1
|
Liang YF, Niu ZX, Wu ZW, Zhang QY, Zhao XY, Chao LL, Li H, Gao WY. Catalytic insights of acetolactate synthases from different bacteria. Arch Biochem Biophys 2025; 764:110248. [PMID: 39617118 DOI: 10.1016/j.abb.2024.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Acetolactate synthase (ALS) is an essential enzyme involved in the biosynthesis of platform chemicals acetoin and 2,3-butanediol in several microorganisms. In this study, we investigated the catalytic differences among three bacterial ALSs involved in the ligation of two molecules of pyruvate or 2-ketobutyrate. Based on the findings, we predicted three amino acid residues in each enzyme that caused a discrepancy in accordance with the multi-sequence alignment and molecular docking experiments: I398, A402, and T480 in Bacillus subtilis ALS; V400, Y404, and S482 in Listeria seleigeri serovar 1/2b ALS; and M394, H398, and G476 in Klebsiella pneumoniae ALS. Subsequently, we mutually mutated the residues in the three ALSs. The data obtained confirmed our inference that these three residues in each enzyme are truly correlated with substrate recognition, particularly in recognizing compounds that are larger than pyruvate, such as 2-ketobutyrate, benzaldehyde, and nitrosobenzene. This study further clarifies the biochemical traits of ALSs derived from various bacteria and expands the scope of ALS research.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ze-Xin Niu
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Zi-Wen Wu
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Qing-Yang Zhang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xin-Yi Zhao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Lei-Lei Chao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
2
|
Xie H, Kjellström J, Lindblad P. Sustainable production of photosynthetic isobutanol and 3-methyl-1-butanol in the cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:134. [PMID: 37684613 PMCID: PMC10492371 DOI: 10.1186/s13068-023-02385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cyanobacteria are emerging as green cell factories for sustainable biofuel and chemical production, due to their photosynthetic ability to use solar energy, carbon dioxide and water in a direct process. The model cyanobacterial strain Synechocystis sp. PCC 6803 has been engineered for the isobutanol and 3-methyl-1-butanol production by introducing a synthetic 2-keto acid pathway. However, the achieved productions still remained low. In the present study, diverse metabolic engineering strategies were implemented in Synechocystis sp. PCC 6803 for further enhanced photosynthetic isobutanol and 3-methyl-1-butanol production. RESULTS Long-term cultivation was performed on two selected strains resulting in maximum cumulative isobutanol and 3-methyl-1-butanol titers of 1247 mg L-1 and 389 mg L-1, on day 58 and day 48, respectively. Novel Synechocystis strain integrated with a native 2-keto acid pathway was generated and showed a production of 98 mg isobutanol L-1 in short-term screening experiments. Enhanced isobutanol and 3-methyl-1-butanol production was observed when increasing the kivdS286T copy number from three to four. Isobutanol and 3-methyl-1-butanol production was effectively improved when overexpressing selected genes of the central carbon metabolism. Identified genes are potential metabolic engineering targets to further enhance productivity of pyruvate-derived bioproducts in cyanobacteria. CONCLUSIONS Enhanced isobutanol and 3-methyl-1-butanol production was successfully achieved in Synechocystis sp. PCC 6803 strains through diverse metabolic engineering strategies. The maximum cumulative isobutanol and 3-methyl-1-butanol titers, 1247 mg L-1 and 389 mg L-1, respectively, represent the current highest value reported. The significantly enhanced isobutanol and 3-methyl-1-butanol production in this study further pave the way for an industrial application of photosynthetic cyanobacteria-based biofuel and chemical synthesis from CO2.
Collapse
Affiliation(s)
- Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jarl Kjellström
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
3
|
Rodrigues JS, Bourgade B, Galle KR, Lindberg P. Mapping competitive pathways to terpenoid biosynthesis in Synechocystis sp. PCC 6803 using an antisense RNA synthetic tool. Microb Cell Fact 2023; 22:35. [PMID: 36823631 PMCID: PMC9951418 DOI: 10.1186/s12934-023-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Synechocystis sp. PCC 6803 utilizes pyruvate and glyceraldehyde 3-phosphate via the methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of terpenoids. Considering the deep connection of the MEP pathway to the central carbon metabolism, and the low carbon partitioning towards terpenoid biosynthesis, significant changes in the metabolic network are required to increase cyanobacterial production of terpenoids. RESULTS We used the Hfq-MicC antisense RNA regulatory tool, under control of the nickel-inducible PnrsB promoter, to target 12 different genes involved in terpenoid biosynthesis, central carbon metabolism, amino acid biosynthesis and ATP production, and evaluated the changes in the performance of an isoprene-producing cyanobacterial strain. Six candidate targets showed a positive effect on isoprene production: three genes involved in terpenoid biosynthesis (crtE, chlP and thiG), two involved in amino acid biosynthesis (ilvG and ccmA) and one involved in sugar catabolism (gpi). The same strategy was applied to interfere with different parts of the terpenoid biosynthetic pathway in a bisabolene-producing strain. Increased bisabolene production was observed not only when interfering with chlorophyll a biosynthesis, but also with carotenogenesis. CONCLUSIONS We demonstrated that the Hfq-MicC synthetic tool can be used to evaluate the effects of gene knockdown on heterologous terpenoid production, despite the need for further optimization of the technique. Possible targets for future engineering of Synechocystis aiming at improved terpenoid microbial production were identified.
Collapse
Affiliation(s)
- João S. Rodrigues
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden
| | - Barbara Bourgade
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden
| | - Karen R. Galle
- grid.8993.b0000 0004 1936 9457Department of Chemistry – Ångström, Uppsala University, Uppsala, Sweden ,grid.5808.50000 0001 1503 7226Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Wang X, Lei G, Wu X, Wang F, Lai C, Li Z. Expression, purification and characterization of sll1981 protein from cyanobacterium Synechocystis sp. PCC6803. Protein Expr Purif 2017; 139:21-28. [DOI: 10.1016/j.pep.2017.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 11/26/2022]
|
5
|
Elucidating and Regulating the Acetoin Production Role of Microbial Functional Groups in Multispecies Acetic Acid Fermentation. Appl Environ Microbiol 2016; 82:5860-8. [PMID: 27451452 DOI: 10.1128/aem.01331-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Acetoin (3-hydroxy-2-butanone) formation in vinegar microbiota is crucial for the flavor quality of Zhenjiang aromatic vinegar, a traditional vinegar produced from cereals. However, the specific microorganisms responsible for acetoin formation in this centuries-long repeated batch fermentation have not yet been clearly identified. Here, the microbial distribution discrepancy in the diacetyl/acetoin metabolic pathway of vinegar microbiota was revealed at the species level by a combination of metagenomic sequencing and clone library analysis. The results showed that Acetobacter pasteurianus and 4 Lactobacillus species (Lactobacillus buchneri, Lactobacillus reuteri, Lactobacillus fermentum, and Lactobacillus brevis) might be functional producers of acetoin from 2-acetolactate in vinegar microbiota. Furthermore, A. pasteurianus G3-2, L. brevis 4-22, L. fermentum M10-3, and L. buchneri F2-5 were isolated from vinegar microbiota by a culture-dependent method. The acetoin concentrations in two cocultures (L. brevis 4-22 plus A. pasteurianus G3-2 and L. fermentum M10-3 plus A. pasteurianus G3-2) were obviously higher than those in monocultures of lactic acid bacteria (LAB), while L. buchneri F2-5 did not produce more acetoin when coinoculated with A. pasteurianus G3-2. Last, the acetoin-producing function of vinegar microbiota was regulated in situ via augmentation with functional species in vinegar Pei After 72 h of fermentation, augmentation with A. pasteurianus G3-2 plus L. brevis 4-22, L. fermentum M10-3, or L. buchneri F2-5 significantly increased the acetoin content in vinegar Pei compared with the control group. This study provides a perspective on elucidating and manipulating different metabolic roles of microbes during flavor formation in vinegar microbiota. IMPORTANCE Acetoin (3-hydroxy-2-butanone) formation in vinegar microbiota is crucial for the flavor quality of Zhenjiang aromatic vinegar, a traditional vinegar produced from cereals. Thus, it is of interest to understand which microbes are driving the formation of acetoin to elucidate the microbial distribution discrepancy in the acetoin metabolic pathway and to regulate the metabolic function of functional microbial groups in vinegar microbiota. Our study provides a perspective on elucidating and manipulating different metabolic roles of microbes during flavor formation in vinegar microbiota.
Collapse
|
6
|
Touloupakis E, Cicchi B, Benavides AMS, Torzillo G. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Appl Microbiol Biotechnol 2015; 100:1333-1341. [PMID: 26541331 PMCID: PMC4717179 DOI: 10.1007/s00253-015-7024-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Culturing cyanobacteria in a highly alkaline environment is a possible strategy for controlling contamination by other organisms. Synechocystis PCC 6803 cells were grown in continuous cultures to assess their growth performance at different pH values. Light conversion efficiency linearly decreased with the increase in pH and ranged between 12.5 % (PAR) at pH 7.5 (optimal) and decreased to 8.9 % at pH 11.0. Photosynthetic activity, assessed by measuring both chlorophyll fluorescence and photosynthesis rate, was not much affected going from pH 7.5 to 11.0, while productivity, growth yield, and biomass yield on light energy declined by 32, 28, and 26 % respectively at pH 11.0. Biochemical composition of the biomass did not change much within pH 7 and 10, while when grown at pH 11.0, carbohydrate content increased by 33 % while lipid content decreased by about the same amount. Protein content remained almost constant (average 65.8 % of dry weight). Cultures maintained at pH above 11.0 could grow free of contaminants (protozoa and other competing microalgae belonging to the species of Poterioochromonas).
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Bernardo Cicchi
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Ana Margarita Silva Benavides
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Huang Y, Cheng J, Lu H, Huang R, Zhou J, Cen K. Simultaneous enhancement of microalgae biomass growth and lipid accumulation under continuous aeration with 15% CO2. RSC Adv 2015. [DOI: 10.1039/c5ra08401f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Continuous aeration with 15% CO2 induced nitrogen deprivation during Chlorella PY-ZU1 cultivation, thus simultaneously promoting biomass (2.78 g L−1) and lipid (47.04%) production.
Collapse
Affiliation(s)
- Yun Huang
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Hongxiang Lu
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Rui Huang
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
8
|
Sommer B, von Moeller H, Haack M, Qoura F, Langner C, Bourenkov G, Garbe D, Loll B, Brück T. Detailed structure-function correlations of Bacillus subtilis acetolactate synthase. Chembiochem 2014; 16:110-8. [PMID: 25393087 DOI: 10.1002/cbic.201402541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 02/04/2023]
Abstract
Isobutanol is deemed to be a next-generation biofuel and a renewable platform chemical.1 Non-natural biosynthetic pathways for isobutanol production have been implemented in cell-based and in vitro systems with Bacillus subtilis acetolactate synthase (AlsS) as key biocatalyst.2-6 AlsS catalyzes the condensation of two pyruvate molecules to acetolactate with thiamine diphosphate and Mg(2+) as cofactors. AlsS also catalyzes the conversion of 2-ketoisovalerate into isobutyraldehyde, the immediate precursor of isobutanol. Our phylogenetic analysis suggests that the ALS enzyme family forms a distinct subgroup of ThDP-dependent enzymes. To unravel catalytically relevant structure-function relationships, we solved the AlsS crystal structure at 2.3 Å in the presence of ThDP, Mg(2+) and in a transition state with a 2-lactyl moiety bound to ThDP. We supplemented our structural data by point mutations in the active site to identify catalytically important residues.
Collapse
Affiliation(s)
- Bettina Sommer
- Fachgebiet Industrielle Biokatalyse, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li Y, Rao N, Yang F, Zhang Y, Yang Y, Liu HM, Guo F, Huang J. Biocomputional construction of a gene network under acid stress in Synechocystis sp. PCC 6803. Res Microbiol 2014; 165:420-8. [PMID: 24787285 DOI: 10.1016/j.resmic.2014.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 11/25/2022]
Abstract
Acid stress is one of the most serious threats that cyanobacteria have to face, and it has an impact at all levels from genome to phenotype. However, very little is known about the detailed response mechanism to acid stress in this species. We present here a general analysis of the gene regulatory network of Synechocystis sp. PCC 6803 in response to acid stress using comparative genome analysis and biocomputational prediction. In this study, we collected 85 genes and used them as an initial template to predict new genes through co-regulation, protein-protein interactions and the phylogenetic profile, and 179 new genes were obtained to form a complete template. In addition, we found that 11 enriched pathways such as glycolysis are closely related to the acid stress response. Finally, we constructed a regulatory network for the intricate relationship of these genes and summarize the key steps in response to acid stress. This is the first time a bioinformatic approach has been taken systematically to gene interactions in cyanobacteria and the elaboration of their cell metabolism and regulatory pathways under acid stress, which is more efficient than a traditional experimental study. The results also provide theoretical support for similar research into environmental stresses in cyanobacteria and possible industrial applications.
Collapse
Affiliation(s)
- Yi Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Nini Rao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Feng Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Han-ming Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengbiao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Savakis PE, Angermayr SA, Hellingwerf KJ. Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab Eng 2013; 20:121-30. [DOI: 10.1016/j.ymben.2013.09.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/08/2023]
|
11
|
Lopo M, Montagud A, Navarro E, Cunha I, Zille A, de Córdoba PF, Moradas-Ferreira P, Tamagnini P, Urchueguía JF. Experimental and modeling analysis of Synechocystis sp. PCC 6803 growth. J Mol Microbiol Biotechnol 2012; 22:71-82. [PMID: 22508451 DOI: 10.1159/000336850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The influence of different parameters such as temperature, irradiance, nitrate concentration, pH, and an external carbon source on Synechocystis PCC 6803 growth was evaluated. METHODS 4.5-ml cuvettes containing 2 ml of culture, a high-throughput system equivalent to batch cultures, were used with gas exchange ensured by the use of a Parafilm™ cover. The effect of the different variables on maximum growth was assessed by a multi-way statistical analysis. RESULTS Temperature and pH were identified as the key factors. It was observed that Synechocystis cells have a strong influence on the external pH. The optimal growth temperature was 33°C while light-saturating conditions were reached at 40 µE·m⁻²·s⁻¹. CONCLUSION It was demonstrated that Synechocystis exhibits a marked difference in behavior between autotrophic and glucose-based mixotrophic conditions, and that nitrate concentrations did not have a significant influence, probably due to endogenous nitrogen reserves. Furthermore, a dynamic metabolic model of Synechocystis photosynthesis was developed to gain insights on the underlying mechanism enabling this cyanobacterium to control the levels of external pH. The model showed a coupled effect between the increase of the pH and ATP production which in turn allows a higher carbon fixation rate.
Collapse
Affiliation(s)
- Miguel Lopo
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Singh S, Das S. Screening, production, optimization and characterization of cyanobacterial polysaccharide. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Zhu BF, Xu Y. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy. J Ind Microbiol Biotechnol 2010; 37:815-21. [PMID: 20437078 DOI: 10.1007/s10295-010-0726-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
The effects of initial culture pH ranging from 5.0 to 7.5 on biomass content, precursor 3-hydroxy-2-butanone (HB) accumulation, and 2,3,5,6-tetramethylpyrazine (TTMP) formation by Bacillus subtilis CCTCC M 208157 were investigated in shake flask fermentation. Weak acidic conditions were found to favor cell growth and precursor HB accumulation, while TTMP could be synthesized more efficiently in conditions with initial pH towards neutrality. Batch bioprocess of TTMP fermentation by Bacillus subtilis CCTCC M 208157 at various controlled pH values ranging from 5.5 to 7.0 was then examined in 7.5-l fermentor. The results suggested that optimum pH for cell growth and precursor HB accumulation was 5.5 with maximum cell growth rate (Q (x)) and precursor HB accumulation rate (Q (HB)) of 0.833 g l(-1) h(-1) and 1.118 g l(-1) h(-1), respectively, while optimum pH for TTMP formation was 7.0 with maximum TTMP formation rate (Q (TTMP)) of 0.095 g l(-1) h(-1). A pH-shifted strategy was accordingly developed to improve TTMP production in bioreactor fermentation by shifting the culture pH from 5.5 to 7.0 after 48 h of cultivation. By applying the strategy, final TTMP concentration of 7.43 g l(-1) was obtained, being 22.2% greater than that of constant-pH fermentation.
Collapse
Affiliation(s)
- Bing-Feng Zhu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, 214122 Wuxi, Jiangsu, China
| | | |
Collapse
|
14
|
Zhu BF, Xu Y. A feeding strategy for tetramethylpyrazine production by Bacillus subtilis based on the stimulating effect of ammonium phosphate. Bioprocess Biosyst Eng 2010; 33:953-9. [DOI: 10.1007/s00449-010-0419-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/27/2010] [Indexed: 11/24/2022]
|
15
|
Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. Appl Environ Microbiol 2008; 74:5276-84. [PMID: 18606800 DOI: 10.1128/aem.00883-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many cyanobacterial strains are able to grow at a pH range from neutral to pH 10 or 11. Such alkaline conditions favor cyanobacterial growth (e.g., bloom formation), and cyanobacteria must have developed strategies to adjust to changes in CO2 concentration and ion availability. Synechocystis sp. strain PCC 6803 exhibits similar photoautotrophic growth characteristics at pH 10 and pH 7.5, and we examined global gene expression following transfer from pH 7.5 to pH 10 to determine cellular adaptations at an elevated pH. The strategies used to develop homeostasis at alkaline pH had elements similar to those of many bacteria, as well as components unique to phototrophic microbes. Some of the response mechanisms previously identified in other bacteria included upregulation of Na+/H+ antiporters, deaminases, and ATP synthase. In addition, upregulated genes encoded transporters with the potential to contribute to osmotic, pH, and ion homeostasis (e.g., a water channel protein, a large-conductance mechanosensitive channel, a putative anion efflux transporter, a hexose/proton symporter, and ABC transporters of unidentified substrates). Transcriptional changes specific to photosynthetic microbes involved NADH dehydrogenases and CO2 fixation. The pH transition altered the CO2/HCO3(-) ratio within the cell, and the upregulation of three inducible bicarbonate transporters (BCT1, SbtA, and NDH-1S) likely reflected a response to this perturbed ratio. Consistent with this was increased transcript abundance of genes encoding carboxysome structural proteins and carbonic anhydrase. Interestingly, the transition to pH 10 resulted in increased abundance of transcripts of photosystem II genes encoding extrinsic and low-molecular-weight polypeptides, although there was little change in photosystem I gene transcripts.
Collapse
|
16
|
Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress. Curr Microbiol 2008; 56:429-35. [PMID: 18322734 DOI: 10.1007/s00284-008-9121-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mM: NaCl fragmented and recovered on transfer to -NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mM/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0-54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mM/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.
Collapse
|
17
|
Han SH, Anderson AJ, Yang KY, Cho BH, Kim KY, Lee MC, Kim YH, Kim YC. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. MOLECULAR PLANT PATHOLOGY 2006; 7:463-472. [PMID: 20507461 DOI: 10.1111/j.1364-3703.2006.00352.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Colonization of the roots of tobacco by Pseudomonas chlororaphis O6 induces systemic resistance to the soft-rot pathogen, Erwinia carotovora ssp. carotovara SCC1. A screen of the transposon mutants of P. chlororaphis O6 showed mutants with about a fivefold reduction in ability to induce systemic resistance to the soft-rot disease. These mutations disrupted genes involved in diverse functions: a methyl-accepting chemotaxis protein, biosynthesis of purines, phospholipase C, transport of branched-chain amino acids and an ABC transporter. Additional mutations were detected in the intergenic spacer regions between genes encoding a GGDEF protein and fumarate dehydratase, and in genes of unknown function. The mutants in the ABC transporters did not display reduced root colonization. However, the other mutants had up to 100-fold reduced colonization levels. Generally the production of metabolites important for interactions in the rhizosphere, phenazines and siderophores, was not altered by the mutations. A reduced induction of systemic resistance by a purine biosynthesis mutant with a disrupted purM gene correlated with poor growth rate, lesser production of phenazines and siderophore and low levels of root colonization. These studies showed that multiple determinants are involved in the induction of systemic resistance, with there being a requirement for strong root colonization.
Collapse
Affiliation(s)
- Song Hee Han
- Agricultural Plant Stress Research Center and Environmental-Friendly Agriculture Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:924-30. [PMID: 16903358 DOI: 10.1094/mpmi-19-0924] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Root colonization by a plant-beneficial rhizobacterium, Pseudomonas chlororaphis O6, induces disease resistance in tobacco against leaf pathogens Erwinia carotovora subsp. carotovora SCC1, causing soft-rot, and Pseudomonas syringae pv. tabaci, causing wildfire. In order to identify the bacterial determinants involved in induced systemic resistance against plant diseases, extracellular components produced by the bacterium were fractionated and purified. Factors in the culture filtrate inducing systemic resistance were retained in the aqueous fraction rather than being partitioned into ethyl acetate. Fractionation on high-performance liquid chromatography followed by nuclear magnetic resonance mass spectrometry analysis identified the active compound as 2R, 3R-butanediol. 2R, 3R butanediol induced systemic resistance in tobacco to E. carotovora subsp. carotovora SCC1, but not to P. syringae pv. tabaci. Treatment of tobacco with the volatile 2R, 3R-butanediol enhanced aerial growth, a phenomenon also seen in plants colonized by P. chlororaphis O6. The isomeric form of the butanediol was important because 2S, 3S-butandiol did not affect the plant. The global sensor kinase, GacS, of P. chlororaphis O6 was a key regulator for induced systemic resistance against E. carotovora through regulation of 2R, 3R-butanediol production. This is the first report of the production of these assumed fermentation products by a pseudomonad and the role of the sensor kinase GacS in production of 2R, 3R-butanediol.
Collapse
Affiliation(s)
- Song Hee Han
- Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chatterjee A, Dastidar KG, Maitra S, Das-Chatterjee A, Dihazi H, Eschrich K, Majumder AL. sll1981, an acetolactate synthase homologue of Synechocystis sp. PCC6803, functions as L-myo-inositol 1-phosphate synthase. PLANTA 2006; 224:367-79. [PMID: 16453101 DOI: 10.1007/s00425-006-0221-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/23/2005] [Indexed: 05/04/2023]
Abstract
L-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of D-glucose 6-phosphate to L-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989-998, 2004). One of the forms with an approximately 50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as an approximately 65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified approximately 1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive approximately 65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.
Collapse
Affiliation(s)
- Anirban Chatterjee
- Plant Molecular Cellular Genetics, Bose Institute, P-1/12 CIT Scheme VII M, 700054 Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Pomati F, Burns BP, Neilan BA. Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na(+) - K(+) Fluxes. Biol Proced Online 2004; 6:137-143. [PMID: 15243648 PMCID: PMC443562 DOI: 10.1251/bpo82] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 11/23/2022] Open
Abstract
Here we describe an experimental design aimed to investigate changes in total cellular levels of Na(+) and K(+) ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na(+) levels increased exponentially with rising alkalinity, with K(+) levels being maximal for optimal growth pH (~8). At standardized pH conditions, the increase in cellular Na(+), as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 microM and veratridine at 100 microM. Both the channel-blockers amiloride (1 mM) and saxitoxin (1 microM), decreased cell-bound Na(+) and K(+) levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na(+)- K(+) fluxes.
Collapse
Affiliation(s)
- Francesco Pomati
- Cyanobacteria and Astrobiology Research Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia & Environmental Research Group, DBSF, University of Insubria, via J.H. Dunant. 3, 21100 Varese. Italy
| | - Brendan P. Burns
- Cyanobacteria and Astrobiology Research Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales. Sydney 2052, NSW. Australia
| | - Brett A. Neilan
- Cyanobacteria and Astrobiology Research Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales. Sydney 2052, NSW. Australia
| |
Collapse
|
21
|
Pomati F, Rossetti C, Manarolla G, Burns BP, Neilan BA. Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. MICROBIOLOGY-SGM 2004; 150:455-461. [PMID: 14766924 DOI: 10.1099/mic.0.26350-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Saxitoxin (STX) is the most potent representative among the paralytic shellfish poisoning (PSP) toxins, which are highly selective Na(+) channel-blocking alkaloids. This study investigated, in cultures of the cyanobacterium Cylindrospermopsis raciborskii T3, the effects of pH, salt, amiloride and lidocaine hydrochloride on total cellular levels of Na(+) and K(+) ions and STX accumulation. Both Na(+) levels and intracellular STX concentrations increased exponentially in response to rising alkalinity. NaCl inhibited cyanobacterial growth at a concentration of 10 mM. In comparison with osmotically stressed controls, however, NaCl promoted STX accumulation in a dose-dependent manner. A correlation was seen in the time-course of both total cellular Na(+) levels and intracellular STX for NaCl, amiloride and lidocaine exposure. The increase in cellular Na(+) induced by NaCl at 10 mM was coupled with a proportional accumulation of STX. The two Na(+) channel-blocking agents amiloride and lidocaine had opposing effects on both cellular Na(+) levels and STX accumulation. Amiloride at 1 mM reduced ion and toxin concentrations, while lidocaine at 1 micro M increased the total cellular Na(+) and STX levels. The effects of the channel-blockers were antagonistic and dependent on an alkaline pH. The results presented suggest that, in C. raciborskii T3, STX is responsive to cellular Na(+) levels. This may indicate that either STX metabolism or the toxin itself could be linked to the maintenance of cyanobacterial homeostasis. The results also enhance the understanding of STX production and the ecology of PSP toxin-producing cyanobacteria.
Collapse
Affiliation(s)
- Francesco Pomati
- Cyanobacteria and Astrobiology Research Laboratory, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Carlo Rossetti
- DBSF, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | | | - Brendan P Burns
- Cyanobacteria and Astrobiology Research Laboratory, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Brett A Neilan
- Cyanobacteria and Astrobiology Research Laboratory, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|