/01/2003] [Accepted: 12/04/2003] [Indexed: 11/10/2022] Open
Abstract
We examined functional and evolutionary patterns in the recently constructed set of 5,873 clusters of predicted orthologs from seven eukaryotic genomes. The analysis reveals a conserved core of largely essential eukaryotic genes as well as major diversification and innovation associated with evolution of eukaryotic genomes. Background Sequencing the genomes of multiple, taxonomically diverse eukaryotes enables in-depth comparative-genomic analysis which is expected to help in reconstructing ancestral eukaryotic genomes and major events in eukaryotic evolution and in making functional predictions for currently uncharacterized conserved genes. Results We examined functional and evolutionary patterns in the recently constructed set of 5,873 clusters of predicted orthologs (eukaryotic orthologous groups or KOGs) from seven eukaryotic genomes: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Encephalitozoon cuniculi. Conservation of KOGs through the phyletic range of eukaryotes strongly correlates with their functions and with the effect of gene knockout on the organism's viability. The approximately 40% of KOGs that are represented in six or seven species are enriched in proteins responsible for housekeeping functions, particularly translation and RNA processing. These conserved KOGs are often essential for survival and might approximate the minimal set of essential eukaryotic genes. The 131 single-member, pan-eukaryotic KOGs we identified were examined in detail. For around 20 that remained uncharacterized, functions were predicted by in-depth sequence analysis and examination of genomic context. Nearly all these proteins are subunits of known or predicted multiprotein complexes, in agreement with the balance hypothesis of evolution of gene copy number. Other KOGs show a variety of phyletic patterns, which points to major contributions of lineage-specific gene loss and the 'invention' of genes new to eukaryotic evolution. Examination of the sets of KOGs lost in individual lineages reveals co-elimination of functionally connected genes. Parsimonious scenarios of eukaryotic genome evolution and gene sets for ancestral eukaryotic forms were reconstructed. The gene set of the last common ancestor of the crown group consists of 3,413 KOGs and largely includes proteins involved in genome replication and expression, and central metabolism. Only 44% of the KOGs, mostly from the reconstructed gene set of the last common ancestor of the crown group, have detectable homologs in prokaryotes; the remainder apparently evolved via duplication with divergence and invention of new genes. Conclusions The KOG analysis reveals a conserved core of largely essential eukaryotic genes as well as major diversification and innovation associated with evolution of eukaryotic genomes. The results provide quantitative support for major trends of eukaryotic evolution noticed previously at the qualitative level and a basis for detailed reconstruction of evolution of eukaryotic genomes and biology of ancestral forms.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol 2003; 333:781-815. [PMID: 14568537 DOI: 10.1016/j.jmb.2003.08.040] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences and structures of all P-loop-fold proteins were compared with the aim of reconstructing the principal events in the evolution of P-loop-containing kinases. It is shown that kinases and some related proteins comprise a monophyletic assemblage within the P-loop NTPase fold. An evolutionary classification of these proteins was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of approximately 40 distinct protein families within the P-loop kinase class. Most of these enzymes phosphorylate nucleosides and nucleotides, as well as sugars, coenzyme precursors, adenosine 5'-phosphosulfate and polynucleotides. In addition, the class includes sulfotransferases, amide bond ligases, pyrimidine and dihydrofolate reductases, and several other families of enzymes that have acquired new catalytic capabilities distinct from the ancestral kinase reaction. Our reconstruction of the early history of the P-loop NTPase fold includes the initial split into the common ancestor of the kinase and the GTPase classes, and the common ancestor of ATPases. This was followed by the divergence of the kinases, which primarily phosphorylated nucleoside monophosphates (NMP), but could have had broader specificity. We provide evidence for the presence of at least two to four distinct P-loop kinases, including distinct forms specific for dNMP and rNMP, and related enzymes in the last universal common ancestor of all extant life forms. Subsequent evolution of kinases seems to have been dominated by the emergence of new bacterial and, to a lesser extent, archaeal families. Some of these enzymes retained their kinase activity but evolved new substrate specificities, whereas others acquired new activities, such as sulfate transfer and reduction. Eukaryotes appear to have acquired most of their kinases via horizontal gene transfer from Bacteria, partly from the mitochondrial and chloroplast endosymbionts and partly at later stages of evolution. A distinct superfamily of kinases, which we designated DxTN after its sequence signature, appears to have evolved in selfish replicons, such as bacteriophages, and was subsequently widely recruited by eukaryotes for multiple functions related to nucleic acid processing and general metabolism. In the course of this analysis, several previously undetected groups of predicted kinases were identified, including widespread archaeo-eukaryotic and archaeal families. The results could serve as a framework for systematic experimental characterization of new biochemical and biological functions of kinases.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
37
|
Peng WT, Robinson MD, Mnaimneh S, Krogan NJ, Cagney G, Morris Q, Davierwala AP, Grigull J, Yang X, Zhang W, Mitsakakis N, Ryan OW, Datta N, Jojic V, Pal C, Canadien V, Richards D, Beattie B, Wu LF, Altschuler SJ, Roweis S, Frey BJ, Emili A, Greenblatt JF, Hughes TR. A panoramic view of yeast noncoding RNA processing. Cell 2003; 113:919-33. [PMID: 12837249 DOI: 10.1016/s0092-8674(03)00466-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most of which have not previously been associated with RNA or RNP synthesis. Many strains mutated in uncharacterized genes displayed aberrant noncoding RNA profiles. Ten factors involved in noncoding RNA biogenesis were verified by further experimentation, including a protein required for 20S pre-rRNA processing (Tsr2p), a protein associated with the nuclear exosome (Lrp1p), and a factor required for box C/D snoRNA accumulation (Bcd1p). These data present a global view of yeast noncoding RNA processing and confirm that many currently uncharacterized yeast proteins are involved in biogenesis of noncoding RNA.
Collapse
Affiliation(s)
- Wen Tao Peng
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, M5G 1L6, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Collapse
Affiliation(s)
- Stefan Hohmann
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, S-405 30 Göteborg, Sweden.
| |
Collapse
|
40
|
Abstract
A main avenue of defense against fungal infection uses oxidative killing of these and other microorganisms. Consequently, the ability of fungi to withstand an oxidative challenge has important implications for their ultimate pathogenicity in a host organism. Fungi also serve as an excellent model system for handling of reactive oxygen species in eukaryotic cells. For these reasons, a great deal of work has been invested in analyzing pathways involved in and the mechanisms regulating oxidative stress tolerance in fungi. The goal of this review is to discuss the current state of knowledge underlying the ability of fungal cells to mount a response to oxidative stress via activation of transcription factors. Studies in Saccharomyces cerevisiae have identified multiple transcriptional regulatory proteins that mediate tolerance to oxidative stress. Experiments focused on the fission yeast Schizosaccharomyces pombe have led to the discovery of protein kinase cascades highly related to mammalian stress-activated protein kinases. Recent studies on the pathogenic yeast Candida albicans have allowed analysis of the role of a critical oxidant-regulated transcription factor in this important human pathogen. Further understanding of oxidative stress resistance pathways in fungi is an important step toward understanding the molecular pathogenesis of these microorganisms.
Collapse
Affiliation(s)
- W Scott Moye-Rowley
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Moradas-Ferreira P, Costa V. Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Rep 2001; 5:277-85. [PMID: 11145102 DOI: 10.1179/135100000101535816] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been extensively utilised to address the mechanisms underlying the oxidative stress response. The antioxidant defences can be induced either by respiratory growth or in the presence of pro-oxidants. The cell response involves the transcriptional control of genes by protein regulators that have been recently identified and post-translational activation of pre-existing defences. The current state of the art regarding the induction of antioxidant defences during respiratory growth and by exposure to hydrogen peroxide is reviewed.
Collapse
Affiliation(s)
- P Moradas-Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| | | |
Collapse
|
42
|
Harashima S, Kaneko Y. Application of the PHO5-gene-fusion technology to molecular genetics and biotechnology in yeast. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80147-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|