1
|
Milton ME, Cavanagh J. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis. J Mol Biol 2023; 435:167923. [PMID: 36535428 DOI: 10.1016/j.jmb.2022.167923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are notorious for their ability to protect bacteria from environmental challenges, most importantly the action of antibiotics. Bacillus subtilis is an extensively studied model organism used to understand the process of biofilm formation. A complex network of principal regulatory proteins including Spo0A, AbrB, AbbA, Abh, SinR, SinI, SlrR, and RemA, work in concert to transition B. subtilis from the free-swimming planktonic state to the biofilm state. In this review, we explore, connect, and summarize decades worth of structural and biochemical studies that have elucidated this protein signaling network. Since structure dictates function, unraveling aspects of protein molecular mechanisms will allow us to devise ways to exploit critical features of the biofilm regulatory pathway, such as possible therapeutic intervention. This review pools our current knowledge base of B. subtilis biofilm regulatory proteins and highlights potential therapeutic intervention points.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| |
Collapse
|
2
|
Connor MC, McGrath JW, McMullan G, Marks N, Guelbenzu M, Fairley DJ. Emergence of a non-sporulating secondary phenotype in Clostridium (Clostridioides) difficile ribotype 078 isolated from humans and animals. Sci Rep 2019; 9:13722. [PMID: 31548637 PMCID: PMC6757067 DOI: 10.1038/s41598-019-50285-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
Clostridium (Clostridioides) difficile is a Gram positive, spore forming anaerobic bacterium that is a leading cause of antibiotic associated diarrhoea in the developed world. C. difficile is a genetically diverse species that can be divided into 8 phylogenetically distinct clades with clade 5 found to be genetically distant from all others. Isolates with the PCR ribotype 078 belong to clade 5, and are often associated with C. difficile infection in both humans and animals. Colonisation of animals and humans by ribotype 078 raises questions about possible zoonotic transmission, and also the diversity of reservoirs for ribotype 078 strains within the environment. One of the key factors which enables C. difficile to be a successful, highly transmissible pathogen is its ability to produce oxygen resistant spores capable of surviving harsh conditions. Here we describe the existence of a non-sporulating variant of C. difficile ribotype 078 harbouring mutations leading to premature stop codons within the master regulator, Spo0A. As sporulation is imperative to the successful transmission of C. difficile this study was undertaken to investigate phenotypic characteristics of this asporogenous phenotype with regards to growth rate, antibiotic susceptibility, toxin production and biofilm formation.
Collapse
Affiliation(s)
- M C Connor
- School of Biological Sciences and the Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| | - J W McGrath
- School of Biological Sciences and the Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - G McMullan
- School of Biological Sciences and the Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - N Marks
- School of Biological Sciences and the Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - M Guelbenzu
- Veterinary Science Division, Agri-Food Biosciences Institute, Belfast, UK.,Animal Health Ireland, Carrick on Shannon, Republic of Ireland
| | - D J Fairley
- Department of Microbiology, Belfast Health & Social Care Trust, Belfast, UK
| |
Collapse
|
3
|
Davidson P, Eutsey R, Redler B, Hiller NL, Laub MT, Durand D. Flexibility and constraint: Evolutionary remodeling of the sporulation initiation pathway in Firmicutes. PLoS Genet 2018; 14:e1007470. [PMID: 30212463 PMCID: PMC6136694 DOI: 10.1371/journal.pgen.1007470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
The evolution of signal transduction pathways is constrained by the requirements of signal fidelity, yet flexibility is necessary to allow pathway remodeling in response to environmental challenges. A detailed understanding of how flexibility and constraint shape bacterial two component signaling systems is emerging, but how new signal transduction architectures arise remains unclear. Here, we investigate pathway remodeling using the Firmicute sporulation initiation (Spo0) pathway as a model. The present-day Spo0 pathways in Bacilli and Clostridia share common ancestry, but possess different architectures. In Clostridium acetobutylicum, sensor kinases directly phosphorylate Spo0A, the master regulator of sporulation. In Bacillus subtilis, Spo0A is activated via a four-protein phosphorelay. The current view favors an ancestral direct phosphorylation architecture, with the phosphorelay emerging in the Bacillar lineage. Our results reject this hypothesis. Our analysis of 84 broadly distributed Firmicute genomes predicts phosphorelays in numerous Clostridia, contrary to the expectation that the Spo0 phosphorelay is unique to Bacilli. Our experimental verification of a functional Spo0 phosphorelay encoded by Desulfotomaculum acetoxidans (Class Clostridia) further supports functional phosphorelays in Clostridia, which strongly suggests that the ancestral Spo0 pathway was a phosphorelay. Cross complementation assays between Bacillar and Clostridial phosphorelays demonstrate conservation of interaction specificity since their divergence over 2.7 BYA. Further, the distribution of direct phosphorylation Spo0 pathways is patchy, suggesting multiple, independent instances of remodeling from phosphorelay to direct phosphorylation. We provide evidence that these transitions are likely the result of changes in sporulation kinase specificity or acquisition of a sensor kinase with specificity for Spo0A, which is remarkably conserved in both architectures. We conclude that flexible encoding of interaction specificity, a phenotype that is only intermittently essential, and the recruitment of kinases to recognize novel environmental signals resulted in a consistent and repeated pattern of remodeling of the Spo0 pathway. Survival in a changing world requires signal transduction circuitry that can evolve to sense and respond to new environmental challenges. The Firmicute sporulation initiation (Spo0) pathway is a compelling example of a pathway with a circuit diagram that has changed over the course of evolution. In Clostridium acetobutylicum, a sensor kinase directly activates the master regulator of sporulation, Spo0A. In Bacillus subtilis, Spo0A is activated indirectly via a four-protein phosphorelay. These early observations suggested that the ancestral Spo0A was directly phosphorylated by a kinase in the earliest spore-former and that the Spo0 phosphorelay arose later in Bacilli via gain of additional proteins and interactions. Our analysis, based on a much larger set of genomes, surprisingly reveals phosphorelays, not only in Bacilli, but in many Clostridia. These findings support a model wherein sporulation was initiated by a Spo0 phosphorelay in the ancestral spore-former and the direct phosphorylation Spo0 pathways, which are observed in distinct sets of Clostridial taxa, are the result of convergent, reductive evolution. Further, our evidence suggests that these remodeling events were mediated by changes in kinase specificity, implicating flexible pathway remodeling, potentially combined with the recruitment of kinases, in Spo0 pathway evolution.
Collapse
Affiliation(s)
- Philip Davidson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Brendan Redler
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, Pennsylvania, United States of America
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
4
|
Crystal structure of the inactive state of the receiver domain of Spo0A from Paenisporosarcina sp. TG-14, a psychrophilic bacterium isolated from an Antarctic glacier. J Microbiol 2017; 55:464-474. [PMID: 28281198 DOI: 10.1007/s12275-017-6599-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
The two-component phosphorelay system is the most prevalent mechanism for sensing and transducing environmental signals in bacteria. Spore formation, which relies on the two-component phosphorelay system, enables the long-term survival of the glacial bacterium Paenisporosarcina sp. TG-14 in the extreme cold environment. Spo0A is a key response regulator of the phosphorelay system in the early stage of spore formation. The protein is composed of a regulatory N-terminal phospho-receiver domain and a DNA-binding C-terminal activator domain. We solved the three-dimensional structure of the unphosphorylated (inactive) form of the receiver domain of Spo0A (PaSpo0A-R) from Paenisporosarcina sp. TG-14. A structural comparison with phosphorylated (active form) Spo0A from Bacillus stearothermophilus (BsSpo0A) showed minor notable differences. A molecular dynamics study of a model of the active form and the crystal structures revealed significant differences in the α4 helix and the preceding loop region where phosphorylation occurs. Although an oligomerization study of PaSpo0A-R by analytical ultracentrifugation (AUC) has shown that the protein is in a monomeric state in solution, both crosslinking and crystal-packing analyses indicate the possibility of weak dimer formation by a previously undocumented mechanism. Collectively, these observations provide insight into the mechanism of phosphorylation-dependent activation unique to Spo0A.
Collapse
|
5
|
Hou X, Yu X, Du B, Liu K, Yao L, Zhang S, Selin C, Fernando WGD, Wang C, Ding Y. A single amino acid mutation in Spo0A results in sporulation deficiency of Paenibacillus polymyxa SC2. Res Microbiol 2016; 167:472-9. [PMID: 27208661 DOI: 10.1016/j.resmic.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022]
Abstract
Sporulating bacteria such as Bacillus subtilis and Paenibacillus polymyxa exhibit sporulation deficiencies during their lifetime in a laboratory environment. In this study, spontaneous mutants SC2-M1 and SC2-M2, of P. polymyxa SC2 lost the ability to form endospores. A global genetic and transcriptomic analysis of wild-type SC2 and spontaneous mutants was carried out. Genome resequencing analysis revealed 14 variants in the genome of SC2-M1, including three insertions and deletions (indels), 10 single nucleotide variations (SNVs) and one intrachromosomal translocation (ITX). There were nine variants in the genome of SC2-M2, including two indels and seven SNVs. Transcriptomic analysis revealed that 266 and 272 genes showed significant differences in expression in SC2-M1 and SC2-M2, respectively, compared with the wild-type SC2. Besides sporulation-related genes, genes related to exopolysaccharide biosynthesis (eps), antibiotic (fusaricidin) synthesis, motility (flgB) and other functions were also affected in these mutants. In SC2-M2, reversion of spo0A resulted in the complete recovery of sporulation. This is the first global analysis of mutations related to sporulation deficiency in P. polymyxa. Our results demonstrate that a SNV within spo0A caused the sporulation deficiency of SC2-M2 and provide strong evidence that an arginine residue at position 211 is essential for the function of Spo0A.
Collapse
Affiliation(s)
- Xiaoyang Hou
- College of Life Sciences, Shandong Agricultural University/Shandong Key Laboratory of Agricultural Microbiology, Taian 271018, China
| | - Xiaoning Yu
- College of Life Sciences, Shandong Agricultural University/Shandong Key Laboratory of Agricultural Microbiology, Taian 271018, China
| | - Binghai Du
- College of Life Sciences, Shandong Agricultural University/Shandong Key Laboratory of Agricultural Microbiology, Taian 271018, China
| | - Kai Liu
- College of Life Sciences, Shandong Agricultural University/Shandong Key Laboratory of Agricultural Microbiology, Taian 271018, China
| | - Liangtong Yao
- College of Life Sciences, Shandong Agricultural University/Shandong Key Laboratory of Agricultural Microbiology, Taian 271018, China
| | - Sicheng Zhang
- College of Life Sciences, Shandong Agricultural University/Shandong Key Laboratory of Agricultural Microbiology, Taian 271018, China
| | - C Selin
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - W G D Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University/Shandong Key Laboratory of Agricultural Microbiology, Taian 271018, China; Mailing address: College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| | - Yanqin Ding
- College of Life Sciences, Shandong Agricultural University/Shandong Key Laboratory of Agricultural Microbiology, Taian 271018, China; Mailing address: College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| |
Collapse
|
6
|
Sandoval NR, Venkataramanan KP, Groth TS, Papoutsakis ET. Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:227. [PMID: 26705421 PMCID: PMC4690370 DOI: 10.1186/s13068-015-0408-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Biodiesel production results in crude glycerol waste from the transesterification of fatty acids (10 % w/w). The solventogenic Clostridium pasteurianum, an anaerobic Firmicute, can produce butanol from glycerol as the sole carbon source. Coupling butanol fermentation with biodiesel production can improve the overall economic viability of biofuels. However, crude glycerol contains growth-inhibiting byproducts which reduce feedstock consumption and solvent production. RESULTS To obtain a strain with improved characteristics, a random mutagenesis and directed evolution selection technique was used. A wild-type C. pasteurianum (ATCC 6013) culture was chemically mutagenized, and the resulting population underwent 10 days of selection in increasing concentrations of crude glycerol (80-150 g/L). The best-performing mutant (M150B) showed a 91 % increase in butanol production in 100 g/L crude glycerol compared to the wild-type strain, as well as increased growth rate, a higher final optical density, and less production of the side product PDO (1,3-propanediol). Wild-type and M150B strains were sequenced via Single Molecule Real-Time (SMRT) sequencing. Mutations introduced to the M150B genome were identified by sequence comparison to the wild-type and published closed sequences. A major mutation (a deletion) in the gene of the master transcriptional regulator of sporulation, Spo0A, was identified. A spo0A single gene knockout strain was constructed using a double--crossover genome-editing method. The Spo0A-deficient strain showed similar tolerance to crude glycerol as the evolved mutant strain M150B. Methylation patterns on genomic DNA identified by SMRT sequencing were used to transform plasmid DNA to overcome the native C. pasteurianum restriction endonuclease. CONCLUSIONS Solvent production in the absence of Spo0A shows C. pasteurianum differs in solvent-production regulation compared to other solventogenic Clostridium. Growth-associated butanol production shows C. pasteurianum to be an attractive option for further engineering as it may prove a better candidate for butanol production through continuous fermentation.
Collapse
Affiliation(s)
- Nicholas R. Sandoval
- />Department of Chemical and Biomolecular Engineering and the Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Keerthi P. Venkataramanan
- />Department of Chemical and Biomolecular Engineering and the Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Theodore S. Groth
- />Department of Chemical and Biomolecular Engineering and the Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Eleftherios T. Papoutsakis
- />Department of Chemical and Biomolecular Engineering and the Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
- />Department of Biological Sciences, University of Delaware, Newark, USA
| |
Collapse
|
7
|
Abstract
Bacterial endospores are the most resistant cell type known to humans, as they are able to withstand extremes of temperature, pressure, chemical injury, and time. They are also of interest because the endospore is the infective particle in a variety of human and livestock diseases. Endosporulation is characterized by the morphogenesis of an endospore within a mother cell. Based on the genes known to be involved in endosporulation in the model organism Bacillus subtilis, a conserved core of about 100 genes was derived, representing the minimal machinery for endosporulation. The core was used to define a genomic signature of about 50 genes that are able to distinguish endospore-forming organisms, based on complete genome sequences, and we show this 50-gene signature is robust against phylogenetic proximity and other artifacts. This signature includes previously uncharacterized genes that we can now show are important for sporulation in B. subtilis and/or are under developmental control, thus further validating this genomic signature. We also predict that a series of polyextremophylic organisms, as well as several gut bacteria, are able to form endospores, and we identified 3 new loci essential for sporulation in B. subtilis: ytaF, ylmC, and ylzA. In all, the results support the view that endosporulation likely evolved once, at the base of the Firmicutes phylum, and is unrelated to other bacterial cell differentiation programs and that this involved the evolution of new genes and functions, as well as the cooption of ancestral, housekeeping functions.
Collapse
|
8
|
Boonstra M, de Jong IG, Scholefield G, Murray H, Kuipers OP, Veening JW. Spo0A regulates chromosome copy number during sporulation by directly binding to the origin of replication inBacillus subtilis. Mol Microbiol 2013; 87:925-38. [DOI: 10.1111/mmi.12141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Mirjam Boonstra
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| | - Imke G. de Jong
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| | - Graham Scholefield
- Centre for Bacterial Cell Biology; Institute for Cell and Molecular Biosciences; Newcastle University; Newcastle Upon Tyne; NE2 4AX; UK
| | - Heath Murray
- Centre for Bacterial Cell Biology; Institute for Cell and Molecular Biosciences; Newcastle University; Newcastle Upon Tyne; NE2 4AX; UK
| | | | - Jan-Willem Veening
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| |
Collapse
|
9
|
Rosenbusch KE, Bakker D, Kuijper EJ, Smits WK. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. PLoS One 2012; 7:e48608. [PMID: 23119071 PMCID: PMC3485338 DOI: 10.1371/journal.pone.0048608] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/26/2012] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a Gram positive, anaerobic bacterium that can form highly resistant endospores. The bacterium is the causative agent of C. difficile infection (CDI), for which the symptoms can range from a mild diarrhea to potentially fatal pseudomembranous colitis and toxic megacolon. Endospore formation in Firmicutes, including C. difficile, is governed by the key regulator for sporulation, Spo0A. In Bacillus subtilis, this transcription factor is also directly or indirectly involved in various other cellular processes. Here, we report that C. difficile Spo0A shows a high degree of similarity to the well characterized B. subtilis protein and recognizes a similar binding sequence. We find that the laboratory strain C. difficile 630Δerm contains an 18bp-duplication near the DNA-binding domain compared to its ancestral strain 630. In vitro binding assays using purified C-terminal DNA binding domain of the C. difficile Spo0A protein demonstrate direct binding to DNA upstream of spo0A and sigH, early sporulation genes and several other putative targets. In vitro binding assays suggest that the gene encoding the major clostridial toxin TcdB may be a direct target of Spo0A, but supernatant derived from a spo0A negative strain was no less toxic towards Vero cells than that obtained from a wild type strain, in contrast to previous reports. These results identify for the first time direct (putative) targets of the Spo0A protein in C. difficile and make a positive effect of Spo0A on production of the large clostridial toxins unlikely.
Collapse
Affiliation(s)
- Katharina E. Rosenbusch
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis Bakker
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ed J. Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
10
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|
11
|
An A257V mutation in the bacillus subtilis response regulator Spo0A prevents regulated expression of promoters with low-consensus binding sites. J Bacteriol 2009; 191:5489-98. [PMID: 19581368 DOI: 10.1128/jb.00590-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus species, the master regulator of sporulation is Spo0A. Spo0A functions by both activating and repressing transcription initiation from target promoters that contain 0A boxes, the binding sites for Spo0A. Several classes of spo0A mutants have been isolated, and the molecular basis for their phenotypes has been determined. However, the molecular basis of the Spo0A(A257V) substitution, representative of an unusual phenotypic class, is not understood. Spo0A(A257V) is unusual in that it abolishes sporulation; in vivo, it fails to activate transcription from key stage II promoters yet retains the ability to repress the abrB promoter. To determine how Spo0A(A257V) retains the ability to repress but not stimulate transcription, we performed a series of in vitro and in vivo assays. We found unexpectedly that the mutant protein both stimulated transcription from the spoIIG promoter and repressed transcription from the abrB promoter, albeit twofold less than the wild type. A DNA binding analysis of Spo0A(A257V) showed that the mutant protein was less able to tolerate alterations in the sequence and arrangement of its DNA binding sites than the wild-type protein. In addition, we found that Spo0A(A257V) could stimulate transcription of a mutant spoIIG promoter in vivo in which low-consensus binding sites were replaced by high-consensus binding sites. We conclude that Spo0A(A257V) is able to bind to and regulate the expression of only genes whose promoters contain high-consensus binding sites and that this effect is sufficient to explain the observed sporulation defect.
Collapse
|
12
|
de Been M, Bart MJ, Abee T, Siezen RJ, Francke C. The identification of response regulator-specific binding sites reveals new roles of two-component systems in Bacillus cereus and closely related low-GC Gram-positives. Environ Microbiol 2008; 10:2796-809. [PMID: 18662309 DOI: 10.1111/j.1462-2920.2008.01700.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In bacteria, environmental challenges are often translated into a transcriptional response via the cognate response regulators (RRs) of specialized two-component systems (TCSs). A phylogenetic footprinting/shadowing approach was designed and used to identify many novel RR-specific operators for species of the Bacillus cereus group and related Gram-positives. Analysis of the operator sequences revealed characteristic traits for each RR subfamily. For instance, operators related to the largest subfamily (OmpR) typically consisted of direct repeats (e.g. TTAAGA-N5-TTAAGA), whereas operators related to the second largest family (NarL) consisted of inverted repeats (e.g. ATGACA-N2-TGTCAT). This difference indicates a fundamentally different organization of the bound RR dimers between the two subfamilies. Moreover, the identification of the specific operator motifs allowed relating several RRs to a minimal regulon and thereby to a characteristic transcriptional response. Mostly, these regulons comprised genes encoding transport systems, suggesting a direct coupling of stimulus perception to the transport of target compounds. New biological roles could be attributed to various TCSs, including roles in cytochrome c biogenesis (HssRS), transport of carbohydrates, peptides and/or amino acids (YkoGH, LytSR), and resistance to toxic ions (LiaSR), antimicrobial peptides (BceRS) and beta-lactam antibiotics (BacRS, YcbLM). As more and more bacterial genome sequences are becoming available, the use of comparative analyses such as the approach applied in this study will further increase our knowledge of bacterial signal transduction mechanisms and provide directions for the assessment of their role in bacterial performance and survival strategies.
Collapse
Affiliation(s)
- Mark de Been
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Seredick SD, Spiegelman GB. Bacillus subtilis RNA Polymerase Recruits the Transcription Factor Spo0A∼P to Stabilize a Closed Complex during Transcription Initiation. J Mol Biol 2007; 366:19-35. [PMID: 17157871 DOI: 10.1016/j.jmb.2006.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The Bacillus subtilis response regulator Spo0A approximately P activates transcription from the spoIIG promoter by stimulating a rate-limiting transition between the initial interaction of RNA polymerase with the promoter and initiation of RNA synthesis. Previous work showed that Spo0A exerts its effect on RNA polymerase prior to the formation of an open complex in which the DNA strands at the initiation site have been separated. To isolate the effect of Spo0A approximately P on events prior to DNA strand separation at spoIIG we studied RNA polymerase binding to DNA fragments that were truncated to contain only promoter sequences 5' to the -10 element by electrophoretic mobility shift assays. RNA polymerase bound to these fragments readily though highly reversibly, and polymerase-promoter complexes recruited Spo0A approximately P. Sequence-independent interactions between the RNA polymerase and the DNA upstream of the core promoter were important for RNA polymerase binding and essential for Spo0A approximately P recruitment, while sequence-specific Spo0A approximately P-DNA interactions positioned and stabilized RNA polymerase binding to the DNA. Spo0A approximately P decreased the dissociation rate of the complexes formed with truncated promoter templates which could contribute to the means by which Spo0A approximately P stimulates spoIIG expression.
Collapse
Affiliation(s)
- Steve D Seredick
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
14
|
Galperin MY, Nikolskaya AN. Identification of sensory and signal-transducing domains in two-component signaling systems. Methods Enzymol 2007; 422:47-74. [PMID: 17628134 PMCID: PMC4445681 DOI: 10.1016/s0076-6879(06)22003-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The availability of complete genome sequences of diverse bacteria and archaea makes comparative sequence analysis a powerful tool for analyzing signal transduction systems encoded in these genomes. However, most signal transduction proteins consist of two or more individual protein domains, which significantly complicates their functional annotation and makes automated annotation of these proteins in the course of large-scale genome sequencing projects particularly unreliable. This chapter describes certain common-sense protocols for sequence analysis of two-component histidine kinases and response regulators, as well as other components of the prokaryotic signal transduction machinery: Ser/Thr/Tyr protein kinases and protein phosphatases, adenylate and diguanylate cyclases, and c-di-GMP phosphodiesterases. These protocols rely on publicly available computational tools and databases and can be utilized by anyone with Internet access.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
15
|
Castilla-Llorente V, Muñoz-Espín D, Villar L, Salas M, Meijer WJJ. Spo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication. EMBO J 2006; 25:3890-9. [PMID: 16888621 PMCID: PMC1553192 DOI: 10.1038/sj.emboj.7601266] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 07/10/2006] [Indexed: 11/09/2022] Open
Abstract
The transcription factor Spo0A is a master regulator for entry into sporulation in Bacillus subtilis and also regulates expression of the virulent B. subtilis phage phi29. Here, we describe a novel function for Spo0A, being an inhibitor of DNA replication of both, the phi29 genome and the B. subtilis chromosome. Binding of Spo0A near the phi29 DNA ends, constituting the two origins of replication of the linear phi29 genome, prevents formation of phi29 protein p6-nucleoprotein initiation complex resulting in inhibition of phi29 DNA replication. At the B. subtilis oriC, binding of Spo0A to specific sequences, which mostly coincide with DnaA-binding sites, prevents open complex formation. Thus, by binding to the origins of replication, Spo0A prevents the initiation step of DNA replication of either genome. The implications of this novel role of Spo0A for phage phi29 development and the bacterial chromosome replication during the onset of sporulation are discussed.
Collapse
Affiliation(s)
- Virginia Castilla-Llorente
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Daniel Muñoz-Espín
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Wilfried J J Meijer
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
- Facultad de Ciencias, Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain. Tel.: (+34) 91 497 8434; Fax: (+34) 91 497 8490; E-mail:
| |
Collapse
|
16
|
Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 2006; 188:4169-82. [PMID: 16740923 PMCID: PMC1482966 DOI: 10.1128/jb.01887-05] [Citation(s) in RCA: 376] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/28/2006] [Indexed: 11/20/2022] Open
Abstract
CheY-like phosphoacceptor (or receiver [REC]) domain is a common module in a variety of response regulators of the bacterial signal transduction systems. In this work, 4,610 response regulators, encoded in complete genomes of 200 bacterial and archaeal species, were identified and classified by their domain architectures. Previously uncharacterized output domains were analyzed and, in some cases, assigned to known domain families. Transcriptional regulators of the OmpR, NarL, and NtrC families were found to comprise almost 60% of all response regulators; transcriptional regulators with other DNA-binding domains (LytTR, AraC, Spo0A, Fis, YcbB, RpoE, and MerR) account for an additional 6%. The remaining one-third is represented by the stand-alone REC domain (approximately 14%) and its combinations with a variety of enzymatic (GGDEF, EAL, HD-GYP, CheB, CheC, PP2C, and HisK), RNA-binding (ANTAR and CsrA), protein- or ligand-binding (PAS, GAF, TPR, CAP_ED, and HPt) domains, or newly described domains of unknown function. The diversity of domain architectures and the abundance of alternative domain combinations suggest that fusions between the REC domain and various output domains is a widespread evolutionary mechanism that allows bacterial cells to regulate transcription, enzyme activity, and/or protein-protein interactions in response to environmental challenges. The complete list of response regulators encoded in each of the 200 analyzed genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/RRcensus.html.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
17
|
Stephenson K, Lewis RJ. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2004.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Abstract
Sporulation in the Gram-positive bacterium, Bacillus subtilis, has been used as an excellent model system to study cell differentiation for almost half a century. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although many basic aspects of this process are now understood in great detail, including the crystal and NMR structures of some of the key proteins and their complexes, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or are only described by 'controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely be increased if we were to include sporulation processes in the Gram-negative spore formers. Spore formers have great potential in applied research. They have been used for many years as biodosimeters and as natural insecticides, exploited in the industrial production of enzymes, antibiotics, used as probiotics and, more, exploited as possible vectors for drug delivery, vaccine antigens and other immunomodulating molecules. This report describes these and other aspects of current fundamental and applied spore research that were presented at European Spores Conference held in Smolenice Castle, Slovakia, June 2004.
Collapse
Affiliation(s)
- Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta, 845 51 Bratislava 45, Slovak Republic.
| | | | | |
Collapse
|
19
|
Muchová K, Lewis RJ, Perecko D, Brannigan JA, Ladds JC, Leech A, Wilkinson AJ, Barák I. Dimer-induced signal propagation in Spo0A. Mol Microbiol 2004; 53:829-42. [PMID: 15255896 DOI: 10.1111/j.1365-2958.2004.04171.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spo0A, the response regulator protein controlling the initiation of sporulation in Bacillus, has two distinct domains, an N-terminal phosphoacceptor (or receiver) domain and a C-terminal DNA-binding (or effector) domain. The phosphoacceptor domain mediates dimerization of Spo0A on phosphorylation. A comparison of the crystal structures of phosphorylated and unphosphorylated response regulators suggests a mechanism of activation in which structural changes originating at the phosphorylatable aspartate extend to the alpha4beta5alpha5 surface of the protein. In particular, the data show an important role in downstream signalling for a conserved aromatic residue (Phe-105 in Spo0A), the conformation of which alters upon phosphorylation. In this study, we have prepared a Phe-105 to Ala mutant to probe the contribution of this residue to Spo0A function. We have also made an alanine substitution of the neighbouring residue Tyr-104 that is absolutely conserved in the Spo0As of spore-forming Bacilli. The spo0A(Y104A) and spo0A(F105A) alleles severely impair sporulation in vivo. In vitro phosphorylation of the purified proteins by phosphoramidate is unaffected, but dimerization and DNA binding are abolished by the mutations. We have identified intragenic suppressor mutations of spo0A(F105A) and shown that these second-site mutations in the purified proteins restore phosphorylation-dependent dimer formation. Our data support a model in which dimerization and signal transduction between the two domains of Spo0A are mediated principally by the alpha4beta5alpha5 signalling surface in the receiver domain.
Collapse
Affiliation(s)
- K Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava 45, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shanahan HP, Garcia MA, Jones S, Thornton JM. Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Res 2004; 32:4732-41. [PMID: 15356290 PMCID: PMC519102 DOI: 10.1093/nar/gkh803] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/17/2004] [Accepted: 08/17/2004] [Indexed: 01/10/2023] Open
Abstract
Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix-turn-helix (HTH), helix-hairpin-helix (HhH) and helix-loop-helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif.
Collapse
Affiliation(s)
- Hugh P Shanahan
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | |
Collapse
|
21
|
Liu J, Tan K, Stormo GD. Computational identification of the Spo0A-phosphate regulon that is essential for the cellular differentiation and development in Gram-positive spore-forming bacteria. Nucleic Acids Res 2004; 31:6891-903. [PMID: 14627822 PMCID: PMC290249 DOI: 10.1093/nar/gkg879] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spo0A-phosphate is essential for the initiation of cellular differentiation and developmental processes in Gram-positive spore-forming bacteria. Here we combined comparative genomics with analyses of microarray expression profiles to identify the Spo0A-phosphate regulon in Bacillus subtilis. The consensus Spo0A-phosphate DNA-binding motif identified from the training set based on different computational algorithms is an 8 bp sequence, TTGTCGAA. The same motif was identified by aligning the upstream regulatory sequences of spo0A-dependent genes obtained from the expression profile of Sad67 (a constitutively active form of Spo0A) and their orthologs. After the transcription units (TUs) having putative Spo0A-phosphate binding sites were obtained, conservation of regulons among the genomes of B.subtilis, Bacillus halodurans and Bacillus anthracis, and expression profiles were employed to identify the most confident predictions. Besides genes already known to be directly under the control of Spo0A-phosphate, 276 novel members (organized in 109 TUs) of the Spo0A-phosphate regulon in B.subtilis are predicted in this study. The sensitivity and specificity of our predictions are estimated based on known sites and combinations of different types of evidence. Further characterization of the novel candidates will provide information towards understanding the role of Spo0A-phosphate in the sporulation process, as well as the entire genetic network governing cellular differentiation and developmental processes in B.subtilis.
Collapse
Affiliation(s)
- Jiajian Liu
- Department of Genetics, Washington University Medical School, St Louis, MO 63110, USA
| | | | | |
Collapse
|
22
|
Paredes CJ, Rigoutsos I, Papoutsakis ET. Transcriptional organization of the Clostridium acetobutylicum genome. Nucleic Acids Res 2004; 32:1973-81. [PMID: 15060177 PMCID: PMC390361 DOI: 10.1093/nar/gkh509] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prokaryotic genes are frequently organized in multicistronic operons (or transcriptional units, TUs), and usually the regulatory motifs for the whole TU are located upstream of the first TU gene. Although the number of sequenced genomes has increased dramatically, experimental information on TU organization is extremely limited. Even for organisms as extensively studied as Escherichia coli and Bacillus subtilis, TU annotation is far from complete. It therefore becomes imperative to rely on computational approaches to complement experimental information. Here we present a TU map for the obligate anaerobe Clostridium acetobutylicum ATCC 824. This map is largely based on the distance between pairs of consecutive genes but enhanced and refined by predictions of several types of promoters (sigmaA, sigmaE and sigmaF/G) and rho-independent terminator structures. Based on the set of known C.acetobutylicum TUs, the presented TU map offers an 88% prediction accuracy.
Collapse
Affiliation(s)
- Carlos J Paredes
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
23
|
Kumar A, Brannigan JA, Moran CP. Alpha-helix E of Spo0A is required for sigmaA- but not for sigmaH-dependent promoter activation in Bacillus subtilis. J Bacteriol 2004; 186:1078-83. [PMID: 14762002 PMCID: PMC344211 DOI: 10.1128/jb.186.4.1078-1083.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At the onset of endospore formation in Bacillus subtilis, the DNA binding protein Spo0A activates transcription from two types of promoters. The first type includes the spoIIG and spoIIE promoters, which are used by sigma(A)-RNA polymerase, whereas the second type includes the spoIIA promoter, which is used by RNA polymerase containing the secondary sigma factor sigma(H). Previous genetic analyses have identified specific amino acids in alpha-helix E of Spo0A that are important for activation of Spo0A-dependent, sigma(A)-dependent promoters. However, these amino acids are not required for activation of the sigma(H)-dependent spoIIA promoter. We now report the effects of additional single-amino-acid substitutions and the effects of deletions in alpha-helix E. The effects of alanine substitutions revealed one new position (239) in Spo0A that appears to be specifically required for activation of the sigma(A)-dependent promoters. Based on the effects of a deletion mutation, we suggest that alpha-helix E in Spo0A is not directly involved in interaction with sigma(H)-RNA polymerase.
Collapse
Affiliation(s)
- Amrita Kumar
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
24
|
Seredick SD, Spiegelman GB. The Bacillus subtilis response regulator Spo0A stimulates sigmaA-dependent transcription prior to the major energetic barrier. J Biol Chem 2004; 279:17397-403. [PMID: 14976210 DOI: 10.1074/jbc.m311190200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the spoIIG promoter phosphorylated Spo0A (Spo0A approximately P) binds 0A boxes overlapping the -35 element, interacting with RNA polymerase to facilitate open complex formation. We have compared in vitro transcription from a series of heteroduplex templates containing denatured regions within the promoters. Transcription from heteroduplex templates with 12, 8, or 6 base pairs denatured was independent of Spo0A approximately P, but heteroduplexes with 4 or 2 base pairs denatured required Spo0A approximately P for maximal levels of transcription. Investigation of the thermal dependence of transcription suggested that strand separation was the primary thermodynamic barrier to transcription initiation but indicated that Spo0A approximately P does not reduce this energetic barrier. Kinetic assays revealed that Spo0A approximately P stimulated both the rate of formation of initiated complexes as well as increasing the number of complexes capable of initiating transcription. These results imply that Spo0A approximately P stimulates transcription at least in part by stabilizing the RNA polymerase-spoIIG complex until contacts between RNA polymerase and the -10 element induce strand separation.
Collapse
Affiliation(s)
- Steve D Seredick
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
25
|
Kumar A, Buckner Starke C, DeZalia M, Moran CP. Surfaces of Spo0A and RNA polymerase sigma factor A that interact at the spoIIG promoter in Bacillus subtilis. J Bacteriol 2004; 186:200-6. [PMID: 14679239 PMCID: PMC303461 DOI: 10.1128/jb.186.1.200-206.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, the DNA binding protein Spo0A activates transcription from two classes of promoters, those used by RNA polymerase containing the primary sigma factor, sigma(A) (e.g., spoIIG), and those used by RNA polymerase containing the secondary sigma factor, sigma(H) (e.g., spoIIA). Several single amino acid substitutions in region 4 of sigma(A) define positions in sigma(A) that are specifically required for Spo0A-dependent promoter activation. Similarly, several single amino acid substitutions in Spo0A define positions in Spo0A that are required for sigma(A)-dependent promoter activation but not for other functions of Spo0A. It is unknown whether these amino acids in Spo0A interact directly with those in region 4 of sigma(A) or whether they interact with another subunit of RNA polymerase to effect promoter activation. Here we report the identification of a new amino acid in region 4 of sigma(A), arginine at position 355 (R355), that is involved in Spo0A-dependent promoter activation. To further investigate the role of R355, we used the coordinates of Spo0A and sigma region 4, each in complex with DNA, to build a model for the interaction of sigma(A) and Spo0A at the spoIIG promoter. We tested the model by examining the effects of amino acid substitutions in the putative interacting surfaces of these molecules. As predicted by the model, we found genetic evidence for interaction of R355 of sigma(A) with glutamine at position 221 of Spo0A. These results appear to define the surfaces of Spo0A and sigma(A) that directly interact during activation of the spoIIG promoter.
Collapse
Affiliation(s)
- Amrita Kumar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
26
|
Lee YH, Nadaraia S, Gu D, Becker DF, Tanner JJ. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein. NATURE STRUCTURAL BIOLOGY 2003; 10:109-14. [PMID: 12514740 PMCID: PMC3727246 DOI: 10.1038/nsb885] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 11/25/2002] [Indexed: 11/09/2022]
Abstract
The PutA flavoprotein from Escherichia coli plays multiple roles in proline catabolism by functioning as a membrane-associated bi-functional enzyme and a transcriptional repressor of proline utilization genes. The human homolog of the PutA proline dehydrogenase (PRODH) domain is critical in p53-mediated apoptosis and schizophrenia. Here we report the crystal structure of a 669-residue truncated form of PutA that shows both PRODH and DNA-binding activities, representing the first structure of a PutA protein and a PRODH enzyme from any organism. The structure is a domain-swapped dimer with each subunit comprising three domains: a helical dimerization arm, a 120-residue domain containing a three-helix bundle similar to that in the helix-turn-helix superfamily of DNA-binding proteins and a beta/alpha-barrel PRODH domain with a bound lactate inhibitor. Analysis of the structure provides insight into the mechanism of proline oxidation to pyrroline-5-carboxylate, and functional studies of a mutant protein suggest that the DNA-binding domain is located within the N-terminal 261 residues of E. coli PutA.
Collapse
Affiliation(s)
- Yong-Hwan Lee
- Department of Chemistry and Biochemistry, University of Missouri-Columbia, 65211, USA
| | | | | | | | | |
Collapse
|
27
|
Blaskovic D, Barák I. Two-vector assay as a tool for examining Spo0A gene transcription regulation. J Microbiol Methods 2002; 51:379-85. [PMID: 12223298 DOI: 10.1016/s0167-7012(02)00110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have modified an assay using two compatible vectors that coexist in Escherichia coli cells and applied it in the investigation of the transcriptional activity of Spo0A, a key regulator of sporulation in Bacillus subtilis. We have chosen the promoters of the Spo0A dependent genes, spoIIE and spoIIA, involved in sporulation, in order to study the transcription activity solely of the DNA binding domain of Spo0A. We have prepared the two-vector system so that one vector contained the cloned C-Spo0A under the control of an inducible promoter, and the second vector (the promoter probe vector), was composed of the Spo0A dependent spoIIE and spoIIA promoters. Using this two-vector system in E. coli, we proved that C-Spo0A is able to interact with the E. coli transcription apparatus, recognizes both promoters and activates transcription from these promoters.
Collapse
Affiliation(s)
- Dusan Blaskovic
- Institute of Molecular Biology, Slovak Academy of Sciences, 842 51 Bratislava, Slovak Republic
| | | |
Collapse
|
28
|
Sippl MJ, Lackner P, Domingues FS, Prlić A, Malik R, Andreeva A, Wiederstein M. Assessment of the CASP4 fold recognition category. Proteins 2002; Suppl 5:55-67. [PMID: 11835482 DOI: 10.1002/prot.10006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present the assessment of the CASP4 fold recognition category. The tasks we had to execute include the splitting of multidomain targets into single domains, the classification of target domains in terms of prediction categories, the numerical evaluation of predictions, the mapping of numerical scores to quality indices, the ranking of predictors, the selection of top-performing groups, and the analysis and critical discussion of the state of the art in this field. The 125 fold recognition groups were assessed by a total score that summarizes their performance over all targets and a quality score reflecting the average quality of the submitted models. Most of the top-performing groups achieved respectable results on both scores simultaneously. Several groups submitted models that were much closer to the respective target structures than any of the known folds in the Protein Data Bank. The CASP4 assessment included the automated servers of the parallel CAFASP experiment. For the total score, the highest rank achieved by a fully automated server is 12. Two thirds of the predictors have rather low scores.
Collapse
Affiliation(s)
- M J Sippl
- Center for Applied Molecular Engineering, Institute for Chemistry and Biochemistry, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhao H, Msadek T, Zapf J, Hoch JA, Varughese KI. DNA complexed structure of the key transcription factor initiating development in sporulating bacteria. Structure 2002; 10:1041-50. [PMID: 12176382 DOI: 10.1016/s0969-2126(02)00803-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sporulation in Bacillus species, the ultimate bacterial adaptive response, requires the precisely coordinated expression of a complex genetic pathway, and is initiated through the accumulation of the phosphorylated form of Spo0A, a pleiotropic response regulator transcription factor. Spo0A controls the transcription of several hundred genes in all spore-forming Bacilli including genes for sporulation and toxin regulation in pathogens such as Bacillus anthracis. The crystal structure of the effector domain of Spo0A from Bacillus subtilis in complex with its DNA target was determined. In the crystal lattice, two molecules form a tandem dimer upon binding to adjacent sites on DNA. The protein:protein and protein:DNA interfaces revealed in the crystal provide a basis for interpreting the transcription activation process and for the design of drugs to counter infections by these bacteria.
Collapse
Affiliation(s)
- Haiyan Zhao
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
30
|
Crivelli S, Eskow E, Bader B, Lamberti V, Byrd R, Schnabel R, Head-Gordon T. A physical approach to protein structure prediction. Biophys J 2002; 82:36-49. [PMID: 11751294 PMCID: PMC1302447 DOI: 10.1016/s0006-3495(02)75372-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We describe our global optimization method called Stochastic Perturbation with Soft Constraints (SPSC), which uses information from known proteins to predict secondary structure, but not in the tertiary structure predictions or in generating the terms of the physics-based energy function. Our approach is also characterized by the use of an all atom energy function that includes a novel hydrophobic solvation function derived from experiments that shows promising ability for energy discrimination against misfolded structures. We present the results obtained using our SPSC method and energy function for blind prediction in the 4th Critical Assessment of Techniques for Protein Structure Prediction competition, and show that our approach is more effective on targets for which less information from known proteins is available. In fact our SPSC method produced the best prediction for one of the most difficult targets of the competition, a new fold protein of 240 amino acids.
Collapse
Affiliation(s)
- Silvia Crivelli
- Physical Biosciences and NERSC Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bourret RB, Charon NW, Stock AM, West AH. Bright lights, abundant operons--fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction: review of the BLAST meeting, Cuernavaca, Mexico, 14 to 19 January 2001. J Bacteriol 2002; 184:1-17. [PMID: 11741839 PMCID: PMC134778 DOI: 10.1128/jb.184.1.1-17.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA
| | | | | | | |
Collapse
|
32
|
Jarmer H, Larsen TS, Krogh A, Saxild HH, Brunak S, Knudsen S. Sigma A recognition sites in the Bacillus subtilis genome. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2417-2424. [PMID: 11535782 DOI: 10.1099/00221287-147-9-2417] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A hidden Markov model of sigma(A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma(A) recognition sites. This work suggests that more information exists at the initiation site of transcription in both types of promoters than previously thought. When tested on the entire B. subtilis genome, the model predicts that approximately half of the sigma(A) recognition sites are of the extended type. Some of the response-regulator aspartate phosphatases were among the predictions of promoters containing extended sites. The expression of rapA and rapB was confirmed by site-directed mutagenesis to depend on the extended -10 region.
Collapse
Affiliation(s)
- Hanne Jarmer
- Center for Biological Sequence Analysis, Building 2081, and Section for Molecular Microbiology, Building 3012, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Thomas S Larsen
- Center for Biological Sequence Analysis, Building 2081, and Section for Molecular Microbiology, Building 3012, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Anders Krogh
- Center for Biological Sequence Analysis, Building 2081, and Section for Molecular Microbiology, Building 3012, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Hans Henrik Saxild
- Center for Biological Sequence Analysis, Building 2081, and Section for Molecular Microbiology, Building 3012, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Søren Brunak
- Center for Biological Sequence Analysis, Building 2081, and Section for Molecular Microbiology, Building 3012, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Steen Knudsen
- Center for Biological Sequence Analysis, Building 2081, and Section for Molecular Microbiology, Building 3012, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
33
|
Seredick S, Spiegelman GB. Lessons and questions from the structure of the Spo0A activation domain. Trends Microbiol 2001; 9:148-51. [PMID: 11286862 DOI: 10.1016/s0966-842x(01)01981-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The carboxy-terminal domain of Spo0A in Bacillus subtilis is one of the few response regulator activation domains for which the structure is known. Here, we discuss some of the mutational data and biological roles of Spo0A in light of its structure.
Collapse
Affiliation(s)
- S Seredick
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
34
|
|