1
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Bianchi M, Winterhalter M, Harbig TA, Hörömpöli D, Ghai I, Nieselt K, Brötz-Oesterhelt H, Mayer C, Borisova-Mayer M. Fosfomycin Uptake in Escherichia coli Is Mediated by the Outer-Membrane Porins OmpF, OmpC, and LamB. ACS Infect Dis 2024; 10:127-137. [PMID: 38104323 PMCID: PMC10789261 DOI: 10.1021/acsinfecdis.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The antibiotic fosfomycin (FOS) is widely recognized for the treatment of lower urinary tract infections with Escherichia coli and has lately gained importance as a therapeutic option to combat multidrug-resistant bacteria. However, resistance to FOS frequently develops through mutations reducing its uptake. Although the inner-membrane transport of FOS has been extensively studied in E. coli, its outer-membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompFΔompC strain is four times more resistant to FOS than the wild type and the respective single mutants. Continuous monitoring of FOS-induced lysis of porin-deficient strains additionally highlighted the importance of LamB. The relevance of OmpF, OmpC, and LamB to FOS uptake was confirmed by electrophysiological and transcriptional analysis. Our study gives for the first time in-depth insight into the transport of FOS through the OM in E. coli.
Collapse
Affiliation(s)
- Martina Bianchi
- Department
of Organismic Interactions, Interfaculty Institute of Microbiology
and Infection Medicine (IMIT), University
of Tübingen, 72076 Tübingen, Germany
| | - Mathias Winterhalter
- Department
of Life Sciences and Chemistry, Constructor
University, 28759 Bremen, Germany
| | - Theresa Anisja Harbig
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Hörömpöli
- Department
of Microbial Bioactive Compounds, IMIT, University of Tübingen, 72076 Tübingen, Germany
| | - Ishan Ghai
- Department
of Life Sciences and Chemistry, Constructor
University, 28759 Bremen, Germany
| | - Kay Nieselt
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”
University of Tübingen, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department
of Microbial Bioactive Compounds, IMIT, University of Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”
University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Mayer
- Department
of Organismic Interactions, Interfaculty Institute of Microbiology
and Infection Medicine (IMIT), University
of Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”
University of Tübingen, 72076 Tübingen, Germany
| | - Marina Borisova-Mayer
- Department
of Organismic Interactions, Interfaculty Institute of Microbiology
and Infection Medicine (IMIT), University
of Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”
University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Kilicaslan GC, Gurbanov R, Darcan C. Evaluation of copper-induced biomolecular changes in different porin mutants of Escherichia coli W3110 by infrared spectroscopy. J Biol Phys 2023; 49:309-327. [PMID: 37010721 PMCID: PMC10397155 DOI: 10.1007/s10867-023-09632-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
Copper (Cu), one of the heavy metals, plays a vital role in many complex biochemical reactions as a trace element. However, it often becomes toxic when its concentration in the cell exceeds a certain level. Homeostasis of metals in the cell is primarily related to regulating metal transport into and out of the cell. Therefore, it is thought that porin proteins, which have a role in membrane permeability, may also play a role in developing Cu resistance. This study identified the differences between the molecular profiles of wild-type Escherichia coli W3110 and its seven different porin mutants exposed to Cu ions using attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. The results showed that the absence of porin genes elicits global changes in the structure and composition of membrane lipids and proteins, in both the absence and presence of Cu. The lack of porin genes significantly elevated the amounts of fatty acids and phospholipids. When the alterations in protein secondary structures were compared, the quantity of amide I proteins was diminished by the presence of Cu. However, the amount of amide II proteins increased in porin mutant groups independent of Cu presence or absence. The DNAs are transformed from B- and Z-form to A-form due to porin mutations and the presence of Cu ions. The lack of porin genes increased polysaccharide content independent of Cu presence. This study can help characterize Cu detoxification efficiency and guide for obtaining active living cells to be used in bioremediation.
Collapse
Affiliation(s)
- Gulcin Cetin Kilicaslan
- Bilecik Şeyh Edebali University, Faculty of Science, Department of Molecular Biology and Genetics TR, Bilecik, TR, 11100, Türkiye
| | - Rafig Gurbanov
- Bilecik Şeyh Edebali University, Faculty of Engineering, Department of Bioengineering, Bilecik, TR, 11100, Türkiye.
- Bilecik Şeyh Edebali University, Central Research Laboratory, Bilecik, TR, 11100, Türkiye.
| | - Cihan Darcan
- Bilecik Şeyh Edebali University, Faculty of Science, Department of Molecular Biology and Genetics TR, Bilecik, TR, 11100, Türkiye
| |
Collapse
|
4
|
Recent advances in nanoparticle-mediated antibacterial applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
6
|
Pira A, Scorciapino MA, Bodrenko IV, Bosin A, Acosta-Gutiérrez S, Ceccarelli M. Permeation of β-Lactamase Inhibitors through the General Porins of Gram-Negative Bacteria. Molecules 2020; 25:E5747. [PMID: 33291474 PMCID: PMC7730927 DOI: 10.3390/molecules25235747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Modern medicine relies upon antibiotics, but we have arrived to the point where our inability to come up with new effective molecules against resistant pathogens, together with the declining private investment, is resulting in the number of untreatable infections increasing worldwide at worrying pace. Among other pathogens, widely recognized institutions have indicated Gram-negative bacteria as particularly challenging, due to the presence of the outer membrane. The very first step in the action of every antibiotic or adjuvant is the permeation through this membrane, with small hydrophilic drugs usually crossing through protein channels. Thus, a detailed understanding of their properties at a molecular level is crucial. By making use of Molecular Dynamics simulations, we compared the two main porins of four members of the Enterobacteriaceae family, and, in this paper, we show their shared geometrical and electrostatic characteristics. Then, we used metadynamics simulations to reconstruct the free energy for permeation of selected diazobicyclooctans through OmpF. We demonstrate how porins features are coupled to those of the translocating species, modulating their passive permeation. In particular, we show that the minimal projection area of a molecule is a better descriptor than its molecular mass or the volume. Together with the magnitude and orientation of the electric dipole moment, these are the crucial parameters to gain an efficient compensation between the entropic and enthalpic contributions to the free energy barrier required for permeation. Our results confirm the possibility to predict the permeability of molecules through porins by using a few molecular parameters and bolster the general model according to which the free energy increase is mostly due to the decrease of conformational entropy, and this can be compensated by a favorable alignment of the electric dipole with respect to the channel intrinsic electric field.
Collapse
Affiliation(s)
- Alessandro Pira
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
| | - Mariano Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy;
| | - Igor V. Bodrenko
- CNR/IOM Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
| | | | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (A.P.); (A.B.)
- CNR/IOM Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| |
Collapse
|
7
|
Sanderson TJ, Black CM, Southwell JW, Wilde EJ, Pandey A, Herman R, Thomas GH, Boros E, Duhme-Klair AK, Routledge A. A Salmochelin S4-Inspired Ciprofloxacin Trojan Horse Conjugate. ACS Infect Dis 2020; 6:2532-2541. [PMID: 32786274 DOI: 10.1021/acsinfecdis.0c00568] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel ciprofloxacin-siderophore Trojan Horse antimicrobial was prepared by incorporating key design features of salmochelin, a stealth siderophore that evades mammalian siderocalin capture via its glycosylated catechol units. Assessment of the antimicrobial activity of the conjugate revealed that attachment of the salmochelin mimic resulted in decreased potency, compared to ciprofloxacin, against two Escherichia coli strains, K12 and Nissle 1917, in both iron replete and deplete conditions. This observation could be attributed to a combination of reduced DNA gyrase inhibition, as confirmed by in vitro DNA gyrase assays, and reduced bacterial uptake. Uptake was monitored using radiolabeling with iron-mimetic 67Ga3+, which revealed limited cellular uptake in E. coli K12. In contrast, previously reported staphyloferrin-based conjugates displayed a measurable uptake in analogous 67Ga3+ labeling studies. These results suggest that, in the design of Trojan Horse antimicrobials, the choice of siderophore and the nature and length of the linker remain a significant challenge.
Collapse
Affiliation(s)
- Thomas J. Sanderson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Conor M. Black
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - James W. Southwell
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ellis J. Wilde
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Apurva Pandey
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Reyme Herman
- Department of Biology (Area 10), University of York, Wentworth Way, Heslington, York YO10 5DD,United Kingdom
| | - Gavin H. Thomas
- Department of Biology (Area 10), University of York, Wentworth Way, Heslington, York YO10 5DD,United Kingdom
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | | | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
8
|
Figueroa J, Castro D, Lagos F, Cartes C, Isla A, Yáñez AJ, Avendaño-Herrera R, Haussmann D. Analysis of single nucleotide polymorphisms (SNPs) associated with antibiotic resistance genes in Chilean Piscirickettsia salmonis strains. JOURNAL OF FISH DISEASES 2019; 42:1645-1655. [PMID: 31591746 DOI: 10.1111/jfd.13089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
The aetiological agent of Piscirickettsiosis is Piscirickettsia salmonis, a Gram-negative intracellular pathogen, and high doses of antibiotics have regularly been employed to treat this infection. Seven florfenicol and/or oxytetracycline resistance genes (tet pump, tetE, Tclor/flor, Tbcr, TfloR, ompF and mdtN) were identified in strains by in silico genome analyses. Later, the number of single nucleotide polymorphisms (SNPs) and its relationship with the resistance to these antibiotics were identified and analysed, using the original LF-89 strain as reference. Trials to determine and compare the minimum inhibitory concentration (MIC) of oxytetracycline and florfenicol in each strain, as well as to quantify the gPCR transcripts levels in the selected genes, were performed. Therefore, variations in the resistance to both antibiotics were observed, where the strain with fewer SNPs showed the highest susceptibility. Consistently, the in silico 3D analyses of proteins encoded by the selected genes revealed structural changes, evident in the sequences with the highest number of SNPs. These results showed that the bacterial resistance to oxytetracycline was mainly linked to the presence of SNPs in relevant sites, antibiotic resistance genes and an OmpF porin, leading to important changes in the protein structure.
Collapse
Affiliation(s)
- Jaime Figueroa
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Diana Castro
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Fernando Lagos
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Carlos Cartes
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Adolfo Isla
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Alejandro J Yáñez
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Rubén Avendaño-Herrera
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
- Laboratory of Pathology of Aquatic Organisms and Aquaculture Biotechnology, Faculty of Life Sciences, Universidad Andrés Bello, Viña del Mar, Chile
| | - Denise Haussmann
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Valdivia, Chile
| |
Collapse
|
9
|
Dam S, Pagès JM, Masi M. Stress responses, outer membrane permeability control and antimicrobial resistance in Enterobacteriaceae. MICROBIOLOGY-SGM 2018; 164:260-267. [PMID: 29458656 DOI: 10.1099/mic.0.000613] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteria have evolved several strategies to survive a myriad of harmful conditions in the environment and in hosts. In Gram-negative bacteria, responses to nutrient limitation, oxidative or nitrosative stress, envelope stress, exposure to antimicrobials and other growth-limiting stresses have been linked to the development of antimicrobial resistance. This results from the activation of protective changes to cell physiology (decreased outer membrane permeability), resistance transporters (drug efflux pumps), resistant lifestyles (biofilms, persistence) and/or resistance mutations (target mutations, production of antibiotic modification/degradation enzymes). In targeting and interfering with essential physiological mechanisms, antimicrobials themselves are considered as stresses to which protective responses have also evolved. In this review, we focus on envelope stress responses that affect the expression of outer membrane porins and their impact on antimicrobial resistance. We also discuss evidences that indicate the role of antimicrobials as signaling molecules in activating envelope stress responses.
Collapse
Affiliation(s)
- Sushovan Dam
- UMR_MD-1, Aix-Marseille Univ. & IRBA, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jean-Marie Pagès
- UMR_MD-1, Aix-Marseille Univ. & IRBA, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Muriel Masi
- UMR_MD-1, Aix-Marseille Univ. & IRBA, 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
10
|
Prajapati JD, Solano CJF, Winterhalter M, Kleinekathöfer U. Enrofloxacin Permeation Pathways across the Porin OmpC. J Phys Chem B 2018; 122:1417-1426. [PMID: 29307192 DOI: 10.1021/acs.jpcb.7b12568] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In Gram-negative bacteria, the lack or quenching of antibiotic translocation across the outer membrane is one of the main factors for acquiring antibiotic resistance. An atomic-level comprehension of the key features governing the transport of drugs by outer-membrane protein channels would be very helpful in developing the next generation of antibiotics. In a previous study [ J. D. Prajapati et al. J. Chem. Theory Comput. 2017 , 13 , 4553 ], we characterized the diffusion pathway of a ciprofloxacin molecule through the outer membrane porin OmpC of Escherichia coli by combining metadynamics and a zero-temperature string method. Here, we evaluate the diffusion route through the OmpC porin for a similar fluoroquinolone, that is, the enrofloxacin molecule, using the previously developed protocol. As a result, it was found that the lowest-energy pathway was similar to that for ciprofloxacin; namely, a reorientation was required on the extracellular side with the carboxyl group ahead before enrofloxacin reached the constriction region. In turn, the free-energy basins for both antibiotics are located at similar positions in the space defined by selected reaction coordinates, and their affinity sites share a wide number of porin residues. However, there are some important deviations due to the chemical differences of these two drugs. On the one hand, a slower diffusion process is expected for enrofloxacin, as the permeation pathway exhibits higher overall energy barriers, mainly in the constriction region. On the other hand, enrofloxacin needs to replace some polar interactions in its affinity sites with nonpolar ones. This study demonstrates how minor chemical modifications can qualitatively affect the translocation mechanism of an antibiotic molecule.
Collapse
Affiliation(s)
- Jigneshkumar Dahyabhai Prajapati
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Carlos José Fernández Solano
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Mathias Winterhalter
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| |
Collapse
|
11
|
Scorciapino MA, Acosta-Gutierrez S, Benkerrou D, D'Agostino T, Malloci G, Samanta S, Bodrenko I, Ceccarelli M. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:113001. [PMID: 28155846 DOI: 10.1088/1361-648x/aa543b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI-Translocation consortium. The synergistic combination of structural data, in vitro assays and computer simulations has proven to give new insights towards the identification and description of physico-chemical properties modulating permeation. Once similar general rules are identified, we believe that the use of virtual screening techniques will be very helpful in searching for new molecular scaffolds with enhanced permeation, and that molecular modeling will be of fundamental assistance to the optimization stage.
Collapse
Affiliation(s)
- Mariano Andrea Scorciapino
- Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700-09042 Monserrato (CA), Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol 2017; 2:17001. [PMID: 28224989 DOI: 10.1038/nmicrobiol.2017.1] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
|
13
|
Acosta Gutiérrez S, Bodrenko I, Scorciapino MA, Ceccarelli M. Macroscopic electric field inside water-filled biological nanopores. Phys Chem Chem Phys 2017; 18:8855-64. [PMID: 26931352 DOI: 10.1039/c5cp07902k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multi-drug resistance bacteria are a challenging problem of contemporary medicine. This is particularly critical for Gram-negative bacteria, where antibiotics are hindered by the outer membrane to reach internal targets. Here more polar antibiotics make use of nanometric water-filled channels to permeate inside. We present in this work a computational all-atom approach, using water as a probe, for the calculation of the macroscopic electric field inside water-filled channels. The method allows one to compare not only different systems but also the same system under different conditions, such as pH and ion concentration. This provides a detailed picture of electrostatics in biological nanopores shedding more light on how the charged residues of proteins determine the electric field inside, and also how medium can tune it. These details are central to unveil the filtering mechanism behind the permeation of small polar molecules through nanometric water-filled channels.
Collapse
Affiliation(s)
- Silvia Acosta Gutiérrez
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| | - Igor Bodrenko
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| | - Mariano Andrea Scorciapino
- Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| |
Collapse
|
14
|
Exploiting the porin pathway for polar compound delivery into Gram-negative bacteria. Future Med Chem 2016; 8:1047-62. [PMID: 27303954 DOI: 10.4155/fmc-2016-0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In Gram-negative bacteria, the outer-membrane represents an additional barrier for antibiotics to permeate inside pathogens. Our inability to come up with novel effective antibiotics mostly relies upon insufficient understanding of the molecular basis behind outer-membrane penetration. RESULTS Polar antibiotics can permeate through water-filled porins, such as OmpF and OmpC from Escherichia coli. Through molecular modeling, permeation of imipenem and meropenem was found to be strongly dependent upon capability of drugs to properly align their electric dipole to the internal electric field in the restricted region of the pore. Electrostatics differences between OmpF and OmpC, and modifications along a series of OmpC mutants from E. coli-resistant clinical strains identify a 'preorientation' region, which dramatically affects antibiotic pathway. CONCLUSION A novel perspective is presented, suggesting new molecular properties to be included in drug design.
Collapse
|
15
|
Webb HE, Bugarel M, den Bakker HC, Nightingale KK, Granier SA, Scott HM, Loneragan GH. Carbapenem-Resistant Bacteria Recovered from Faeces of Dairy Cattle in the High Plains Region of the USA. PLoS One 2016; 11:e0147363. [PMID: 26824353 PMCID: PMC4732617 DOI: 10.1371/journal.pone.0147363] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/04/2016] [Indexed: 01/25/2023] Open
Abstract
Objective A study was conducted to recover carbapenem-resistant bacteria from the faeces of dairy cattle and identify the underlying genetic mechanisms associated with reduced phenotypic susceptibility to carbapenems. Methods One hundred and fifty-nine faecal samples from dairy cattle were screened for carbapenem-resistant bacteria. Phenotypic screening was conducted on two media containing ertapenem. The isolates from the screening step were characterised via disk diffusion, Modified Hodge, and Carba NP assays. Carbapenem-resistant bacteria and carbapenemase-producing isolates were subjected to Gram staining and biochemical testing to include Gram-negative bacilli. Whole genome sequencing was performed on bacteria that exhibited either a carbapenemase-producing phenotype or were not susceptible to ertapenem and were presumptively Enterobacteriaceae. Results Of 323 isolates collected from the screening media, 28 were selected for WGS; 21 of which were based on a carbapenemase-producing phenotype and 7 were presumptively Enterobacteriaceae and not susceptible to ertapenem. Based on analysis of WGS data, isolates included: 3 Escherichia coli harbouring blaCMY-2 and truncated ompF genes; 8 Aeromonas harbouring blacphA-like genes; 1 Acinetobacter baumannii harbouring a novel blaOXA gene (blaOXA-497); and 6 Pseudomonas with conserved domains of various carbapenemase-producing genes. Conclusions Carbapenem resistant bacteria appear to be rare in cattle. Nonetheless, carbapenem-resistant bacteria were detected across various genera and were found to harbour a variety of mechanisms conferring reduced susceptibility. The development and dissemination of carbapenem-resistant bacteria in livestock would have grave implications for therapeutic treatment options in human medicine; thus, continued monitoring of carbapenem susceptibility among enteric bacteria of livestock is warranted.
Collapse
Affiliation(s)
- Hattie E. Webb
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Marie Bugarel
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Henk C. den Bakker
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kendra K. Nightingale
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Sophie A. Granier
- Antimicrobial Resistance Unit, Laboratory for Food Safety, ANSES, Paris-Est University, Maisons-Alfort Cedex, France
| | - H. Morgan Scott
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Guy H. Loneragan
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Pothula KR, Solano CJF, Kleinekathöfer U. Simulations of outer membrane channels and their permeability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1760-71. [PMID: 26721326 DOI: 10.1016/j.bbamem.2015.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Channels in the outer membrane of Gram-negative bacteria provide essential pathways for the controlled and unidirectional transport of ions, nutrients and metabolites into the cell. At the same time the outer membrane serves as a physical barrier for the penetration of noxious substances such as antibiotics into the bacteria. Most antibiotics have to pass through these membrane channels to either reach cytoplasmic bound targets or to further cross the hydrophobic inner membrane. Considering the pharmaceutical significance of antibiotics, understanding the functional role and mechanism of these channels is of fundamental importance in developing strategies to design new drugs with enhanced permeation abilities. Due to the biological complexity of membrane channels and experimental limitations, computer simulations have proven to be a powerful tool to investigate the structure, dynamics and interactions of membrane channels. Considerable progress has been made in computer simulations of membrane channels during the last decade. The goal of this review is to provide an overview of the computational techniques and their roles in modeling the transport across outer membrane channels. A special emphasis is put on all-atom molecular dynamics simulations employed to better understand the transport of molecules. Moreover, recent molecular simulations of ion, substrate and antibiotics translocation through membrane pores are briefly summarized. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Karunakar R Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Carlos J F Solano
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
17
|
Bajaj H, Scorciapino MA, Moynié L, Page MGP, Naismith JH, Ceccarelli M, Winterhalter M. Molecular Basis of Filtering Carbapenems by Porins from β-Lactam-resistant Clinical Strains of Escherichia coli. J Biol Chem 2015; 291:2837-47. [PMID: 26645688 DOI: 10.1074/jbc.m115.690156] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins known as porins are the major pathway by which hydrophilic antibiotics cross the outer membrane of Gram-negative bacteria. Single point mutations in porins can decrease the permeability of an antibiotic, either by reduction of channel size or modification of electrostatics in the channel, and thereby confer clinical resistance. Here, we investigate four mutant OmpC proteins from four different clinical isolates of Escherichia coli obtained sequentially from a single patient during a course of antimicrobial chemotherapy. OmpC porin from the first isolate (OmpC20) undergoes three consecutive and additive substitutions giving rise to OmpC26, OmpC28, and finally OmpC33. The permeability of two zwitterionic carbapenems, imipenem and meropenem, measured using liposome permeation assays and single channel electrophysiology differs significantly between OmpC20 and OmpC33. Molecular dynamic simulations show that the antibiotics must pass through the constriction zone of porins with a specific orientation, where the antibiotic dipole is aligned along the electric field inside the porin. We identify that changes in the vector of the electric field in the mutated porin, OmpC33, create an additional barrier by "trapping" the antibiotic in an unfavorable orientation in the constriction zone that suffers steric hindrance for the reorientation needed for its onward translocation. Identification and understanding the underlying molecular details of such a barrier to translocation will aid in the design of new antibiotics with improved permeation properties in Gram-negative bacteria.
Collapse
Affiliation(s)
- Harsha Bajaj
- From the School of Engineering and Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Mariano A Scorciapino
- the Department of Physics, University of Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato, CA, Italy
| | - Lucile Moynié
- the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, United Kingdom, and
| | - Malcolm G P Page
- the Basilea Pharmaceutica International Ltd., Grenzacherstr. 487, CH-4058 Basel, Switzerland
| | - James H Naismith
- the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, United Kingdom, and
| | - Matteo Ceccarelli
- the Department of Physics, University of Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato, CA, Italy,
| | - Mathias Winterhalter
- From the School of Engineering and Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,
| |
Collapse
|
18
|
Tran QT, Pearlstein RA, Williams S, Reilly J, Krucker T, Erdemli G. Structure-kinetic relationship of carbapenem antibacterials permeating throughE. coliOmpC porin. Proteins 2014; 82:2998-3012. [DOI: 10.1002/prot.24659] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 07/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Que-Tien Tran
- Center for Proteomic Chemistry; Novartis Institutes for BioMedical Research; Cambridge Massachusetts 02139
| | - Robert A. Pearlstein
- Global Discovery Chemistry; Novartis Institutes for BioMedical Research; Cambridge Massachusetts 02139
| | - Sarah Williams
- Global Discovery Chemistry; Novartis Institutes for BioMedical Research; Cambridge Massachusetts 02139
| | - John Reilly
- Global Discovery Chemistry; Novartis Institutes for BioMedical Research; Cambridge Massachusetts 02139
| | - Thomas Krucker
- Infectious Diseases; Novartis Institutes for BioMedical Research; Emeryville California 94608
| | - Gül Erdemli
- Center for Proteomic Chemistry; Novartis Institutes for BioMedical Research; Cambridge Massachusetts 02139
| |
Collapse
|
19
|
Smith SV, Gould IM. Optimization of antibiotic dosing schedules in the light of increasing antibiotic resistance. Expert Rev Anti Infect Ther 2014; 2:227-34. [PMID: 15482188 DOI: 10.1586/14787210.2.2.227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of antibiotic-resistant bacteria is an increasing problem throughout the world and is, without doubt, due to the increasing use of antibiotics themselves. As organisms become more resistant, treatment options become more limited and treatment failures increasingly likely. The need to reverse, or at least minimize this pattern of increasing resistance is therefore essential. Numerous strategies to achieve this have been postulated and there is no doubt that a combination of these will ultimately prove to be most effective. Among them, using antibiotic dosing regimens that may be less likely to promote resistance is one measure which could be beneficial, and this will be the focus of this review. Individual antibiotics will be discussed under the headings of the patterns of killing activity that they produce. Namely whether they exhibit concentration-dependent killing with prolonged persistent effects, time-dependent killing with minimal or no persistent effects, or time-dependent killing with prolonged persistent effects. The available evidence for optimal dosing regimens, as far as minimizing antibiotic resistance is concerned, will be reviewed. Where possible, recommendations relating to clinical practice will be made, or failing that, an indication of where further research would be of benefit.
Collapse
|
20
|
Valade E, Davin-Regli A, Bolla JM, Pagès JM. Bacterial Membrane, a Key for Controlling Drug Influx and Efflux. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
Tran QT, Williams S, Farid R, Erdemli G, Pearlstein R. The translocation kinetics of antibiotics through porin OmpC: insights from structure-based solvation mapping using WaterMap. Proteins 2012; 81:291-9. [PMID: 23011778 DOI: 10.1002/prot.24185] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/24/2012] [Accepted: 09/13/2012] [Indexed: 11/12/2022]
Abstract
Poor permeability of the lipopolysaccharide-based outer membrane of Gram-negative bacteria is compensated by the existence of protein channels (porins) that selectively admit low molecular weight substrates, including many antibiotics. Improved understanding of the translocation mechanisms of porin substrates could help guide the design of antibiotics capable of achieving high intracellular exposure. Energy barriers to channel entry and exit govern antibiotic fluxes through porins. We have previously reported a hypothesis that the costs of transferring protein solvation to and from bulk medium underlie the barriers to protein-ligand association and dissociation, respectively, concomitant with the gain and loss of protein-ligand interactions during those processes. We have now applied this hypothesis to explain the published rates of entry (association) and exit (dissociation) of six antibiotics to/from reconstituted E. coli porin OmpC. WaterMap was used to estimate the total water transfer energies resulting from transient occupation by each antibiotic. Our results suggest that solvation within the porin cavity is highly energetically favorable, and the observed moderately fast entry rates of the antibiotics are consistent with replacement of protein-water H-bonds. The observed ultrafast exit kinetics is consistent with the lack of intrachannel solvation sites that convey unfavorable resolvation during antibiotic dissociation. These results are aligned with known general relationships between antibiotic efficacy and physicochemical properties, namely unusually low logP, reflecting an abundance of H-bond partners. We conclude that antibiotics figuratively "melt" their way through porin solvation at a rate determined by the cost of exchanging protein-solvent for protein-antibiotic H-bonds.
Collapse
Affiliation(s)
- Que-Tien Tran
- Novartis Institutes for BioMedical Research, Center for Proteomic Chemistry, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
22
|
Srinivasan VB, Venkataramaiah M, Mondal A, Vaidyanathan V, Govil T, Rajamohan G. Functional characterization of a novel outer membrane porin KpnO, regulated by PhoBR two-component system in Klebsiella pneumoniae NTUH-K2044. PLoS One 2012; 7:e41505. [PMID: 22848515 PMCID: PMC3405095 DOI: 10.1371/journal.pone.0041505] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/22/2012] [Indexed: 02/03/2023] Open
Abstract
Background The diffusion of antibiotics through the outer membrane is primarily affected by the porin super family, changes contribute to antibiotic resistance. Recently we demonstrated that the CpxAR two-component signaling system alters the expression of an uncharacterized porin OmpCKP, to mediate antimicrobial resistance in K. pneumoniae. Principal Findings In this study, functional characterization of the putative porin OmpCKP (denoted kpnO) with respect to antimicrobial susceptibility and virulence was evaluated by generating an isogenic mutant, ΔkpnO in a clinical isolate of K. pneumoniae. Estimation of uronic acid content confirmed that ΔkpnO produced ∼2.0 fold lesser capsular polysaccharide than the wild-type. The ΔkpnO displayed higher sensitivity to hyper osmotic and bile conditions. Disruption of kpnO increased the susceptibility of K. pneumoniae to oxidative and nitrostative stress by ∼1.6 fold and >7 fold respectively. The loss of the Klebsiella porin led to an increase in the minimum inhibitory concentration of tetracycline (3-fold), nalidixic acid (4-fold), tobramycin (4-fold), streptomycin (10-fold), and spectinomycin (10-fold), which could be restored following complementation. The single deletion of kpnO reduced the survival of the pathogen by 50% when exposed to disinfectants. In Caenorhabditis elegans model, the kpnO mutant exhibited significantly (P<0.01) lower virulence. To dissect the role of PhoBR signaling system in regulating the expression of the kpnO, a phoBKP isogenic mutant was constructed. The phoBKP mutant exhibited impaired gastrointestinal stress response and decreased antimicrobial susceptibility. The mRNA levels of kpnO were found to be 4-fold less in phoBKP mutant compared to wild type. A regulatory role of PhoBKP for the expression of kpnO was further supported by the specific binding of PhoBKP to the putative promoter of kpnO. Conclusions and Significance Loss of PhoBR regulated porin KpnO resulted in increased antimicrobial resistance, increased susceptibility to gastrointestinal stress, and reduced virulence in K. pneumoniae NTUH-K2044.
Collapse
Affiliation(s)
- Vijaya Bharathi Srinivasan
- Council of Scientific Industrial Research, Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- * E-mail: (VBS); (GR)
| | - Manjunath Venkataramaiah
- Council of Scientific Industrial Research, Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Amitabha Mondal
- Council of Scientific Industrial Research, Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Vasanth Vaidyanathan
- Council of Scientific Industrial Research, Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Tanvi Govil
- Council of Scientific Industrial Research, Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Govindan Rajamohan
- Council of Scientific Industrial Research, Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- * E-mail: (VBS); (GR)
| |
Collapse
|
23
|
Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS One 2011; 6:e25825. [PMID: 22053181 PMCID: PMC3203869 DOI: 10.1371/journal.pone.0025825] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/11/2011] [Indexed: 11/19/2022] Open
Abstract
Antibiotic-resistant bacteria, particularly Gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.
Collapse
|
24
|
Hansen SK, Rau MH, Johansen HK, Ciofu O, Jelsbak L, Yang L, Folkesson A, Jarmer HØ, Aanæs K, von Buchwald C, Høiby N, Molin S. Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME JOURNAL 2011; 6:31-45. [PMID: 21716309 DOI: 10.1038/ismej.2011.83] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a frequent colonizer of the airways of patients suffering from cystic fibrosis (CF). Depending on early treatment regimens, the colonization will, with high probability, develop into chronic infections sooner or later, and it is important to establish under which conditions the switch to chronic infection takes place. In association with a recently established sinus surgery treatment program for CF patients at the Copenhagen CF Center, colonization of the paranasal sinuses with P. aeruginosa has been investigated, paralleled by sampling of sputum from the same patients. On the basis of genotyping and phenotypic characterization including transcription profiling, the diversity of the P. aeruginosa populations in the sinuses and the lower airways was investigated and compared. The observations made from several children show that the paranasal sinuses constitute an important niche for the colonizing bacteria in many patients. The paranasal sinuses often harbor distinct bacterial subpopulations, and in the early colonization phases there seems to be a migration from the sinuses to the lower airways, suggesting that independent adaptation and evolution take place in the sinuses. Importantly, before the onset of chronic lung infection, lineages with mutations conferring a large fitness benefit in CF airways such as mucA and lasR as well as small colony variants and antibiotic-resistant clones are part of the sinus populations. Thus, the paranasal sinuses potentially constitute a protected niche of adapted clones of P. aeruginosa, which can intermittently seed the lungs and pave the way for subsequent chronic lung infections.
Collapse
|
25
|
The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008; 6:893-903. [PMID: 18997824 DOI: 10.1038/nrmicro1994] [Citation(s) in RCA: 613] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gram-negative bacteria are responsible for a large proportion of antibiotic-resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channels.
Collapse
|
26
|
Maeda Y, Kiba A, Ohnishi K, Hikichi Y. Amino acid substitutions in GyrA of Burkholderia glumae are implicated in not only oxolinic acid resistance but also fitness on rice plants. Appl Environ Microbiol 2007; 73:1114-9. [PMID: 17194844 PMCID: PMC1828663 DOI: 10.1128/aem.02400-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/18/2006] [Indexed: 11/20/2022] Open
Abstract
Oxolinic acid (OA) resistance in field isolates of Burkholderia glumae, a causal agent of bacterial grain rot, is dependent on an amino acid substitution at position 83 in GyrA (GyrA83). In the present study, among spontaneous in vitro mutants from the OA-sensitive B. glumae strain Pg-10, we selected OA-resistant mutants that emerged at a rate of 5.7 x 10(-10). Nucleotide sequence analysis of the quinolone resistance-determining region in GyrA showed that Gly81Cys, Gly81Asp, Asp82Gly, Ser83Arg, Asp87Gly, and Asp87Asn are observed in these OA-resistant mutants. The introduction of each amino acid substitution into Pg-10 resulted in OA resistance, similar to what was observed for mutants with the responsible amino acid substitution. In vitro growth of recombinants with Asp82Gly was delayed significantly compared to that of Pg-10; however, that of the other recombinants did not differ significantly. The inoculation of each recombinant into rice spikelets did not result in disease. In inoculated rice spikelets, recombinants with Ser83Arg grew less than Pg-10 during flowering, and growth of the other recombinants was reduced significantly. On the other hand, the reduced growth of recombinants with Ser83Arg in spikelets was compensated for under OA treatment, resulting in disease. These results suggest that amino acid substitutions in GyrA of B. glumae are implicated in not only OA resistance but also fitness on rice plants. Therefore, GyrA83 substitution is thought to be responsible for OA resistance in B. glumae field isolates.
Collapse
Affiliation(s)
- Yukiko Maeda
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502, Japan
| | | | | | | |
Collapse
|
27
|
Baslé A, Rummel G, Storici P, Rosenbusch JP, Schirmer T. Crystal Structure of Osmoporin OmpC from E. coli at 2.0 Å. J Mol Biol 2006; 362:933-42. [PMID: 16949612 DOI: 10.1016/j.jmb.2006.08.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Porins form transmembrane pores in the outer membrane of Gram-negative bacteria with matrix porin OmpF and osmoporin OmpC from Escherichia coli being differentially expressed depending on environmental conditions. The three-dimensional structure of OmpC has been determined to 2.0 A resolution by X-ray crystallography. As expected from the high sequence similarity, OmpC adopts the OmpF-like 16-stranded hollow beta-barrel fold with three beta-barrels associated to form a tight trimer. Unlike in OmpF, the extracellular loops form a continuous wall at the perimeter of the vestibule common to the three pores, due to a 14-residues insertion in loop L4. The pore constriction and the periplasmic outlet are very similar to OmpF with 74% of the pore lining residues being conserved. Overall, only few ionizable residues are exchanged at the pore lining. The OmpC structure suggests that not pore size, but electrostatic pore potential and particular atomic details of the pore linings are the critical parameters that physiologically distinguish OmpC from OmpF.
Collapse
Affiliation(s)
- Arnaud Baslé
- Division of Structural Biology, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Watson ME, Burns JL, Smith AL. Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. MICROBIOLOGY-SGM 2005; 150:2947-2958. [PMID: 15347753 DOI: 10.1099/mic.0.27230-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypermutable bacterial pathogens exist at surprisingly high prevalence and benefit bacterial populations by promoting adaptation to selective environments, including resistance to antibiotics. Five hundred Haemophilus influenzae isolates were screened for an increased frequency of mutation to resistance to rifampicin, nalidixic acid and spectinomycin: of the 14 hypermutable isolates identified, 12 were isolated from cystic fibrosis (CF) sputum. Analysis by enterobacterial repetitive intergenic consensus (ERIC)-PCR and ribotyping identified eight distinct genetic fingerprints. The hypermutable phenotype of seven of the eight unique isolates was associated with polymorphisms in conserved sites of mutS. Four of the mutant mutS alleles were cloned and failed to complement the mutator phenotype of a mutS : : TSTE mutant of H. influenzae strain Rd KW20. Antibiotic susceptibility testing of the hypermutators identified one beta-lactamase-negative ampicillin-resistant (BLNAR) isolate with two isolates producing beta-lactamase. Six isolates from the same patient with CF, with the same genetic fingerprint, were clonal by multilocus sequence typing (MLST). In this clone, there was an evolution to higher MIC values for the antibiotics administered to the patient during the period in which the strains were isolated. Hypermutable H. influenzae with mutations in mutS are prevalent, particularly in the CF lung environment, and may be selected for and maintained by antibiotic pressure.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/physiology
- Ampicillin Resistance
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Cloning, Molecular
- Cystic Fibrosis/microbiology
- DNA Fingerprinting
- DNA, Bacterial/analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Intergenic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Drug Resistance, Bacterial/genetics
- Genes, Bacterial
- Genetic Complementation Test
- Haemophilus influenzae/drug effects
- Haemophilus influenzae/genetics
- Haemophilus influenzae/isolation & purification
- Humans
- Molecular Sequence Data
- MutS DNA Mismatch-Binding Protein
- Mutation
- Nalidixic Acid/pharmacology
- Polymorphism, Genetic
- Repetitive Sequences, Nucleic Acid
- Ribotyping
- Rifampin/pharmacology
- Selection, Genetic
- Sequence Analysis, DNA
- Spectinomycin/pharmacology
- Sputum/microbiology
- beta-Lactamases/analysis
Collapse
Affiliation(s)
- Michael E Watson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Jane L Burns
- Division of Infectious Diseases, Children's Hospital and Regional Medical Center, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Arnold L Smith
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
29
|
Abstract
Until recently, parallel genotypic adaptation was considered unlikely because phenotypic differences were thought to be controlled by many genes. There is increasing evidence, however, that phenotypic variation sometimes has a simple genetic basis and that parallel adaptation at the genotypic level may be more frequent than previously believed. Here, we review evidence for parallel genotypic adaptation derived from a survey of the experimental evolution, phylogenetic, and quantitative genetic literature. The most convincing evidence of parallel genotypic adaptation comes from artificial selection experiments involving microbial populations. In some experiments, up to half of the nucleotide substitutions found in independent lineages under uniform selection are the same. Phylogenetic studies provide a means for studying parallel genotypic adaptation in non-experimental systems, but conclusive evidence may be difficult to obtain because homoplasy can arise for other reasons. Nonetheless, phylogenetic approaches have provided evidence of parallel genotypic adaptation across all taxonomic levels, not just microbes. Quantitative genetic approaches also suggest parallel genotypic evolution across both closely and distantly related taxa, but it is important to note that this approach cannot distinguish between parallel changes at homologous loci versus convergent changes at closely linked non-homologous loci. The finding that parallel genotypic adaptation appears to be frequent and occurs at all taxonomic levels has important implications for phylogenetic and evolutionary studies. With respect to phylogenetic analyses, parallel genotypic changes, if common, may result in faulty estimates of phylogenetic relationships. From an evolutionary perspective, the occurrence of parallel genotypic adaptation provides increasing support for determinism in evolution and may provide a partial explanation for how species with low levels of gene flow are held together.
Collapse
Affiliation(s)
- Troy E Wood
- Indiana University, 1001 E. Third St, Jordan Hall 142, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
30
|
Poirel L, Héritier C, Spicq C, Nordmann P. In vivo acquisition of high-level resistance to imipenem in Escherichia coli. J Clin Microbiol 2004; 42:3831-3. [PMID: 15297541 PMCID: PMC497580 DOI: 10.1128/jcm.42.8.3831-3833.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four clonally related Escherichia coli strains were isolated successively from bile duct of a girl suffering from sclerosing cholangitis. One of them, selected after an imipenem-containing regimen, was resistant to carbapenems and to broad-spectrum cephalosporins due to a plasmid-mediated cephalosporinase, CMY-2, and the lack of outer membrane proteins OmpF and OmpC.
Collapse
Affiliation(s)
- Laurent Poirel
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
31
|
Maeda Y, Kiba A, Ohnishi K, Hikichi Y. Implications of amino acid substitutions in GyrA at position 83 in terms of oxolinic acid resistance in field isolates of Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice. Appl Environ Microbiol 2004; 70:5613-20. [PMID: 15345450 PMCID: PMC520877 DOI: 10.1128/aem.70.9.5613-5620.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 04/08/2004] [Indexed: 11/20/2022] Open
Abstract
Oxolinic acid (OA), a quinolone, inhibits the activity of DNA gyrase composed of GyrA and GyrB and shows antibacterial activity against Burkholderia glumae. Since B. glumae causes bacterial seedling rot and grain rot of rice, both of which are devastating diseases, the emergence of OA-resistant bacteria has important implications on rice cultivation in Japan. Based on the MIC of OA, 35 B. glumae field isolates isolated from rice seedlings grown from OA-treated seeds in Japan were divided into sensitive isolates (OSs; 0.5 microg/ml), moderately resistant isolates (MRs; 50 microg/ml), and highly resistant isolates (HRs; > or =100 microg/ml). Recombination with gyrA of an OS, Pg-10, led MRs and HRs to become OA susceptible, suggesting that gyrA mutations are involved in the OA resistance of field isolates. The amino acid at position 83 in the GyrA of all OSs was Ser, but in all MRs and HRs it was Arg and Ile, respectively. Ser83Arg and Ser83Ile substitutions in the GyrA of an OS, Pg-10, resulted in moderate and high OA resistance, respectively. Moreover, Arg83Ser and Ile83Ser substitutions in the GyrA of MRs and HRs, respectively, resulted in susceptibility to OA. These results suggest that Ser83Arg and Ser83Ile substitutions in GyrA are commonly responsible for resistance to OA in B. glumae field isolates.
Collapse
Affiliation(s)
- Yukiko Maeda
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
In Gram negative bacteria, hydrophilic antibiotics such as beta-lactams and fluoroquinolons used the bacterial porin channel during their entry. The balance of the porin expression level and the molecular parameters which govern the molecule diffusion through the pore are important physiological points. Acquired in vivo beta-lactam resistance is often associated with porin loss, and recently clinical resistant strains synthetizing mutated porin have been described. These data highlight both the importance of the channel characteristics and the amino acid residues involved in the drug diffusion process. In addition, several mechanisms, including various repressors or activators as well as molecules inhibiting the pore synthesis or activity, argue for the complexity and plasticity of the bacterial control of porin function. All these aspects play a key role in both membrane permeability and efficiency of the antibiotic resistance process.
Collapse
Affiliation(s)
- Jean-Marie Pagès
- EA2197, Enveloppe bactérienne, perméabilité et antibiotiques, 27, boulevard Jean Moulin, 13385 Marseille Cedex 05, France.
| |
Collapse
|
33
|
Perméabilité membranaire et résistance aux antibiotiques chez les bactéries à gram négatif. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0338-9898(03)80502-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Corvec S, Caroff N, Espaze E, Marraillac J, Reynaud A. -11 Mutation in the ampC promoter increasing resistance to beta-lactams in a clinical Escherichia coli strain. Antimicrob Agents Chemother 2002; 46:3265-7. [PMID: 12234856 PMCID: PMC128767 DOI: 10.1128/aac.46.10.3265-3267.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutation was discovered in the Pribnow box of the ampC promoter in a clinical Escherichia coli strain. This -11 C-to-T transition created a perfect homology with the -10 consensus sequence. The new promoter was cloned upstream of the cat gene of pKK232-8 and induced a sixfold increase in promoter strength.
Collapse
Affiliation(s)
- S Corvec
- Laboratoire de Bactériologie-Virologie, Hygiène hospitalière, CHU, Université de Nantes, France.
| | | | | | | | | |
Collapse
|
35
|
Selective compartments and antibiotic resistance diversity. Trends Microbiol 2002. [DOI: 10.1016/s0966-842x(02)02300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|