1
|
Sensing of individual stalled 80S ribosomes by Fap1 for nonfunctional rRNA turnover. Mol Cell 2022; 82:3424-3437.e8. [PMID: 36113412 DOI: 10.1016/j.molcel.2022.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.
Collapse
|
2
|
Rzepnikowska W, Kaminska J, Kochański A. Validation of the Pathogenic Effect of IGHMBP2 Gene Mutations Based on Yeast S. cerevisiae Model. Int J Mol Sci 2022; 23:ijms23179913. [PMID: 36077311 PMCID: PMC9456350 DOI: 10.3390/ijms23179913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a heritable neurodegenerative disease characterized by rapid respiratory failure within the first months of life and progressive muscle weakness and wasting. Although the causative gene, IGHMBP2, is well defined, information on IGHMBP2 mutations is not always sufficient to diagnose particular patients, as the gene is highly polymorphic and the pathogenicity of many gene variants is unknown. In this study, we generated a simple yeast model to establish the significance of IGHMBP2 variants for disease development, especially those that are missense mutations. We have shown that cDNA of the human gene encodes protein which is functional in yeast cells and different pathogenic mutations affect this functionality. Furthermore, there is a correlation between the phenotype estimated in in vitro studies and our results, indicating that our model may be used to quickly and simply distinguish between pathogenic and non-pathogenic mutations identified in IGHMBP2 in patients.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
NFX1, Its Isoforms and Roles in Biology, Disease and Cancer. BIOLOGY 2021; 10:biology10040279. [PMID: 33808060 PMCID: PMC8067315 DOI: 10.3390/biology10040279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary The NFX1 gene, and its gene products, were identified over 30 years ago. Since then, the literature on NFX1 homologs and NFX1 itself has grown. In this review, we summarize the studies to-date on the NFX1 gene and its proteins across species and in humans, describing their role in gene regulation, embryonic development, cellular growth and differentiation, exogenous stress tolerance and metabolism, and an organism’s immune response. We also highlight the roles NFX1 has in human disease and in cancer, with a strong focus on its collaborative role with high-risk human papillomavirus infections that cause cervical and head and neck cancers. We believe this is the first comprehensive review of NFX1 and its functional significance in organisms ranging from yeast to human. Abstract In 1989, two NFX1 protein products were identified as nuclear proteins with the ability to bind to X-box cis-elements. Since that publication, the NFX1 gene and its homologs have been identified, from yeast to humans. This review article summarizes what is known about the NFX1 gene across species. We describe the gene and protein motifs of NFX1 homologs and their functions in cellular biology, then turn to NFX1 in human biology and disease development. In that, we focus on more recent literature about NFX1 and its two splice variants protein products (NFX1-91 and NFX1-123) that are expressed in epithelial cells. We describe new evidence of conserved protein motifs, direct and indirect gene expression regulation, and critical protein-protein interactions. Finally, we stress the emerging roles of these NFX1 splice variants in high-risk human papillomavirus-associated cancers, and the increased expression of the longer splice variant, NFX1-123, found in these cancers.
Collapse
|
4
|
Kasahara K, Nakayama R, Shiwa Y, Kanesaki Y, Ishige T, Yoshikawa H, Kokubo T. Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae. PLoS Genet 2020; 16:e1008865. [PMID: 32603360 PMCID: PMC7357790 DOI: 10.1371/journal.pgen.1008865] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 07/13/2020] [Accepted: 05/15/2020] [Indexed: 11/18/2022] Open
Abstract
Fpr1 (FK506-sensitive proline rotamase 1), a protein of the FKBP12 (FK506-binding protein 12 kDa) family in Saccharomyces cerevisiae, is a primary target for the immunosuppressive agents FK506 and rapamycin. Fpr1 inhibits calcineurin and TORC1 (target of rapamycin complex 1) when bound to FK506 and rapamycin, respectively. Although Fpr1 is recognised to play a crucial role in the efficacy of these drugs, its physiological functions remain unclear. In a hmo1Δ (high mobility group family 1-deleted) yeast strain, deletion of FPR1 induced severe growth defects, which could be alleviated by increasing the copy number of RPL25 (ribosome protein of the large subunit 25), suggesting that RPL25 expression was affected in hmo1Δfpr1Δ cells. In the current study, extensive chromatin immunoprecipitation (ChIP) and ChIP-sequencing analyses revealed that Fpr1 associates specifically with the upstream activating sequences of nearly all RPG (ribosomal protein gene) promoters, presumably in a manner dependent on Rap1 (repressor/activator site binding protein 1). Intriguingly, Fpr1 promotes the binding of Fhl1/Ifh1 (forkhead-like 1/interacts with forkhead 1), two key regulators of RPG transcription, to certain RPG promoters independently of and/or cooperatively with Hmo1. Furthermore, mutation analyses of Fpr1 indicated that for transcriptional function on RPG promoters, Fpr1 requires its N-terminal domain and the binding surface for rapamycin, but not peptidyl-prolyl isomerase activity. Notably, Fpr1 orthologues from other species also inhibit TORC1 when bound to rapamycin, but do not regulate transcription in yeast, which suggests that these two functions of Fpr1 are independent of each other.
Collapse
Affiliation(s)
- Koji Kasahara
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
- * E-mail:
| | - Risa Nakayama
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Taichiro Ishige
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Tetsuro Kokubo
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
5
|
Comyn SA, Flibotte S, Mayor T. Recurrent background mutations in WHI2 impair proteostasis and degradation of misfolded cytosolic proteins in Saccharomyces cerevisiae. Sci Rep 2017. [PMID: 28646136 PMCID: PMC5482819 DOI: 10.1038/s41598-017-04525-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Proteostasis promotes viability at both the cellular and organism levels by maintaining a functional proteome. This requires an intricate protein quality control (PQC) network that mediates protein folding by molecular chaperones and removes terminally misfolded proteins via the ubiquitin proteasome system and autophagy. How changes within the PQC network can perturb proteostasis and shift the balance between protein folding and proteolysis remain poorly understood. However, given that proteostasis is altered in a number of conditions such as cancer and ageing, it is critical that we identify the factors that mediate PQC and understand the interplay between members of the proteostatic network. In this study, we investigated the degradation of a thermally unstable cytosolic model substrate and identified a surprisingly high number of strains in the yeast knockout collection that displayed impaired turnover of the misfolded substrate. We found that this phenotype was caused by frequent background mutations in the general stress response gene WHI2. We linked this proteostatic defect to the lack of activity of the stress response transcription factor Msn2, potentially under conditions where the TOR pathway is active. Our results underscore how changes to the elaborate PQC network can perturb proteostasis and impair degradation of misfolded cytosolic proteins.
Collapse
Affiliation(s)
- Sophie A Comyn
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stéphane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
7
|
NFX1-123 and human papillomavirus 16E6 increase Notch expression in keratinocytes. J Virol 2013; 87:13741-50. [PMID: 24109236 DOI: 10.1128/jvi.02582-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The high-risk human papillomavirus (HR HPV) E6 oncoprotein binds host cell proteins to dysregulate multiple regulatory pathways, including apoptosis and senescence. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and together they posttranscriptionally increase hTERT expression, the catalytic subunit of telomerase. NFX1-123 interacts with hTERT mRNA and stabilizes it, leading to greater telomerase activity and the avoidance of cellular senescence. Little is known regarding what other transcripts are dependent on or augmented by the association of NFX1-123 with 16E6. Microarray analysis revealed enhanced expression of Notch1 mRNA in 16E6-expressing keratinocytes when NFX1-123 was overexpressed. A moderate increase in Notch1 mRNA was seen with overexpression of NFX1-123 alone, but with 16E6 coexpression the increase in Notch1 was enhanced. The PAM2 motif and R3H protein domains in NFX1-123, which were important for increased hTERT expression, were also important in the augmentation of Notch1 expression by 16E6. These findings identify a second gene coregulated by 16E6 and NFX1-123 and the protein motifs in NFX1-123 that are important for this effect.
Collapse
|
8
|
Ames RM, Lovell SC. Diversification at transcription factor binding sites within a species and the implications for environmental adaptation. Mol Biol Evol 2011; 28:3331-44. [PMID: 21693437 DOI: 10.1093/molbev/msr167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Evolution of new cellular functions can be achieved both by changes in protein coding sequences and by alteration of expression patterns. Variation of expression may lead to changes in cellular function with relatively little change in genomic sequence. We therefore hypothesize that one of the first signals of functional divergence should be evolution of transcription factor-binding sites (TFBSs). This adaptation should be detectable as substantial variation in the TFBSs of alleles. New data sets allow the first analyses of intraspecies variation from large number of whole-genome sequences. Using data from the Saccharomyces Genome Resequencing Project, we have analyzed variation in TFBSs. We find a large degree of variation both between these closely related strains and between pairs of duplicated genes. There is a correlation between changes in promoter regions and changes in coding sequences, indicating a coupling of changes in expression and function. We show that 1) the types genes with diverged promoters vary between strains from different environments and 2) that patterns of divergence in promoters consistent with positive selection are detectable in alleles between strains and on duplicate promoters. This variation is likely to reflect adaptation to each strain's natural environment. We conclude that, even within a species, we detect signs of selection acting on promoter regions that may act to alter expression patterns. These changes may indicate functional innovation in multiple genes and across the whole genome. Change in function could represent adaptation to the environment and be a precursor to speciation.
Collapse
Affiliation(s)
- Ryan M Ames
- University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
9
|
Transcript profiling of the phytotoxic response of wheat to the Fusarium mycotoxin deoxynivalenol. Mycotoxin Res 2011; 27:221-30. [PMID: 23605803 DOI: 10.1007/s12550-011-0099-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/24/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022]
Abstract
Deoxynivalenol (DON) is a trichothecene mycotoxin commonly produced by Fusarium graminearum and F. culmorum during infection of cereal plants, such as wheat and barley. This toxin is a fungal virulence factor that facilitates the development of Fusarium head blight (FHB) disease. Wheat cultivar (cv.) Remus is susceptible to DON; the toxin causes premature bleaching of spikelets and inhibits root growth. This study used custom-made wheat cDNA arrays to analyse the effect of DON on the transcriptome of heads of the toxin-sensitive wheat cv. Remus at both 4 and 24 h post-toxin treatment. DON-induced transcripts encoded an array of proteins collectively associated with a range of cellular functions, such as metabolite transformation and detoxification, the ubiquitin-proteasome proteolytic pathway, jasmonate biosynthesis and signalling, carbohydrate metabolism, and phenylpropanoid biosynthesis. This study is the first to demonstrate that the fungal virulence factor DON modulates jasmonate biosynthesis and signalling. It also highlights the fact that the toxin-mediated accumulation of transcripts associated with metabolite transformation and detoxification, proteolysis and phenylpropanoid accumulation is not unique to DON-resistant wheat genotypes. Therefore, the respective encoded proteins are likely part of the general wheat defence against DON. Comparative analysis of the results of this and other studies suggests that it is likely to be the rapidity and magnitude rather than the components of the response that are critical in determining resistance to DON and thus the spread of FHB disease in wheat heads.
Collapse
|
10
|
Jossé L, Li X, Coker RD, Gourlay CW, Evans IH. Transcriptomic and phenotypic analysis of the effects of T-2 toxin on Saccharomyces cerevisiae: evidence of mitochondrial involvement. FEMS Yeast Res 2010; 11:133-50. [DOI: 10.1111/j.1567-1364.2010.00699.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Müssig C, Schröder F, Usadel B, Lisso J. Structure and putative function of NFX1-like proteins in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:381-394. [PMID: 20522174 DOI: 10.1111/j.1438-8677.2009.00303.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The human NFX1 transcription factor constitutes a group of NFX1-type zinc finger proteins. It forms a central Cys-rich region with several NFX1-type zinc finger domains that have been shown to mediate DNA binding. Proteins with NFX1-type zinc fingers are found in protists, fungi, animals and plants, and may be ubiquitous in eukaryotes. This review discusses the structure and putative roles of NFX1-like proteins, with a focus on human NFX1 and Arabidopsis NFXL1 proteins. By means of manual sequence analysis and application of hidden Markov models, we demonstrate that NFX1-like proteins form a specific RING finger motif with a C(4)HC(3) Zn ligand signature and additional distinct features, suggesting that these proteins function as E3 ubiquitin ligases. Phylogenetic analysis revealed different clades of NFX1-like proteins. The plant proteins group into two distinct clades. The genomes of plants such as rice, Arabidopsis, poplar and grapevine encode one member of each clade, suggesting that the presence of two NFX1-like factors is sufficient in flowering plants. The Arabidopsis proteins presumably fine-tune opposed biotic and abiotic stress response pathways.
Collapse
Affiliation(s)
- C Müssig
- Universität Potsdam, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
12
|
Limson MV, Sweder KS. Rapamycin inhibits yeast nucleotide excision repair independently of tor kinases. Toxicol Sci 2009; 113:77-84. [PMID: 19805410 DOI: 10.1093/toxsci/kfp238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The yeast target of rapamycin (Tor) kinases, Tor1 and Tor2, belong to the phosphatidylinositol 3-kinase-related family of proteins, which are involved in the cellular response to DNA damage and changes in nutrient conditions. In contrast to yeast, many eukaryotes possess a single Tor kinase. Regardless of the number of Tor kinases in an organism, two distinct complexes involving Tor proteins exist in eukaryotes, TORC1 and TORC2. The yeast TORC1, containing Tor1 or Tor2, is sensitive to the antibiotic rapamycin. The yeast TORC2 is insensitive to rapamycin. We examined the influence of rapamycin treatment upon yeast transcription-coupled nucleotide excision repair in a gene transcribed by RNA polymerase II. We also examined tor mutants for their ability to perform transcription-coupled repair in the absence or presence of rapamycin. Ostensibly lacking TORC1 and TORC2 function, a tor1tor2(ts) mutant grown at the nonpermissive temperature exhibited similar rates of repair as the wild-type strain. However, repair of both strands in genes decreases in the wild-type strain and the tor1tor2(ts) mutant exposed to rapamycin. Rapamycin may be inhibiting DNA repair independently of the Tor kinases. In yeast, FPR1 encodes the rapamycin-binding protein Fpr1 that inhibits the TORC1 kinase in the presence of rapamycin. Fap1 competes with rapamycin for Fpr1 binding. Deletion of the FPR1 or FAP1 gene abolishes the inhibitory effect of rapamycin on repair. Thus, the decreased repair observed following rapamycin treatment is independent of TORC1/2 function and likely due to a function of Fap1. We suggest that Fap1 and peptidyl-prolyl isomerases, particularly Fpr1, function in the cellular response to genotoxic stress. Our findings have clinical implications for genetic toxicities associated with genotoxic agents when coadministered with rapamycin.
Collapse
Affiliation(s)
- Melvin V Limson
- Education Office, American Physiological Society, Bethesda, Maryland 20814-3991, USA
| | | |
Collapse
|
13
|
Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJP. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 2009; 9:44. [PMID: 19232129 PMCID: PMC2666651 DOI: 10.1186/1471-2148-9-44] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 02/21/2009] [Indexed: 01/05/2023] Open
Abstract
Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol), oxidative (H2O2 and menadione) and cell wall stresses (Calcofluor White and Congo Red). There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our data are consistent with the hypothesis that fungal stress signalling components have undergone rapid recent evolution to tune the stress responses in a niche-specific fashion.
Collapse
Affiliation(s)
- Elissavet Nikolaou
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Asano T, Masuda D, Yasuda M, Nakashita H, Kudo T, Kimura M, Yamaguchi K, Nishiuchi T. AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:450-64. [PMID: 18069941 DOI: 10.1111/j.1365-313x.2007.03353.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trichothecenes are a closely related family of phytotoxins that are produced by phytopathogenic fungi. In Arabidopsis, expression of AtNFXL1, a homologue of the putative human transcription repressor NF-X1, was significantly induced by application of type A trichothecenes, such as T-2 toxin. An atnfxl1 mutant growing on medium lacking trichothecenes showed no phenotype, whereas a hypersensitivity phenotype was observed in T-2 toxin-treated atnfxl1 mutant plants. Microarray analysis indicated that several defense-related genes (i.e. WRKYs, NBS-LRRs, EDS5, ICS1, etc.) were upregulated in T-2 toxin-treated atnfxl1 mutants compared with wild-type plants. In addition, enhanced salicylic acid (SA) accumulation was observed in T-2 toxin-treated atnfxl1 mutants, which suggests that AtNFXL1 functions as a negative regulator of these defense-related genes via an SA-dependent signaling pathway. We also found that expression of AtNFXL1 was induced by SA and flg22 treatment. Moreover, the atnfxl1 mutant was less susceptible to a compatible phytopathogen, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). Taken together, these results indicate that AtNFXL1 plays an important role in the trichothecene response, as well as the general defense response in Arabidopsis.
Collapse
Affiliation(s)
- Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lisso J, Altmann T, Müssig C. The AtNFXL1 gene encodes a NF-X1 type zinc finger protein required for growth under salt stress. FEBS Lett 2006; 580:4851-6. [PMID: 16905136 DOI: 10.1016/j.febslet.2006.07.079] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 11/28/2022]
Abstract
The human NF-X1 protein and homologous proteins in eukaryotes represent a class of transcription factors which are characterised by NF-X1 type zinc finger motifs. The Arabidopsis genome encodes two NF-X1 homologs, which we termed AtNFXL1 and AtNFXL2. Growth and survival was impaired in atnfxl1 knock-out mutants and AtNFXL1-antisense plants under salt stress in comparison to wild-type plants. In contrast, 35S: :AtNFXL1 plants showed higher survival rates. The AtNFXL2 protein potentially plays an antagonistic role. The Arabidopsis NF-X1 type zinc finger proteins likely are part of regulatory mechanisms, which protect major processes such as photosynthesis.
Collapse
Affiliation(s)
- Janina Lisso
- Universität Potsdam, Institut für Biochemie und Biologie, Genetik, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Golm, Germany
| | | | | |
Collapse
|
16
|
Weisman R, Finkelstein S, Choder M. Rapamycin blocks sexual development in fission yeast through inhibition of the cellular function of an FKBP12 homolog. J Biol Chem 2001; 276:24736-42. [PMID: 11335722 DOI: 10.1074/jbc.m102090200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FKBP12 is a ubiquitous and a highly conserved prolyl isomerase that binds the immunosuppressive drugs FK506 and rapamycin. Members of the FKBP12 family have been implicated in many processes that include intracellular protein folding, transport, and assembly. In the budding yeast Saccharomyces cerevisiae and in human T cells, rapamycin forms a complex with FKBP12 that inhibits cell cycle progression by inhibition of the TOR kinases. We reported previously that rapamycin does not inhibit the vegetative growth of the fission yeast Schizosaccharomyces pombe; however, it specifically inhibits its sexual development. Here we show that disruption of the S. pombe FKBP12 homolog, fkh1(+), at its chromosomal locus results in a mating-deficient phenotype that is highly similar to that obtained by treatment of wild type cells with rapamycin. A screen for fkh1 mutants that can confer rapamycin resistance identified five amino acids in Fkh1 that are critical for the effect of rapamycin in S. pombe. All five amino acids are located in the putative rapamycin binding pocket. Together, our findings indicate that Fkh1 has an important role in sexual development and serves as the target for rapamycin action in S. pombe.
Collapse
Affiliation(s)
- R Weisman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | |
Collapse
|
17
|
|