1
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2024. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Yoshida Y, Nishiyama A, Suameitria Dewi DNS, Yamazaki T, Yokoyama A, Kobayashi D, Kondo H, Ozeki Y, Matsumoto S. Limited proteolysis of mycobacterial DNA-binding protein 1 with an extended, lysine-rich, intrinsically disordered region to unveil posttranslational modifications. Biochem Biophys Res Commun 2023; 681:111-119. [PMID: 37774568 DOI: 10.1016/j.bbrc.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
The basic, intrinsically disordered regions of eukaryotic histones and their bacterial counterparts are presumed to act as signaling hubs to regulate the compaction of chromosomes or nucleoids and various DNA processes such as gene expression, recombination, and DNA replication. Posttranslational modifications (PTMs) on these regions are pivotal in regulating chromosomal or nucleoid compaction and DNA processes. However, the low sequence complexity and the presence of short lysine-rich repeats in the regions have hindered the accurate determination of types and locations of PTMs using conventional proteomic procedures. We described a limited proteolysis protocol using trypsin to analyze PTMs on mycobacterial DNA-binding protein 1 (MDP1), a nucleoid-associated protein in mycobacterial species that possesses an extended, lysine-rich, intrinsically disordered region in its C-terminal domain. This limited proteolysis approach successfully revealed significant methylation on many lysine residues in the C-terminal domain of MDP1 purified from Mycobacterium tuberculosis, which was lacking in the corresponding region of recombinant MDP1 expressed in Escherichia coli.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Tomoya Yamazaki
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Hitoshi Kondo
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| |
Collapse
|
3
|
Grigorov AS, Skvortsova YV, Bychenko OS, Aseev LV, Koledinskaya LS, Boni IV, Azhikina TL. Dynamic Transcriptional Landscape of Mycobacterium smegmatis under Cold Stress. Int J Mol Sci 2023; 24:12706. [PMID: 37628885 PMCID: PMC10454040 DOI: 10.3390/ijms241612706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial adaptation to cold stress requires wide transcriptional reprogramming. However, the knowledge of molecular mechanisms underlying the cold stress response of mycobacteria is limited. We conducted comparative transcriptomic analysis of Mycobacterium smegmatis subjected to cold shock. The growth of M. smegmatis cultivated at 37 °C was arrested just after exposure to cold (acclimation phase) but later (by 24 h) was resumed at a much slower rate (adaptation phase). Transcriptomic analyses revealed distinct gene expression patterns corresponding to the two phases. During the acclimation phase, differential expression was observed for genes associated with cell wall remodeling, starvation response, and osmotic pressure stress, in parallel with global changes in the expression of transcription factors and the downregulation of ribosomal genes, suggesting an energy-saving strategy to support survival. At the adaptation phase, the expression profiles were recovered, indicating restoration of the processes repressed earlier. Comparison of transcriptional responses in M. smegmatis with those in other bacteria revealed unique adaptation strategies developed by mycobacteria. Our findings shed light on the molecular mechanisms underlying M. smegmatis survival under cold stress. Further research should clarify whether the discovered transcriptional mechanisms exist in other mycobacterial species, including pathogenic Mycobacterium tuberculosis, which could be important for transmission control.
Collapse
Affiliation(s)
- Artem S. Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | | | | | | - Tatyana L. Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
4
|
Dey U, Olymon K, Banik A, Abbas E, Yella VR, Kumar A. DNA structural properties of DNA binding sites for 21 transcription factors in the mycobacterial genome. Front Cell Infect Microbiol 2023; 13:1147544. [PMID: 37396305 PMCID: PMC10312376 DOI: 10.3389/fcimb.2023.1147544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has evolved over time into a multidrug resistance strain that poses a serious global pandemic health threat. The ability to survive and remain dormant within the host macrophage relies on multiple transcription factors contributing to virulence. To date, very limited structural insights from crystallographic and NMR studies are available for TFs and TF-DNA binding events. Understanding the role of DNA structure in TF binding is critical to deciphering MTB pathogenicity and has yet to be resolved at the genome scale. In this work, we analyzed the compositional and conformational preference of 21 mycobacterial TFs, evident at their DNA binding sites, in local and global scales. Results suggest that most TFs prefer binding to genomic regions characterized by unique DNA structural signatures, namely, high electrostatic potential, narrow minor grooves, high propeller twist, helical twist, intrinsic curvature, and DNA rigidity compared to the flanking sequences. Additionally, preference for specific trinucleotide motifs, with clear periodic signals of tetranucleotide motifs, are observed in the vicinity of the TF-DNA interactions. Altogether, our study reports nuanced DNA shape and structural preferences of 21 TFs.
Collapse
Affiliation(s)
- Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Anikesh Banik
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Eshan Abbas
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
5
|
Moon S, Ham S, Jeong J, Ku H, Kim H, Lee C. Temperature Matters: Bacterial Response to Temperature Change. J Microbiol 2023; 61:343-357. [PMID: 37010795 DOI: 10.1007/s12275-023-00031-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 04/04/2023]
Abstract
Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.
Collapse
Affiliation(s)
- Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Soojeong Ham
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Juwon Jeong
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Heechan Ku
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
6
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
7
|
Abstract
Bacteria often encounter temperature fluctuations in their natural habitats and must adapt to survive. The molecular response of bacteria to sudden temperature upshift or downshift is termed the heat shock response (HSR) or the cold shock response (CSR), respectively. Unlike the HSR, which activates a dedicated transcription factor that predominantly copes with heat-induced protein folding stress, the CSR is mediated by a diverse set of inputs. This review provides a picture of our current understanding of the CSR across bacteria. The fundamental aspects of CSR involved in sensing and adapting to temperature drop, including regulation of membrane fluidity, protein folding, DNA topology, RNA metabolism, and protein translation, are discussed. Special emphasis is placed on recent findings of a CSR circuitry in Escherichia coli mediated by cold shock family proteins and RNase R that monitors and modulates messenger RNA structure to facilitate global translation recovery during acclimation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA;
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA; .,Department of Cell and Tissue Biology, University of California, San Francisco, California 94158, USA.,California Institute of Quantitative Biology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
8
|
Anand C, Santoshi M, Singh PR, Nagaraja V. Rv0802c is an acyltransferase that succinylates and acetylates Mycobacterium tuberculosis nucleoid-associated protein HU. MICROBIOLOGY-SGM 2021; 167. [PMID: 34224344 DOI: 10.1099/mic.0.001058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Among the nucleoid-associated proteins (NAPs), HU is the most conserved in eubacteria, engaged in overall chromosome organization and regulation of gene expression. Unlike other bacteria, HU from Mycobacterium tuberculosis (MtHU), has a long carboxyl terminal domain enriched in basic amino acids, resembling eukaryotic histone N-terminal tails. As with histones, MtHU undergoes post-translational modifications and we have previously identified interacting kinases, methyltransferases, an acetyltransferase and a deacetylase. Here we show that Rv0802c interacts and succinylates MtHU. Although categorized as a succinyltransferase, we show that this GNAT superfamily member can catalyse both succinylation and acetylation of MtHU with comparable kinetic parameters. Like acetylation of MtHU, succinylation of MtHU caused reduced interaction of the NAP with DNA, determined by electrophoretic mobility shift assay and surface plasmon resonance. However, in vivo expression of Rv0802c did not significantly alter the nucleoid architecture. Although such succinylation of NAPs is rare, these modifications of the archetypal NAP may provide avenues to the organism to compensate for the underrepresentation of NAPs in its genome to control the dynamics of nucleoid architecture and cellular functions.
Collapse
Affiliation(s)
- Chinmay Anand
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Meghna Santoshi
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prakruti R Singh
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| |
Collapse
|
9
|
Cao Z, Cheng S, Wang X, Pang Y, Liu J. Camouflaging bacteria by wrapping with cell membranes. Nat Commun 2019; 10:3452. [PMID: 31388002 PMCID: PMC6684626 DOI: 10.1038/s41467-019-11390-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria have been extensively utilized for bioimaging, diagnosis and therapy given their unique characteristics including genetic manipulation, rapid proliferation and disease site targeting specificity. However, clinical translation of bacteria for these applications has been largely restricted by their unavoidable side effects and low treatment efficacies. Engineered bacteria for biomedical applications ideally need to generate only a low inflammatory response, show slow elimination by macrophages, low accumulation in normal organs, and almost unchanged inherent bioactivities. Here we describe a set of stealth bacteria, cell membrane coated bacteria (CMCB), meeting these requirement. Our findings are supported by evaluation in multiple mice models and ultimately demonstrate the potential of CMCB to serve as efficient tumor imaging agents. Stealth bacteria wrapped up with cell membranes have the potential for a myriad of bacterial-mediated biomedical applications. The use of engineered bacteria for biomedical applications is limited by side effects such as inflammatory response. Here the authors engineer cell membrane coated bacteria as in vivo tumor imaging agents, and show that these generate a lower inflammatory response and reduced macrophage clearance.
Collapse
Affiliation(s)
- Zhenping Cao
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Shanshan Cheng
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Xinyue Wang
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China.
| | - Jinyao Liu
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China.
| |
Collapse
|
10
|
Kriel NL, Gallant J, van Wyk N, van Helden P, Sampson SL, Warren RM, Williams MJ. Mycobacterial nucleoid associated proteins: An added dimension in gene regulation. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Sharma D, Lata M, Singh R, Deo N, Venkatesan K, Bisht D. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS. Front Microbiol 2016; 7:1816. [PMID: 27895634 PMCID: PMC5108770 DOI: 10.3389/fmicb.2016.01816] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases Agra, India
| | - Manju Lata
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases Agra, India
| | - Rananjay Singh
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases Agra, India
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases Agra, India
| | - Krishnamurthy Venkatesan
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases Agra, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases Agra, India
| |
Collapse
|
12
|
Kumar V, Singh HN, Tomar AK, Dantham S, Yadav S. Searching new targets to counter drug resistance – GTPase-Obg mRNA expression analysis in Mycobacterium under stress and in silico docking with GTPase inhibitors. J Biomol Struct Dyn 2016; 35:1804-1812. [DOI: 10.1080/07391102.2016.1195284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Vikrant Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
13
|
Timms VJ, Daskalopoulos G, Mitchell HM, Neilan BA. The Association of Mycobacterium avium subsp. paratuberculosis with Inflammatory Bowel Disease. PLoS One 2016; 11:e0148731. [PMID: 26849125 PMCID: PMC4746060 DOI: 10.1371/journal.pone.0148731] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
Abstract
The association of Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) with Crohn’s disease is a controversial issue. M. paratuberculosis is detected by amplifying the IS900 gene, as microbial culture is unreliable from humans. We determined the presence of M. paratuberculosis in patients with Crohn’s disease (CD) (n = 22), ulcerative colitis (UC) (n = 20), aphthous ulcers (n = 21) and controls (n = 42) using PCR assays validated on bovine tissue. Culture from human tissue was also performed. M. paratuberculosis prevalence in the CD and UC groups was compared to the prevalence in age and sex matched non-inflammatory bowel disease controls. Patients and controls were determined to be M. paratuberculosis positive if all three PCR assays were positive. A significant association was found between M. paratuberculosis and Crohn’s disease (p = 0.02) that was not related to age, gender, place of birth, smoking or alcohol intake. No significant association was detected between M. paratuberculosis and UC or aphthous ulcers; however, one M. paratuberculosis isolate was successfully cultured from a patient with UC. We report the resistance of this isolate to ethambutol, rifampin, clofazamine and streptomycin. Interestingly this isolate could not only survive but could grow slowly at 5°C. We demonstrate a significant association between M. paratuberculosis and CD using multiple pre-validated PCR assays and that M. paratuberculosis can be isolated from patients with UC.
Collapse
Affiliation(s)
- Verlaine J. Timms
- School of Biotechnology and Biomolecular Sciences, Level 3, Biosciences Building, University of New South Wales, Sydney, Australia
| | - George Daskalopoulos
- Inner West Endoscopy Centre, Endoscopy Services Pty. Ltd., Marrickville, Sydney, Australia
| | - Hazel M. Mitchell
- School of Biotechnology and Biomolecular Sciences, Level 3, Biosciences Building, University of New South Wales, Sydney, Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences, Level 3, Biosciences Building, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
14
|
Comparative Sigma Factor-mRNA Levels in Mycobacterium marinum under Stress Conditions and during Host Infection. PLoS One 2015; 10:e0139823. [PMID: 26445268 PMCID: PMC4596819 DOI: 10.1371/journal.pone.0139823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022] Open
Abstract
We have used RNASeq and qRT-PCR to study mRNA levels for all σ-factors in different Mycobacterium marinum strains under various growth and stress conditions. We also studied their levels in M. marinum from infected fish and mosquito larvae. The annotated σ-factors were expressed and transcripts varied in relation to growth and stress conditions. Some were highly abundant such as sigA, sigB, sigC, sigD, sigE and sigH while others were not. The σ-factor mRNA profiles were similar after heat stress, during infection of fish and mosquito larvae. The similarity also applies to some of the known heat shock genes such as the α-crystallin gene. Therefore, it seems probable that the physiological state of M. marinum is similar when exposed to these different conditions. Moreover, the mosquito larvae data suggest that this is the state that the fish encounter when infected, at least with respect to σ-factor mRNA levels. Comparative genomic analysis of σ-factor gene localizations in three M. marinum strains and Mycobacterium tuberculosis H37Rv revealed chromosomal rearrangements that changed the localization of especially sigA, sigB, sigD, sigE, sigF and sigJ after the divergence of these two species. This may explain the variation in species-specific expression upon exposure to different growth conditions.
Collapse
|
15
|
Avoiding acidic region streaking in two-dimensional gel electrophoresis: Case study with two bacterial whole cell protein extracts. J Biosci 2014; 39:631-42. [DOI: 10.1007/s12038-014-9453-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo. J Bacteriol 2014; 196:2646-57. [PMID: 24816602 DOI: 10.1128/jb.01625-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HU, a widely conserved bacterial histone-like protein, regulates many genes, including those involved in stress response and virulence. Whereas ample data are available on HU-DNA communication, the knowledge on how HU perceives a signal and transmit it to DNA remains limited. In this study, we identify HupB, the HU homolog of the human pathogen Mycobacterium tuberculosis, as a component of serine/threonine protein kinase (STPK) signaling. HupB is extracted in its native state from the exponentially growing cells of M. tuberculosis H37Ra and is shown to be phosphorylated on both serine and threonine residues. The STPKs capable of modifying HupB are determined in vitro and the residues modified by the STPKs are identified for both in vivo and the in vitro proteins through mass spectrometry. Of the identified phosphosites, Thr(65) and Thr(74) in the DNA-embracing β-strand of the N-terminal domain of HupB (N-HupB) are shown to be crucial for its interaction with DNA. In addition, Arg(55) is also identified as an important residue for N-HupB-DNA interaction. N-HupB is shown to have a diminished interaction with DNA after phosphorylation. Furthermore, hupB is shown to be maximally expressed during the stationary phase in M. tuberculosis H37Ra, while HupB kinases were found to be constitutively expressed (PknE and PknF) or most abundant during the exponential phase (PknB). In conclusion, HupB, a DNA-binding protein, with an ability to modulate chromatin structure is proposed to work in a growth-phase-dependent manner through its phosphorylation carried out by the mycobacterial STPKs.
Collapse
|
17
|
C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding. Biosci Rep 2013; 33:175-84. [PMID: 23167261 PMCID: PMC3553676 DOI: 10.1042/bsr20120105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins.
Collapse
|
18
|
Newton-Foot M, Gey van Pittius NC. The complex architecture of mycobacterial promoters. Tuberculosis (Edinb) 2012; 93:60-74. [PMID: 23017770 DOI: 10.1016/j.tube.2012.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023]
Abstract
The genus Mycobacterium includes a variety of species with differing phenotypic properties, including growth rate, pathogenicity and environment- and host-specificity. Although many mycobacterial species have been extensively studied and their genomes sequenced, the reasons for phenotypic variation between closely related species remain unclear. Variation in gene expression may contribute to these characteristics and enable the bacteria to respond to changing environmental conditions. Gene expression is controlled primarily at the level of transcription, where the main element of regulation is the promoter. Transcriptional regulation and associated promoter sequences have been studied extensively in E. coli. This review describes the complex structure and characteristics of mycobacterial promoters, in comparison to the classical E. coli prokaryotic promoter structure. Some components of mycobacterial promoters are similar to those of E. coli. These include the predominant guanine residue at the transcriptional start point, conserved -10 hexamer, similar interhexameric distances, the use of ATG as a start codon, the guanine- and adenine-rich ribosome binding site and the presence of extended -10 (TGn) motifs in strong promoters. However, these components are much more variable in sequence in mycobacterial promoters and no conserved -35 hexamer sequence (clearly defined in E. coli) can be identified. This may be a result of the high G+C content of mycobacterial genomes, as well as the large number of sigma factors present in mycobacteria, which may recognise different promoter sequences. Mycobacteria possess a complex transcriptional regulatory network. Numerous regulatory motifs have been identified in mycobacterial promoters, predominantly in the interhexameric region. These are bound by specific transcriptional regulators in response to environmental changes. The combination of specific promoter sequences, transcriptional regulators and a variety of sigma factors enables rapid and specific responses to diverse conditions and different stages of infection. This review aims to provide an overview of the complex architecture of mycobacterial transcriptional regulation.
Collapse
Affiliation(s)
- Mae Newton-Foot
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | |
Collapse
|
19
|
The role of the mycobacterial DNA-binding protein 1 (MDP1) from Mycobacterium bovis BCG in host cell interaction. BMC Microbiol 2012; 12:165. [PMID: 22863261 PMCID: PMC3438132 DOI: 10.1186/1471-2180-12-165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/27/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis differs from most pathogens in its ability to multiply inside monocytes and to persist during long periods of time within granuloma in a status of latency. A class of proteins called mycobacterial histone-like proteins has been associated with regulation of replication and latency, but their precise role in the infection process has yet to be uncovered. Our study aimed at defining the impact of the histone-like protein MDP1 from M. bovis BCG (mycobacterial DNA-binding protein 1, corresponding to Rv2986c from M. tuberculosis) on early steps of infection. RESULTS Previously, a BCG (Bacillus Calmette Guérin) strain had been generated by antisense-technique exhibiting reduced MDP1 expression. This strain was now used to analyse the impact of reduced amount of MDP1 on the interaction with human blood monocytes, macrophage lines and PBMC (peripheral blood mononuclear cells). MDP1 was revealed to be required for growth at acidic pH and for intracellular replication in human blood monocytes. Down-regulation of MDP1 resulted in reduced secretion of the cytokine IL-1β by infected human PBMC. In addition, a reduction of MDP1 expression had a major impact on the formation of fused multi-nucleated macrophages. In monocyte preparations from human blood as well as in human and mouse macrophage cell lines, both the percentage of multi-nucleated cells and the number of nuclei per cell were much enhanced when the monocytes were infected with BCG expressing less MDP1. CONCLUSION MDP1 from M. bovis BCG affects the growth at acidic pH and the intracellular replication in human monocytes. It furthermore affects cytokine secretion by host cells, and the formation of fused multi-nucleated macrophages. Our results suggest an important role of MDP1 in persistent infection.
Collapse
|
20
|
Anuchin AM, Goncharenko AV, Demidenok OI, Kaprelyants AS. Histone-like proteins of bacteria (review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811060020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Sharadamma N, Khan K, Kumar S, Patil KN, Hasnain SE, Muniyappa K. Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange. FEBS J 2011; 278:3447-62. [PMID: 21787377 DOI: 10.1111/j.1742-4658.2011.08267.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The occurrence of DNA architectural proteins containing two functional domains derived from two different architectural proteins is an interesting emerging research theme in the field of nucleoid structure and function. Mycobacterium tuberculosis HupB, unlike Escherichia coli HU, is a two-domain protein that, in the N-terminal region, shows broad sequence homology with bacterial HU. The long C-terminal extension, on the other hand, contains seven PAKK/KAAK motifs, which are characteristic of the histone H1/H5 family of proteins. In this article, we describe several aspects of HupB function, in comparison with its truncated derivatives lacking either the C-terminus or N-terminus. We found that HupB binds a variety of DNA repair and replication intermediates with K(d) values in the nanomolar range. By contrast, the N-terminal fragment of M. tuberculosis HupB (HupB(MtbN)) showed diminished DNA-binding activity, with K(d) values in the micromolar range, and the C-terminal domain was completely devoid of DNA-binding activity. Unlike HupB(MtbN) , HupB was able to constrain DNA in negative supercoils and introduce negative superhelical turns into relaxed DNA. Similarly, HupB exerted a robust inhibitory effect on DNA strand exchange promoted by cognate and noncognate RecA proteins, whereas HupB(MtbN), even at a 50-fold molar excess, had no inhibitory effect. Considered together, these results suggest that synergy between the N-terminal and C-terminal domains of HupB is essential for its DNA-binding ability, and to modulate the topological features of DNA, which has implications for processes such as DNA compaction, gene regulation, homologous recombination, and DNA repair.
Collapse
Affiliation(s)
- N Sharadamma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | |
Collapse
|
22
|
Whiteford DC, Klingelhoets JJ, Bambenek MH, Dahl JL. Deletion of the histone-like protein (Hlp) from Mycobacterium smegmatis results in increased sensitivity to UV exposure, freezing and isoniazid. Microbiology (Reading) 2010; 157:327-335. [DOI: 10.1099/mic.0.045518-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Zhu K, Kaprelyants AS, Salina EG, Schuler M, Markx GH. Construction by dielectrophoresis of microbial aggregates for the study of bacterial cell dormancy. BIOMICROFLUIDICS 2010; 4:022810. [PMID: 20697590 PMCID: PMC2917868 DOI: 10.1063/1.3435336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/04/2010] [Indexed: 05/11/2023]
Abstract
A study of the effect of aggregate size on the resuscitation of dormant M. smegmatis was conducted by constructing cell aggregates with defined sizes and shapes using dielectrophoresis and monitoring the resuscitation process under controlled laboratorial conditions in a long-term cell feeding system. Differently sized cell aggregates were created on the surface of indium tin oxide coated microelectrodes, their heights and shapes controlled by the strength of the induced electric field and the shape of the microelectrodes. Both two-dimensional (ring-patterned) and three-dimensional cell aggregates were produced. The cell aggregates were maintained under sterile conditions at 37 degrees C for up to 14 days by continuously flushing Sauton's medium through the chamber. Resuscitation of dormant M. smegmatis was evaluated by the production of the fluorescent dye 5-cyano-2,3-ditolyltetrazolium chloride. The results confirm that the resuscitation of dormant M. smegmatis is triggered by the accumulation of a resuscitation promoting factor inside the aggregates by diffusion limitation.
Collapse
|
24
|
Anuchin AM, Goncharenko AV, Galon IV, Demidenok OI, Kudykina YK, Moisenovich MM, Mulyukin AL, Kaprelyants AS. The model of resting forms of micobacteria for testing of chemodrugs for latent forms of tuberculosis. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Anuchin AM, Goncharenko AV, Demina GR, Mulyukin AL, Ostrovsky DN, Kaprelyants AS. The role of histone-like protein, Hlp, in Mycobacterium smegmatis dormancy. FEMS Microbiol Lett 2010; 308:101-7. [PMID: 20497227 DOI: 10.1111/j.1574-6968.2010.01988.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of histone-like protein (Hlp) in the development of a dormant state in long-incubated stationary-phase Mycobacterium smegmatis cells was studied in two models: (1) adoption of 'nonculturable' (NC) state, which is reversible due to resuscitation with proteinaceous resuscitation-promoting factor (Rpf) and (2) the formation of morphologically distinct, ovoid resting forms. In the first model, inactivation of the hlp gene resulted in prolongation of culturability of starved cells followed by irreversible nonculturability when mycobacterial cells were unresponsive to resuscitation with Rpf. In the second model, M. smegmatis strain with the inactivated hlp gene was able to form dormant ovoid cells, but they were less resistant to heating and UV radiation than those of wild-type strain. The susceptibility of ovoid cells produced by Delta hlp mutant to these damaging factors was probably due to a less condensed state of DNA, as revealed by fluorescent microscopy and DAPI staining. Evidently, Hlp is essential for cell viability at a later stage of NC dormancy or provides a greater stability of specialized dormant forms.
Collapse
Affiliation(s)
- Aleksey M Anuchin
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
26
|
Sharadamma N, Harshavardhana Y, Singh P, Muniyappa K. Mycobacterium tuberculosis nucleoid-associated DNA-binding protein H-NS binds with high-affinity to the Holliday junction and inhibits strand exchange promoted by RecA protein. Nucleic Acids Res 2010; 38:3555-69. [PMID: 20176569 PMCID: PMC2887947 DOI: 10.1093/nar/gkq064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.
Collapse
Affiliation(s)
- N Sharadamma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
27
|
One of the two genes encoding nucleoid-associated HU proteins in Streptomyces coelicolor is developmentally regulated and specifically involved in spore maturation. J Bacteriol 2009; 191:6489-500. [PMID: 19717607 DOI: 10.1128/jb.00709-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Streptomyces genomes encode two homologs of the nucleoid-associated HU proteins. One of them, here designated HupA, is of a conventional type similar to E. coli HUalpha and HUbeta, while the other, HupS, is a two-domain protein. In addition to the N-terminal part that is similar to that of HU proteins, it has a C-terminal domain that is similar to the alanine- and lysine-rich C termini of eukaryotic linker histones. Such two-domain HU proteins are found only among Actinobacteria. In this phylum some organisms have only a single HU protein of the type with a C-terminal histone H1-like domain (e.g., Hlp in Mycobacterium smegmatis), while others have only a single conventional HU. Yet others, including the streptomycetes, produce both types of HU proteins. We show here that the two HU genes in Streptomyces coelicolor are differentially regulated and that hupS is specifically expressed during sporulation, while hupA is expressed in vegetative hyphae. The developmental upregulation of hupS occurred in sporogenic aerial hyphal compartments and was dependent on the developmental regulators whiA, whiG, and whiI. HupS was found to be nucleoid associated in spores, and a hupS deletion mutant had an average nucleoid size in spores larger than that in the parent strain. The mutant spores were also defective in heat resistance and spore pigmentation, although they possessed apparently normal spore walls and displayed no increased sensitivity to detergents. Overall, the results show that HupS is specifically involved in sporulation and may affect nucleoid architecture and protection in spores of S. coelicolor.
Collapse
|
28
|
Werlang ICR, Schneider CZ, Mendonça JD, Palma MS, Basso LA, Santos DS. Identification of Rv3852 as a nucleoid-associated protein in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2009; 155:2652-2663. [PMID: 19477901 DOI: 10.1099/mic.0.030148-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tuberculosis remains the major cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. The molecular mechanisms of infection and persistence have not been completely elucidated for this pathogen. Studies involving nucleoid-associated proteins (NAPs), which have been related to the control and influence of virulence genes in pathogenic bacteria, can help unveil the virulence process of M. tuberculosis. Here, we describe the initial characterization of an ORF for an M. tuberculosis putative NAP. The Rv3852 gene was cloned and expressed, and its product purified to homogeneity. A qualitative protein-DNA binding assay was carried out by gel-retardation and the protein affinity for specific DNA sequences was assessed quantitatively by surface plasmon resonance (SPR). A stoichiometry of 10 molecules of monomeric protein per molecule of DNA was determined. The monophasic apparent dissociation rate constant values increased to a saturable level as a function of protein concentration, yielding two limiting values for the molecular recognition of proU2 DNA. A protein-DNA binding mechanism is proposed. In addition, functional complementation studies with an Escherichia coli hns mutant reinforce the likelihood that the Rv3852 protein represents a novel NAP in M. tuberculosis.
Collapse
Affiliation(s)
- Isabel C R Werlang
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS 91501-970, Brazil.,Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Cristopher Z Schneider
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Jordana D Mendonça
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Mario S Palma
- Laboratório de Biologia Estrutural e Zooquímica, Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Diógenes S Santos
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| |
Collapse
|
29
|
Mukherjee A, Bhattacharyya G, Grove A. The C-Terminal Domain of HU-Related Histone-like Protein Hlp from Mycobacterium smegmatis Mediates DNA End-Joining. Biochemistry 2008; 47:8744-53. [DOI: 10.1021/bi800010s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anirban Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Gargi Bhattacharyya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
30
|
Chen JM, Ren H, Shaw JE, Wang YJ, Li M, Leung AS, Tran V, Berbenetz NM, Kocíncová D, Yip CM, Reyrat JM, Liu J. Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein. Nucleic Acids Res 2008; 36:2123-35. [PMID: 18187505 PMCID: PMC2367712 DOI: 10.1093/nar/gkm1162] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lsr2 is a small, basic protein present in Mycobacterium and related actinomycetes. Recent studies suggest that Lsr2 is a regulatory protein involved in multiple cellular processes including cell wall biosynthesis and antibiotic resistance. However, the underlying molecular mechanisms remain unknown. In this article, we performed biochemical studies of Lsr2–DNA interactions and structure–function analysis of Lsr2. Analysis by atomic force microscopy revealed that Lsr2 has the ability to bridge distant DNA segments, suggesting that Lsr2 plays a role in the overall organization and compactness of the nucleoid. Mutational analysis identified critical residues and selection of dominant negative mutants demonstrated that both DNA binding and protein oligomerization are essential for the normal functions of Lsr2 in vivo. These results provide strong evidence that Lsr2 is a DNA bridging protein, which represents the first identification of such proteins in bacteria phylogenetically distant from the Enterobacteriaceae. DNA bridging by Lsr2 also provides a mechanism of transcriptional regulation by Lsr2.
Collapse
Affiliation(s)
- Jeffrey M Chen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Katsube T, Matsumoto S, Takatsuka M, Okuyama M, Ozeki Y, Naito M, Nishiuchi Y, Fujiwara N, Yoshimura M, Tsuboi T, Torii M, Oshitani N, Arakawa T, Kobayashi K. Control of cell wall assembly by a histone-like protein in Mycobacteria. J Bacteriol 2007; 189:8241-9. [PMID: 17873049 PMCID: PMC2168677 DOI: 10.1128/jb.00550-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria coordinate assembly of the cell wall as well as synthesis of cellular components depending on the growth state. The mycobacterial cell wall is dominated by mycolic acids covalently linked to sugars, such as trehalose and arabinose, and is critical for pathogenesis of mycobacteria. Transfer of mycolic acids to sugars is necessary for cell wall biogenesis and is mediated by mycolyltransferases, which have been previously identified as three antigen 85 (Ag85) complex proteins. However, the regulation mechanism which links cell wall biogenesis and the growth state has not been elucidated. Here we found that a histone-like protein has a dual concentration-dependent regulatory effect on mycolyltransferase functions of the Ag85 complex through direct binding to both the Ag85 complex and the substrate, trehalose-6-monomycolate, in the cell wall. A histone-like protein-deficient Mycobacterium smegmatis strain has an unusual crenellated cell wall structure and exhibits impaired cessation of glycolipid biosynthesis in the growth-retarded phase. Furthermore, we found that artificial alteration of the amount of the extracellular histone-like protein and the Ag85 complex changes the growth rate of mycobacteria, perhaps due to impaired down-regulation of glycolipid biosynthesis. Our results demonstrate novel regulation of cell wall assembly which has an impact on bacterial growth.
Collapse
Affiliation(s)
- Tomoya Katsube
- Department of Host Defense, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Colangeli R, Helb D, Vilchèze C, Hazbón MH, Lee CG, Safi H, Sayers B, Sardone I, Jones MB, Fleischmann RD, Peterson SN, Jacobs WR, Alland D. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog 2007; 3:e87. [PMID: 17590082 PMCID: PMC1894825 DOI: 10.1371/journal.ppat.0030087] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 05/10/2007] [Indexed: 12/31/2022] Open
Abstract
Multi-drug tolerance is a key phenotypic property that complicates the sterilization of mammals infected with Mycobacterium tuberculosis. Previous studies have established that iniBAC, an operon that confers multi-drug tolerance to M. bovis BCG through an associated pump-like activity, is induced by the antibiotics isoniazid (INH) and ethambutol (EMB). An improved understanding of the functional role of antibiotic-induced genes and the regulation of drug tolerance may be gained by studying the factors that regulate antibiotic-mediated gene expression. An M. smegmatis strain containing a lacZ gene fused to the promoter of M. tuberculosis iniBAC (PiniBAC) was subjected to transposon mutagenesis. Mutants with constitutive expression and increased EMB-mediated induction of PiniBAC::lacZ mapped to the lsr2 gene (MSMEG6065), a small basic protein of unknown function that is highly conserved among mycobacteria. These mutants had a marked change in colony morphology and generated a new polar lipid. Complementation with multi-copy M. tuberculosis lsr2 (Rv3597c) returned PiniBAC expression to baseline, reversed the observed morphological and lipid changes, and repressed PiniBAC induction by EMB to below that of the control M. smegmatis strain. Microarray analysis of an lsr2 knockout confirmed upregulation of M. smegmatis iniA and demonstrated upregulation of genes involved in cell wall and metabolic functions. Fully 121 of 584 genes induced by EMB treatment in wild-type M. smegmatis were upregulated (“hyperinduced”) to even higher levels by EMB in the M. smegmatis lsr2 knockout. The most highly upregulated genes and gene clusters had adenine-thymine (AT)–rich 5-prime untranslated regions. In M. tuberculosis, overexpression of lsr2 repressed INH-mediated induction of all three iniBAC genes, as well as another annotated pump, efpA. The low molecular weight and basic properties of Lsr2 (pI 10.69) suggested that it was a histone-like protein, although it did not exhibit sequence homology with other proteins in this class. Consistent with other histone-like proteins, Lsr2 bound DNA with a preference for circular DNA, forming large oligomers, inhibited DNase I activity, and introduced a modest degree of supercoiling into relaxed plasmids. Lsr2 also inhibited in vitro transcription and topoisomerase I activity. Lsr2 represents a novel class of histone-like proteins that inhibit a wide variety of DNA-interacting enzymes. Lsr2 appears to regulate several important pathways in mycobacteria by preferentially binding to AT-rich sequences, including genes induced by antibiotics and those associated with inducible multi-drug tolerance. An improved understanding of the role of lsr2 may provide important insights into the mechanisms of action of antibiotics and the way that mycobacteria adapt to stresses such as antibiotic treatment. Understanding the cellular processes stimulated when Mycobacterium tuberculosis is treated with antibiotics may provide clues as to why months of therapy and use of several drugs simultaneously are required to prevent antibiotic resistance. Antibiotic treatment “turns on” or induces certain M. tuberculosis genes. These genes are of special interest because they appear to help M. tuberculosis survive the stress of antibiotic treatment. Our study of the regulation of antibiotic-induced genes, including iniBAC, in two mycobacterial species revealed that a small protein called Lsr2 controls iniBAC and other antibiotic-induced genes, especially ones related to the cell wall. Lsr2 binds to DNA in a relatively non-specific manner and appears to inhibit certain enzymes that must interact with DNA as part of their function. These properties differentiate Lsr2 from classical regulators of gene expression that bind to specific DNA sequences, and suggest that Lsr2 is a novel histone-like protein. These proteins regulate genes by changing the way DNA is shaped, and, indeed, we found that Lsr2 can change the shape of DNA by introducing a small number of coils into its structure. Our results suggest that Lsr2 is a major regulator of antibiotic-induced responses in mycobacteria.
Collapse
Affiliation(s)
- Roberto Colangeli
- Division of Infectious Disease and the Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rao A, Ram G, Saini AK, Vohra R, Kumar K, Singh Y, Ranganathan A. Synthesis and selection of de novo proteins that bind and impede cellular functions of an essential mycobacterial protein. Appl Environ Microbiol 2006; 73:1320-31. [PMID: 17189438 PMCID: PMC1828669 DOI: 10.1128/aem.02461-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Recent advances in nonrational and part-rational approaches to de novo peptide/protein design have shown increasing potential for development of novel peptides and proteins of therapeutic use. We demonstrated earlier the usefulness of one such approach recently developed by us, called "codon shuffling," in creating stand-alone de novo protein libraries from which bioactive proteins could be isolated. Here, we report the synthesis and selection of codon-shuffled de novo proteins that bind to a selected Mycobacterium tuberculosis protein target, the histone-like protein HupB, believed to be essential for mycobacterial growth. Using a versatile bacterial two-hybrid system that entailed utilization of HupB and various codon-shuffled protein libraries as bait and prey, respectively, we were able to identify proteins that bound strongly to HupB. The observed interaction was also confirmed using an in vitro assay. One of the protein binders was expressed in Mycobacterium smegmatis and was shown to appreciably affect growth in the exponential phase, a period wherein HupB is selectively expressed. Furthermore, the transcription profile of hupB gene showed a significant reduction in the transcript quantity in mycobacterial strains expressing the protein binder. Electron microscopy of the affected mycobacteria elaborated on the extent of cell damage and hinted towards a cell division malfunction. It is our belief that a closer inspection of the obtained de novo proteins may bring about the generation of small-molecule analogs, peptidomimetics, or indeed the proteins themselves as realistic leads for drug candidates. Furthermore, our strategy is adaptable for large-scale targeting of the essential protein pool of Mycobacterium tuberculosis and other pathogens.
Collapse
Affiliation(s)
- Alka Rao
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | | | |
Collapse
|
34
|
Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 2006; 30:926-41. [PMID: 17064287 DOI: 10.1111/j.1574-6976.2006.00040.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis is a remarkable pathogen capable of adapting and surviving in various harsh conditions. Correct gene expression regulation is essential for the success of this process. The reversible association of different sigma factors is a common mechanism for reprogramming bacterial RNA polymerase and modulating the transcription of numerous genes. Thirteen putative sigma factors are encoded in the M. tuberculosis genome, several being important for virulence. Here, we analyse the latest information available on mycobacterial sigma factors and discuss their roles in the physiology and virulence of M. tuberculosis.
Collapse
Affiliation(s)
- Sébastien Rodrigue
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
35
|
Soares de Lima C, Zulianello L, Marques MADM, Kim H, Portugal MI, Antunes SL, Menozzi FD, Ottenhoff THM, Brennan PJ, Pessolani MCV. Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae. Microbes Infect 2006; 7:1097-109. [PMID: 15919224 DOI: 10.1016/j.micinf.2005.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/28/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein.
Collapse
|
36
|
Manganelli R, Provvedi R, Rodrigue S, Beaucher J, Gaudreau L, Smith I, Proveddi R. Sigma factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol 2004; 186:895-902. [PMID: 14761983 PMCID: PMC344228 DOI: 10.1128/jb.186.4.895-902.2004] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Riccardo Manganelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
As a measure for molecular motion, temperature is one of the most important environmental factors for life as it directly influences structural and hence functional properties of cellular components. After a sudden increase in ambient temperature, which is termed heat shock, bacteria respond by expressing a specific set of genes whose protein products are designed to mainly cope with heat-induced alterations of protein conformation. This heat shock response comprises the expression of protein chaperones and proteases, and is under central control of an alternative sigma factor (sigma 32) which acts as a master regulator that specifically directs RNA polymerase to transcribe from the heat shock promotors. In a similar manner, bacteria express a well-defined set of proteins after a rapid decrease in temperature, which is termed cold shock. This protein set, however, is different from that expressed under heat shock conditions and predominantly comprises proteins such as helicases, nucleases, and ribosome-associated components that directly or indirectly interact with the biological information molecules DNA and RNA. Interestingly, in contrast to the heat shock response, to date no cold-specific sigma factor has been identified. Rather, it appears that the cold shock response is organized as a complex stimulon in which post-transcriptional events play an important role. In this review, we present a summary of research results that have been acquired in recent years by examinations of bacterial cold shock responses. Important processes such as cold signal perception, membrane adaptation, and the modification of the translation apparatus are discussed together with many other cold-relevant aspects of bacterial physiology and first attempts are made to dissect the cold shock stimulon into less complex regulatory subunits. Special emphasis is placed on findings concerning the nucleic acid-binding cold shock proteins which play a fundamental role not only during cold shock adaptation but also under optimal growth conditions.
Collapse
|
38
|
Mueller-Ortiz SL, Sepulveda E, Olsen MR, Jagannath C, Wanger AR, Norris SJ. Decreased infectivity despite unaltered C3 binding by a DeltahbhA mutant of Mycobacterium tuberculosis. Infect Immun 2002; 70:6751-60. [PMID: 12438350 PMCID: PMC133004 DOI: 10.1128/iai.70.12.6751-6760.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HbhA of Mycobacterium tuberculosis is a multifunctional binding protein, binding to both sulfated sugars such as heparin and to human complement component C3. HbhA may therefore interact with host molecules and/or host cells during M. tuberculosis infection and play a role in the pathogenesis of this bacterium. The purpose of this study was to use allelic exchange to create an M. tuberculosis strain deficient in expression of HbhA to determine whether this protein's C3-binding activity plays a role in the pathogenesis of M. tuberculosis. An in-frame, 576-bp unmarked deletion in the hbhA gene was created using sacB as a counterselectable marker. Southern blotting and PCR analyses confirmed deletion of hbhA in the DeltahbhA mutant. The DeltahbhA mutant strain grew at a rate similar to that of the parent in broth culture and in J774.A1 murine macrophage-like cells but was deficient in growth compared to the parent strain in the lungs, liver, and spleen of infected mice. In addition, the DeltahbhA mutation did not reduce binding of M. tuberculosis to human C3 or to J774.A1 cells in the presence or absence of serum, suggesting that in the absence of HbhA, other molecules serve as C3-binding molecules on the M. tuberculosis surface. Taken together, these data indicate that HbhA is important in the infectivity of M. tuberculosis, but its ability to bind C3 is not required for mycobacterial adherence to macrophage-like cells. Using the DeltahbhA mutant strain, a second M. tuberculosis C3-binding protein similar in size to HbhA was identified as HupB, but the role of HupB as a C3-binding protein in intact organisms remains to be determined.
Collapse
Affiliation(s)
- Stacey L Mueller-Ortiz
- Graduate School of Biomedical Sciences, Medical School, University of Texas Health Science Center at Houston, 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Weber MHW, Marahiel MA. Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci 2002; 357:895-907. [PMID: 12171653 PMCID: PMC1693001 DOI: 10.1098/rstb.2002.1078] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.
Collapse
Affiliation(s)
- Michael H W Weber
- Philipps-Universität Marburg, Department of Chemistry, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|