1
|
Hussain A. DEAD Box RNA Helicases: Biochemical Properties, Role in RNA Processing and Ribosome Biogenesis. Cell Biochem Biophys 2024; 82:427-434. [PMID: 38430409 DOI: 10.1007/s12013-024-01240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
DEAD box RNA helicases are a versatile group of ATP dependent enzymes that play an essential role in cellular processes like transcription, RNA processing, ribosome biogenesis and translation. These enzymes perform structural rearrangement of complex RNA molecules and enhance the productive folding of RNA and organization of macromolecular complexes. In this review article besides providing the outline about structural organization of helicases, an in-depth discussion will be done on the biochemical properties of RNA helicases like their substrate binding, binding and hydrolysis of ATP and related conformational changes that are important for functioning of the RNA helicase enzymes. I will extensively discuss the physiological role of RNA helicases in RNA processing and ribosome biogenesis.
Collapse
Affiliation(s)
- Ashaq Hussain
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
2
|
Grünberger F, Schmid G, El Ahmad Z, Fenk M, Vogl K, Reichelt R, Hausner W, Urlaub H, Lenz C, Grohmann D. Uncovering the temporal dynamics and regulatory networks of thermal stress response in a hyperthermophile using transcriptomics and proteomics. mBio 2023; 14:e0217423. [PMID: 37843364 PMCID: PMC10746257 DOI: 10.1128/mbio.02174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Extreme environments provide unique challenges for life, and the study of extremophiles can shed light on the mechanisms of adaptation to such conditions. Pyrococcus furiosus, a hyperthermophilic archaeon, is a model organism for studying thermal stress response mechanisms. In this study, we used an integrated analysis of RNA-sequencing and mass spectrometry data to investigate the transcriptomic and proteomic responses of P. furiosus to heat and cold shock stress and recovery. Our results reveal the rapid and dynamic changes in gene and protein expression patterns associated with these stress responses, as well as the coordinated regulation of different gene sets in response to different stressors. These findings provide valuable insights into the molecular adaptations that facilitate life in extreme environments and advance our understanding of stress response mechanisms in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Felix Grünberger
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Georg Schmid
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Zubeir El Ahmad
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Martin Fenk
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Katharina Vogl
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Winfried Hausner
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Acosta-Reyes FJ, Bhattacharjee S, Gottesman M, Frank J. Structural insight into translation initiation of the λcl leaderless mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.02.556006. [PMID: 37693525 PMCID: PMC10491246 DOI: 10.1101/2023.09.02.556006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fmet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entry channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.
Collapse
Affiliation(s)
- Francisco J Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Sayan Bhattacharjee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Max Gottesman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
4
|
Zhang Z, Dou H, Yuan Q, Shi D, Wan R, Tu P, Xin D, Guo S. Proteomic and Phenotypic Studies of Mycoplasma pneumoniae Revealed Macrolide-Resistant Mutation (A2063G) Associated Changes in Protein Composition and Pathogenicity of Type I Strains. Microbiol Spectr 2023; 11:e0461322. [PMID: 37378520 PMCID: PMC10434051 DOI: 10.1128/spectrum.04613-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is an important respiratory pathogen, the prevalence of macrolide-resistant MP (mainly containing A2063G mutation in 23S rRNA) increased in recent years. Epidemiological studies suggest a higher prevalence of type I resistant (IR) strains than corresponding sensitive (IS/IIS) strains, but not type II resistant (IIR) strains. Here, we aimed to analyze the factors underlying the altered prevalence of IR strains. First, proteomic analyses exhibit the protein compositions were type specific, while more differential proteins were detected between IS and IR (227) than IIS and IIR strains (81). mRNA level detection suggested posttranscriptional regulation of these differential proteins. Differential protein-related phenotypic changes were also detected: (i) P1 abundance was different between genotypes (I < II, IR < IS), the adhesion of MPs showed accordance to P1 abundance within IS and IIS strains; (ii) type I, especially IR, strains had a higher proliferation rate, which is potentially associated with differential proteins participating in glycolysis and one carbon pool metabolisms; (iii) A549 cells infected with IR strains had lower activity of caspase-3 and higher levels IL-8, but the differences were not significant between groups (P > 0.05). Correlations of P1 abundance to caspase-3 activity and proliferation rate to the level of IL-8 were obtained. These results suggest changes in protein composition influenced the pathogenicity of MP, especially in IR strains, which may impact the prevalence of MP strains of different genotypes. IMPORTANCE The prevalence of macrolide-resistant MPs increased the difficulty in treatment of MP infections and posed potential threats to children's health. Epidemiological studies showed a high prevalence of IR-resistant strains (mainly A2063G in 23S rRNA) in these years. However, the trigger mechanisms for this phenomenon are not clear. In this paper, proteomic and phenotypic studies suggest that IR strains have reduced levels of multiple adhesion proteins and increased proliferation rate, which may lead to higher transmission rate of IR strains in the population. This suggests that we should pay attention to the prevalence of IR strains.
Collapse
Affiliation(s)
- Zhikun Zhang
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Pathogenic Biology, School of Basic Medicine Southwest Medical University, Luzhou, China
| | - Haiwei Dou
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qing Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Shi
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruijie Wan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Tu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Deli Xin
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuilong Guo
- Department of Science and Technology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. Int J Mol Sci 2023; 24:ijms24043422. [PMID: 36834832 PMCID: PMC9961632 DOI: 10.3390/ijms24043422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Proteases are the group of enzymes that carry out proteolysis in all forms of life and play an essential role in cell survival. By acting on specific functional proteins, proteases affect the transcriptional and post-translational pathways in a cell. Lon, FtsH, HslVU and the Clp family are among the ATP-dependent proteases responsible for intracellular proteolysis in bacteria. In bacteria, Lon protease acts as a global regulator, governs an array of important functions such as DNA replication and repair, virulence factors, stress response and biofilm formation, among others. Moreover, Lon is involved in the regulation of bacterial metabolism and toxin-antitoxin systems. Hence, understanding the contribution and mechanisms of Lon as a global regulator in bacterial pathogenesis is crucial. In this review, we discuss the structure and substrate specificity of the bacterial Lon protease, as well as its ability to regulate bacterial pathogenesis.
Collapse
|
6
|
Lv X, Zhang R, Wang J, Morigen. The absence of CsdA in Escherichia coli increases DNA replication and cell size but decreases growth rate at low temperature. Biochem Biophys Res Commun 2022; 631:41-47. [PMID: 36166952 DOI: 10.1016/j.bbrc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
The CsdA protein is a highly conserved, DEAD-box RNA helicase and assists RNA structural remodeling at low temperature. We show that the fast-growing wild-type (WT) cells contain higher number of replication origins per cell with bigger cell size and the slowly growing cells possess less number of replication origins per cell with smaller cell size. The absence of CsdA leads to production of larger cells with higher number of origins per cell but slower growth at low temperature in an independent-manner of growth media. The phenotypes in ΔcsdA mutant are reversed by ectopic expression of CsdA or RNase R. A global transcription analysis shows that the absence of CsdA leads to significant decreases in transcription of about 200 genes at low temperature. These genes are associated with essential metabolic pathways, flagger assembly and cell division (minDE). It is likely that the slow growth of ΔcsdA cell results from the decreased transcription of essential metabolic genes, and the larger ΔcsdA cell could be a result of decreased transcription of minDE. The increased transcription of the nrdHIEF genes in ΔcsdA mutant is a likely reason that promotes DNA replication. We conclude that CsdA coordinates the cell cycle to growth by stabilizing mRNA of essential metabolic and cell division genes and degrading mRNA for nucleotide metabolic genes at low temperature.
Collapse
Affiliation(s)
- Xiaoli Lv
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Ran Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
7
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
8
|
Jiang L, Peng Y, Seo J, Jeon D, Jo MG, Lee JH, Jeong JC, Kim CY, Park HC, Lee J. Subtercola endophyticus sp. nov., a cold-adapted bacterium isolated from Abies koreana. Sci Rep 2022; 12:12114. [PMID: 35840645 PMCID: PMC9287328 DOI: 10.1038/s41598-022-16116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
A novel Gram-stain-positive, aerobic bacterial strain, designated AK-R2A1-2 T, was isolated from the surface-sterilized needle leaves of an Abies koreana tree. Strain AK-R2A1-2 T had 97.3% and 96.7% 16S rRNA gene sequence similarities with Subtercola boreus K300T and Subtercola lobariae 9583bT, respectively, but formed a distinct phyletic lineage from these two strains. Growth of strain AK-R2A1-2 T was observed at 4–25 °C at pH 5.0–8.0. Strain AK-R2A1-2 T contained menaquinone 9 (MK-9) and menaquinone 10 (MK-10) as the predominant respiratory quinones. The major cellular fatty acids were anteiso-C15:0 and summed feature 8 (C18:1ω7c or/and C18:1ω6c), and the polar lipids included diphosphatidylglycerol (DPG) and three unknown aminolipids, AKL2, AKL3, and AKL4. The complete genome of strain AK-R2A1-2 T was sequenced to understand the genetic basis of its survival at low temperatures. Multiple copies of cold-associated genes involved in cold-active chaperon, stress response, and DNA repair supported survival of the strain at low temperatures. Strain AK-R2A1-2 T was also able to significantly improve rice seedling growth under low temperatures. Thus, this strain represents a novel species of the genus Subtercola, and the proposed name is Subtercola endophyticus sp. nov. The type strain is AK-R2A1-2 T (= KCTC 49721 T = GDMCC 1.2921 T).
Collapse
Affiliation(s)
- Lingmin Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jiyoon Seo
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Doeun Jeon
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Mi Gyeong Jo
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jae Cheol Jeong
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Hyeong Cheol Park
- Team of Vulnerable Ecological Research, Division of Climate and Ecology, Bureau of Conservation & Assessment Research, National Institute of Ecology (NIE), Seocheon, 33657, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
9
|
Nikolic N, Sauert M, Albanese TG, Moll I. Quantifying heterologous gene expression during ectopic MazF production in Escherichia coli. BMC Res Notes 2022; 15:173. [PMID: 35562780 PMCID: PMC9102682 DOI: 10.1186/s13104-022-06061-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Objective MazF is a sequence-specific endoribonuclease-toxin of the MazEF toxin–antitoxin system. MazF cleaves single-stranded ribonucleic acid (RNA) regions at adenine–cytosine–adenine (ACA) sequences in the bacterium Escherichia coli. The MazEF system has been used in various biotechnology and synthetic biology applications. In this study, we infer how ectopic mazF overexpression affects production of heterologous proteins. To this end, we quantified the levels of fluorescent proteins expressed in E. coli from reporters translated from the ACA-containing or ACA-less messenger RNAs (mRNAs). Additionally, we addressed the impact of the 5′-untranslated region of these reporter mRNAs under the same conditions by comparing expression from mRNAs that comprise (canonical mRNA) or lack this region (leaderless mRNA). Results Flow cytometry analysis indicates that during mazF overexpression, fluorescent proteins are translated from the canonical as well as leaderless mRNAs. Our analysis further indicates that longer mazF overexpression generally increases the concentration of fluorescent proteins translated from ACA-less mRNAs, however it also substantially increases bacterial population heterogeneity. Finally, our results suggest that the strength and duration of mazF overexpression should be optimized for each experimental setup, to maximize the heterologous protein production and minimize the amount of phenotypic heterogeneity in bacterial populations, which is unfavorable in biotechnological processes. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06061-9.
Collapse
Affiliation(s)
- Nela Nikolic
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria. .,Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria. .,Living Systems Institute, University of Exeter, Exeter, UK.
| | - Martina Sauert
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Tanino G Albanese
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Regulation of Leaderless mRNA Translation in Bacteria. Microorganisms 2022; 10:microorganisms10040723. [PMID: 35456773 PMCID: PMC9031893 DOI: 10.3390/microorganisms10040723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
In bacteria, the translation of genetic information can begin through at least three different mechanisms: canonical or Shine-Dalgarno-led initiation, readthrough or 70S scanning initiation, or leaderless initiation. Here, we discuss the main features and regulation of the last, which is characterized mainly by the ability of 70S ribosomal particles to bind to AUG located at or near the 5′ end of mRNAs to initiate translation. These leaderless mRNAs (lmRNAs) are rare in enterobacteria, such as Escherichia coli, but are common in other bacteria, such as Mycobacterium tuberculosis and Deinococcus deserti, where they may represent more than 20% and even up to 60% of the genes. Given that lmRNAs are devoid of a 5′ untranslated region and the Shine-Dalgarno sequence located within it, the mechanism of translation regulation must depend on molecular strategies that are different from what has been observed in the Shine-Dalgarno-led translation. Diverse regulatory mechanisms have been proposed, including the processing of ribosomal RNA and changes in the abundance of translation factors, but all of them produce global changes in the initiation of lmRNA translation. Thus, further research will be required to understand how the initiation of the translation of particular lmRNA genes is regulated.
Collapse
|
11
|
Ding DW, Sun X. Relating Translation Efficiency to Protein Networks Provides Evolutionary Insights in Shewanella and Its Implications for Extracellular Electron Transfer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:605-613. [PMID: 32750850 DOI: 10.1109/tcbb.2020.2996295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Shewanella species are well-known for their extracellular electron transfer (EET) capacity, by which these microorganisms can transfer the electrons from intracellular environment to extracellular space for the reduction of the extracellular insoluble electron acceptors. Using a time-stamped data for the paired protein-mRNA, we investigate the impact of differential translation on the EET process of Shewanella oneidensis MR-1. Firstly, differentially translated proteins when O2 levels are switched from high-O2 to low-O2 are identified by using a soft clustering method, 629 up-regulated translated proteins and 767 down-regulated translated proteins are considered to reflect the changes from inactivated to activated EET process. Then, we showed that the degrees of connectivity of differentially translated proteins were significantly larger than those of non-differentially translated proteins, and thereby these differentially translated proteins will be more important in the protein networks. After that, we networked these differentially translated proteins to construct the differentially translated sub-networks, and discussed the most important proteins that are involved in the EET process with the help of centralization analysis of these differentially translated networks. Furthermore, we also studied the differentially translated operonic genes. Taking together, this work searches the key proteins that potentially activated the EET process from a translational efficiency viewpoint.
Collapse
|
12
|
Liu F, Bratulić S, Costello A, Miettinen TP, Badran AH. Directed evolution of rRNA improves translation kinetics and recombinant protein yield. Nat Commun 2021; 12:5638. [PMID: 34561441 PMCID: PMC8463689 DOI: 10.1038/s41467-021-25852-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
In bacteria, ribosome kinetics are considered rate-limiting for protein synthesis and cell growth. Enhanced ribosome kinetics may augment bacterial growth and biomanufacturing through improvements to overall protein yield, but whether this can be achieved by ribosome-specific modifications remains unknown. Here, we evolve 16S ribosomal RNAs (rRNAs) from Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae towards enhanced protein synthesis rates. We find that rRNA sequence origin significantly impacted evolutionary trajectory and generated rRNA mutants with augmented protein synthesis rates in both natural and engineered contexts, including the incorporation of noncanonical amino acids. Moreover, discovered consensus mutations can be ported onto phylogenetically divergent rRNAs, imparting improved translational activities. Finally, we show that increased translation rates in vivo coincide with only moderately reduced translational fidelity, but do not enhance bacterial population growth. Together, these findings provide a versatile platform for development of unnatural ribosomal functions in vivo.
Collapse
MESH Headings
- Base Sequence
- Directed Molecular Evolution/methods
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Kinetics
- Mass Spectrometry/methods
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Protein Biosynthesis
- Proteome/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Recombinant Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Fan Liu
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
| | - Siniša Bratulić
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Alan Costello
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Ahmed H Badran
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Akanuma G. Diverse relationships between metal ions and the ribosome. Biosci Biotechnol Biochem 2021; 85:1582-1593. [PMID: 33877305 DOI: 10.1093/bbb/zbab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
The ribosome requires metal ions for structural stability and translational activity. These metal ions are important for stabilizing the secondary structure of ribosomal RNA, binding of ribosomal proteins to the ribosome, and for interaction of ribosomal subunits. In this review, various relationships between ribosomes and metal ions, especially Mg2+ and Zn2+, are presented. Mg2+ regulates gene expression by modulating the translational stability and synthesis of ribosomes, which in turn contribute to the cellular homeostasis of Mg2+. In addition, Mg2+ can partly complement the function of ribosomal proteins. Conversely, a reduction in the cellular concentration of Zn2+ induces replacement of ribosomal proteins, which mobilizes free-Zn2+ in the cell and represses translation activity. Evolutional relationships between these metal ions and the ribosome are also discussed.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan.,Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
14
|
Abstract
The dN/dS ratio provides evidence of adaptation or functional constraint in protein-coding genes by quantifying the relative excess or deficit of amino acid-replacing versus silent nucleotide variation. Inexpensive sequencing promises a better understanding of parameters, such as dN/dS, but analyzing very large data sets poses a major statistical challenge. Here, I introduce genomegaMap for estimating within-species genome-wide variation in dN/dS, and I apply it to 3,979 genes across 10,209 tuberculosis genomes to characterize the selection pressures shaping this global pathogen. GenomegaMap is a phylogeny-free method that addresses two major problems with existing approaches: 1) It is fast no matter how large the sample size and 2) it is robust to recombination, which causes phylogenetic methods to report artefactual signals of adaptation. GenomegaMap uses population genetics theory to approximate the distribution of allele frequencies under general, parent-dependent mutation models. Coalescent simulations show that substitution parameters are well estimated even when genomegaMap’s simplifying assumption of independence among sites is violated. I demonstrate the ability of genomegaMap to detect genuine signatures of selection at antimicrobial resistance-conferring substitutions in Mycobacterium tuberculosis and describe a novel signature of selection in the cold-shock DEAD-box protein A gene deaD/csdA. The genomegaMap approach helps accelerate the exploitation of big data for gaining new insights into evolution within species.
Collapse
Affiliation(s)
- Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
15
|
Schmitt E, Coureux PD, Kazan R, Bourgeois G, Lazennec-Schurdevin C, Mechulam Y. Recent Advances in Archaeal Translation Initiation. Front Microbiol 2020; 11:584152. [PMID: 33072057 PMCID: PMC7531240 DOI: 10.3389/fmicb.2020.584152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Translation initiation (TI) allows accurate selection of the initiation codon on a messenger RNA (mRNA) and defines the reading frame. In all domains of life, translation initiation generally occurs within a macromolecular complex made up of the small ribosomal subunit, the mRNA, a specialized methionylated initiator tRNA, and translation initiation factors (IFs). Once the start codon is selected at the P site of the ribosome and the large subunit is associated, the IFs are released and a ribosome competent for elongation is formed. However, even if the general principles are the same in the three domains of life, the molecular mechanisms are different in bacteria, eukaryotes, and archaea and may also vary depending on the mRNA. Because TI mechanisms have evolved lately, their studies bring important information about the evolutionary relationships between extant organisms. In this context, recent structural data on ribosomal complexes and genome-wide studies are particularly valuable. This review focuses on archaeal translation initiation highlighting its relationships with either the eukaryotic or the bacterial world. Eukaryotic features of the archaeal small ribosomal subunit are presented. Ribosome evolution and TI mechanisms diversity in archaeal branches are discussed. Next, the use of leaderless mRNAs and that of leadered mRNAs having Shine-Dalgarno sequences is analyzed. Finally, the current knowledge on TI mechanisms of SD-leadered and leaderless mRNAs is detailed.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
16
|
The Impact of Leadered and Leaderless Gene Structures on Translation Efficiency, Transcript Stability, and Predicted Transcription Rates in Mycobacterium smegmatis. J Bacteriol 2020; 202:JB.00746-19. [PMID: 32094162 PMCID: PMC7148126 DOI: 10.1128/jb.00746-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5' untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5' UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5' UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5' UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5' UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium's survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5' untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5' untranslated regions and are unusually prevalent in mycobacteria.
Collapse
|
17
|
Knöppel A, Andersson DI, Näsvall J. Synonymous Mutations in rpsT Lead to Ribosomal Assembly Defects That Can Be Compensated by Mutations in fis and rpoA. Front Microbiol 2020; 11:340. [PMID: 32210939 PMCID: PMC7069363 DOI: 10.3389/fmicb.2020.00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2020] [Indexed: 11/21/2022] Open
Abstract
We previously described how four deleterious synonymous mutations in the Salmonella enterica rpsT gene (encoding ribosomal protein S20) result in low S20 levels that can be compensated by mutations that restore [S20]. Here, we have further studied the cause for the deleterious effects of S20 deficiency and found that the S20 mutants were also deficient in four other 30S proteins (S1, S2, S12, and S21), which is likely due to an assembly defect of the S20 deficient 30S subunits. We examined the compensatory effect by six additional mutations affecting the global regulator Fis and the C-terminal domain of the α subunit of RNA polymerase (encoded by rpoA). The fis and rpoA mutations restored the S20 levels, concomitantly restoring the assembly defect and the levels of S1, S2, S12, and S21. These results illustrate the complexity of compensatory evolution and how the negative effects of deleterious mutations can be suppressed by a multitude of mechanisms. Additionally, we found that the mutations in fis and rpoA caused reduced expression of other ribosomal components. Notably, some of the fis mutations and the rpoA mutation corrected the fitness of the rpsT mutants to wild-type levels, although expression of other ribosomal components was reduced compared to wild-type. This finding raises new questions regarding the relation between translation capacity and growth rate.
Collapse
|
18
|
Latino L, Midoux C, Vergnaud G, Pourcel C. Investigation of Pseudomonas aeruginosa strain PcyII-10 variants resisting infection by N4-like phage Ab09 in search for genes involved in phage adsorption. PLoS One 2019; 14:e0215456. [PMID: 30990839 PMCID: PMC6467409 DOI: 10.1371/journal.pone.0215456] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria and their bacteriophages coexist and coevolve for the benefit of both in a mutualistic association. Multiple mechanisms are used by bacteria to resist phages in a trade-off between survival and maintenance of fitness. In vitro studies allow inquiring into the fate of virus and host in different conditions aimed at mimicking natural environment. We analyse here the mutations emerging in a clinical Pseudomonas aeruginosa strain in response to infection by Ab09, a N4-like lytic podovirus and describe a variety of chromosomal deletions and mutations conferring resistance. Some deletions result from illegitimate recombination taking place during long-term maintenance of the phage genome. Phage variants with mutations in a tail fiber gene are selected during pseudolysogeny with the capacity to infect resistant cells and produce large plaques. These results highlight the complex host/phage association and suggest that phage Ab09 promotes bacterial chromosome rearrangements. Finally this study points to the possible role of two bacterial genes in Ab09 phage adhesion to the cell, rpsB encoding protein S2 of the 30S ribosomal subunit and ORF1587 encoding a Wzy-like membrane protein involved in LPS biosynthesis.
Collapse
Affiliation(s)
- Libera Latino
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cédric Midoux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- * E-mail: ,
| |
Collapse
|
19
|
Abstract
ABSTRACT
Previously, leaderless mRNAs (lmRNAs) were perceived to make up only a minor fraction of the transcriptome in bacteria. However, advancements in RNA sequencing technology are uncovering vast numbers of lmRNAs, particularly in archaea,
Actinobacteria
, and extremophiles and thus underline their significance in cellular physiology and regulation. Due to the absence of conventional ribosome binding signals, lmRNA translation initiation is distinct from canonical mRNAs and can therefore be differentially regulated. The ribosome’s inherent ability to bind a 5′-terminal AUG can stabilize and protect the lmRNA from degradation or allow ribosomal loading for downstream initiation events. As a result, lmRNAs remain translationally competent during a variety of physiological conditions, allowing them to contribute to multiple regulatory mechanisms. Furthermore, the abundance of lmRNAs can increase during adverse conditions through the upregulation of lmRNA transcription from alternative promoters or by the generation of lmRNAs from canonical mRNAs cleaved by an endonucleolytic toxin. In these ways, lmRNA translation can continue during stress and contribute to regulation, illustrating their importance in the cell. Due to their presence in all domains of life and their ability to be translated by heterologous hosts, lmRNAs appear further to represent ancestral transcripts that might allow us to study the evolution of the ribosome and the translational process.
Collapse
|
20
|
Dumpala PR, Lawrence ML, Karsi A. Identification of Differentially Regulated Edwardsiella ictaluri Proteins During Catfish Serum Treatment. JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:50-56. [PMID: 29595885 DOI: 10.1002/aah.10007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Edwardsiella ictaluri is a facultative, intracellular, gram-negative bacterium that causes enteric septicemia of catfish (ESC). Edwardsiella ictaluri is known to be resistant to defense mechanisms present in catfish serum, which might aid in its use of a host's bloodstream to become septicemic. However, the precise mechanisms of the survival of E. ictaluri in host serum are not known. Analysis of the response of E. ictaluri to the host serum treatment at a proteomic level might aid in the elucidation of its adaptation mechanisms against defense mechanisms present in catfish serum. Thus, the objective of this study was to identify differentially regulated proteins of E. ictaluri upon exposure to naïve catfish serum. Two-dimensional difference gel electrophoresis (2D-DIGE) followed by in-gel trypsin digestion and MALDI-TOF/TOF analysis were used for identification of differentially expressed E. ictaluri proteins. A total of 19 differentially regulated proteins (7 up- and 12 downregulated) were identified. Among those were four putative immunogenic proteins, two chaperones and eight proteins involved in the translational process, two nucleic acid degradation and integration proteins, two intermediary metabolism proteins, and one iron-ion-binding protein. Further research focusing on the functions of these differentially expressed proteins may reveal their roles in host adaptation by E. ictaluri.
Collapse
Affiliation(s)
- Pradeep R Dumpala
- The Rogosin Institute-Xenia Division, 740 Birch Road, Xenia, Ohio, 45385, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| |
Collapse
|
21
|
Palazzotto E, Gallo G, Renzone G, Giardina A, Sutera A, Silva J, Vocat C, Botta L, Scaloni A, Puglia AM. TrpM, a Small Protein Modulating Tryptophan Biosynthesis and Morpho-Physiological Differentiation in Streptomyces coelicolor A3(2). PLoS One 2016; 11:e0163422. [PMID: 27669158 PMCID: PMC5036795 DOI: 10.1371/journal.pone.0163422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
In the model actinomycete Streptomyces coelicolor A3(2), small open reading frames encoding proteins with unknown functions were identified in several amino acid biosynthetic gene operons, such as SCO2038 (trpX) in the tryptophan trpCXBA locus. In this study, the role of the corresponding protein in tryptophan biosynthesis was investigated by combining phenotypic and molecular analyses. The 2038KO mutant strain was characterized by delayed growth, smaller aerial hyphae and reduced production of spores and actinorhodin antibiotic, with respect to the WT strain. The capability of this mutant to grow on minimal medium was rescued by tryptophan and tryptophan precursor (serine and/or indole) supplementation on minimal medium and by gene complementation, revealing the essential role of this protein, here named TrpM, as modulator of tryptophan biosynthesis. His-tag pull-down and bacterial adenylate cyclase-based two hybrid assays revealed TrpM interaction with a putative leucyl-aminopeptidase (PepA), highly conserved component among various Streptomyces spp. In silico analyses showed that PepA is involved in the metabolism of serine, glycine and cysteine through a network including GlyA, CysK and CysM enzymes. Proteomic experiments suggested a TrpM-dependent regulation of metabolic pathways and cellular processes that includes enzymes such as GlyA, which is required for the biosynthesis of tryptophan precursors and key proteins participating in the morpho-physiological differentiation program. Altogether, these findings reveal that TrpM controls tryptophan biosynthesis at the level of direct precursor availability and, therefore, it is able to exert a crucial effect on the morpho-physiological differentiation program in S. coelicolor A3(2).
Collapse
Affiliation(s)
- Emilia Palazzotto
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
- * E-mail:
| | - Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Giovanni Renzone
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anna Giardina
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Alberto Sutera
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Joohee Silva
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Celinè Vocat
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, University of Palermo, 90128 Palermo, Italy
| | - Andrea Scaloni
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
22
|
Schmidt R, Krizsan A, Volke D, Knappe D, Hoffmann R. Identification of New Resistance Mechanisms in Escherichia coli against Apidaecin 1b Using Quantitative Gel- and LC–MS-Based Proteomics. J Proteome Res 2016; 15:2607-17. [DOI: 10.1021/acs.jproteome.6b00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rico Schmidt
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| | - Andor Krizsan
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| | - Daniela Volke
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| | - Daniel Knappe
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany
- Center
for Biotechnology and Biomedicine (BBZ), Universität Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
23
|
Kennedy NM, Mukherjee N, Banerjee P. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence. J Food Prot 2016; 79:1259-65. [PMID: 27357048 DOI: 10.4315/0362-028x.jfp-15-504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level.
Collapse
Affiliation(s)
- Nicole M Kennedy
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA
| | - Nabanita Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA
| | - Pratik Banerjee
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA; Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
24
|
Müller C, Sokol L, Vesper O, Sauert M, Moll I. Insights into the Stress Response Triggered by Kasugamycin in Escherichia coli. Antibiotics (Basel) 2016; 5:E19. [PMID: 27258317 PMCID: PMC4929434 DOI: 10.3390/antibiotics5020019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
The bacteriostatic aminoglycoside antibiotic kasugamycin inhibits protein synthesis at an initial step without affecting translation elongation. It binds to the mRNA track of the ribosome and prevents formation of the translation initiation complex on canonical mRNAs. In contrast, translation of leaderless mRNAs continues in the presence of the drug in vivo. Previously, we have shown that kasugamycin treatment in E. coli stimulates the formation of protein-depleted ribosomes that are selective for leaderless mRNAs. Here, we provide evidence that prolonged kasugamycin treatment leads to selective synthesis of specific proteins. Our studies indicate that leaderless and short-leadered mRNAs are generated by different molecular mechanisms including alternative transcription and RNA processing. Moreover, we provide evidence for ribosome heterogeneity in response to kasugamycin treatment by alteration of the modification status of the stalk proteins bL7/L12.
Collapse
Affiliation(s)
- Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Lena Sokol
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
25
|
Srivastava A, Gogoi P, Deka B, Goswami S, Kanaujia SP. In silico analysis of 5'-UTRs highlights the prevalence of Shine-Dalgarno and leaderless-dependent mechanisms of translation initiation in bacteria and archaea, respectively. J Theor Biol 2016; 402:54-61. [PMID: 27155047 DOI: 10.1016/j.jtbi.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
In prokaryotes, a heterogeneous set of protein translation initiation mechanisms such as Shine-Dalgarno (SD) sequence-dependent, SD sequence-independent or ribosomal protein S1 mediated and leaderless transcript-dependent exists. To estimate the distribution of coding sequences employing a particular translation initiation mechanism, a total of 107 prokaryotic genomes were analysed using in silico approaches. Analysis of 5'-untranslated regions (UTRs) of genes reveals the existence of three types of mRNAs described as transcripts with and without SD motif and leaderless transcripts. Our results indicate that although all the three types of translation initiation mechanisms are widespread among prokaryotes, the number of SD-dependent genes in bacteria is higher than that of archaea. In contrast, archaea contain a significantly higher number of leaderless genes than SD-led genes. The correlation analysis between genome size and SD-led & leaderless genes suggests that the SD-led genes are decreasing (increasing) with genome size in bacteria (archaea). However, the leaderless genes are increasing (decreasing) in bacteria (archaea) with genome size. Moreover, an analysis of the start-codon biasness confirms that among ATG, GTG and TTG codons, ATG is indeed the most preferred codon at the translation initiation site in most of the coding sequences. In leaderless genes, however, the codons GTG and TTG are also observed at the translation initiation site in some species contradicting earlier studies which suggested the usage of only ATG codon. Henceforth, the conventional mechanism of translation initiation cannot be generalized as an exclusive way of initiating the process of protein biosynthesis in prokaryotes.
Collapse
Affiliation(s)
- Ambuj Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Prerana Gogoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bhagyashree Deka
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Shrayanti Goswami
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713205, West Bengal, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
26
|
Sauert M, Wolfinger MT, Vesper O, Müller C, Byrgazov K, Moll I. The MazF-regulon: a toolbox for the post-transcriptional stress response in Escherichia coli. Nucleic Acids Res 2016; 44:6660-75. [PMID: 26908653 PMCID: PMC5001579 DOI: 10.1093/nar/gkw115] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Flexible adaptation to environmental stress is vital for bacteria. An energy-efficient post-transcriptional stress response mechanism in Escherichia coli is governed by the toxin MazF. After stress-induced activation the endoribonuclease MazF processes a distinct subset of transcripts as well as the 16S ribosomal RNA in the context of mature ribosomes. As these 'stress-ribosomes' are specific for the MazF-processed mRNAs, the translational program is changed. To identify this 'MazF-regulon' we employed Poly-seq (polysome fractionation coupled with RNA-seq analysis) and analyzed alterations introduced into the transcriptome and translatome after mazF overexpression. Unexpectedly, our results reveal that the corresponding protein products are involved in all cellular processes and do not particularly contribute to the general stress response. Moreover, our findings suggest that translational reprogramming serves as a fast-track reaction to harsh stress and highlight the so far underestimated significance of selective translation as a global regulatory mechanism in gene expression. Considering the reported implication of toxin-antitoxin (TA) systems in persistence, our results indicate that MazF acts as a prime effector during harsh stress that potentially introduces translational heterogeneity within a bacterial population thereby stimulating persister cell formation.
Collapse
Affiliation(s)
- Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Michael T Wolfinger
- Max F. Perutz Laboratories, Department of Biochemistry and Molecular Cell Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, University of Vienna, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Konstantin Byrgazov
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| |
Collapse
|
27
|
Leaderless Transcripts and Small Proteins Are Common Features of the Mycobacterial Translational Landscape. PLoS Genet 2015; 11:e1005641. [PMID: 26536359 PMCID: PMC4633059 DOI: 10.1371/journal.pgen.1005641] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 10/10/2015] [Indexed: 11/19/2022] Open
Abstract
RNA-seq technologies have provided significant insight into the transcription networks of mycobacteria. However, such studies provide no definitive information on the translational landscape. Here, we use a combination of high-throughput transcriptome and proteome-profiling approaches to more rigorously understand protein expression in two mycobacterial species. RNA-seq and ribosome profiling in Mycobacterium smegmatis, and transcription start site (TSS) mapping and N-terminal peptide mass spectrometry in Mycobacterium tuberculosis, provide complementary, empirical datasets to examine the congruence of transcription and translation in the Mycobacterium genus. We find that nearly one-quarter of mycobacterial transcripts are leaderless, lacking a 5’ untranslated region (UTR) and Shine-Dalgarno ribosome-binding site. Our data indicate that leaderless translation is a major feature of mycobacterial genomes and is comparably robust to leadered initiation. Using translational reporters to systematically probe the cis-sequence requirements of leaderless translation initiation in mycobacteria, we find that an ATG or GTG at the mRNA 5’ end is both necessary and sufficient. This criterion, together with our ribosome occupancy data, suggests that mycobacteria encode hundreds of small, unannotated proteins at the 5’ ends of transcripts. The conservation of small proteins in both mycobacterial species tested suggests that some play important roles in mycobacterial physiology. Our translational-reporter system further indicates that mycobacterial leadered translation initiation requires a Shine Dalgarno site in the 5’ UTR and that ATG, GTG, TTG, and ATT codons can robustly initiate translation. Our combined approaches provide the first comprehensive view of mycobacterial gene structures and their non-canonical mechanisms of protein expression. The current paradigm for bacterial translation is based on an mRNA that includes an untranslated leader sequence containing the ribosome-binding site upstream of the initiation codon. We applied genome-scale approaches to map the protein-coding regions in the genomes of Mycobacterium smegmatis and Mycobacterium tuberculosis. We found that nearly one-quarter of mycobacterial transcripts are leaderless in mycobacterial species, thus indicating that ribosomes must recognize these mRNAs by a novel mechanism and suggesting that there are alternative modes of bacterial translation beyond the Escherichia coli paradigm. Our translational profiling showed that many mycobacterial proteins are mis-annotated, and also found many new genes encoding small proteins that had been previously overlooked, which are likely to play novel roles in diverse cellular processes. We also developed a new reporter system that provides mechanistic insights into translation initiation through deep sequencing. Our data show that leaderless translation is a robust process that is conserved in mycobacteria, that leaderless translation only requires that the mRNA begin with a start codon, and predict that mycobacteria encode hundreds of small proteins. This work will help us understand gene structure, genome organization and protein expression in bacteria, and how the translational machinery differs in different organisms.
Collapse
|
28
|
Redder P, Hausmann S, Khemici V, Yasrebi H, Linder P. Bacterial versatility requires DEAD-box RNA helicases. FEMS Microbiol Rev 2015; 39:392-412. [PMID: 25907111 DOI: 10.1093/femsre/fuv011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
RNA helicases of the DEAD-box and DEAH-box families are important players in many processes involving RNA molecules. These proteins can modify RNA secondary structures or intermolecular RNA interactions and modulate RNA-protein complexes. In bacteria, they are known to be involved in ribosome biogenesis, RNA turnover and translation initiation. They thereby play an important role in the adaptation of bacteria to changing environments and to respond to stress conditions.
Collapse
Affiliation(s)
- Peter Redder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Haleh Yasrebi
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| |
Collapse
|
29
|
Raneri M, Sciandrone B, Briani F. A whole-cell assay for specific inhibitors of translation initiation in bacteria. ACTA ACUST UNITED AC 2015; 20:627-33. [PMID: 25586496 DOI: 10.1177/1087057114566376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/05/2014] [Indexed: 11/15/2022]
Abstract
The bacterial translational apparatus is an ideal target for the search of new antibiotics. In fact, it performs an essential process carried out by a large number of potential subtargets for antibiotic action. Moreover, it is sufficiently different in several molecular details from the apparatus of Eukarya and Archaea to generally ensure specificity for the bacterial domain. This applies in particular to translation initiation, which is the most different step in the process. In bacteria, the 30S ribosomal subunit directly binds to the translation initiation region, a site within the messenger RNA (mRNA) 5'-untranslated region (5'-UTR). 30S binding is mediated by the interaction of both the 16S ribosomal RNA and the ribosomal protein S1 with specific regions of the mRNA 5'-UTR. An alternative, S1-independent pathway is enjoyed by leaderless mRNAs (i.e., transcripts devoid of a 5'-UTR). We have developed a simple fluorescence-based whole-cell assay in Escherichia coli to find inhibitors of the canonical S1-dependent translation initiation pathway. The assay has been set up both in a common E. coli laboratory strain and in a strain with an outer membrane permeability defect. Compared with other whole-cell assays for antibacterials, the major advantages of the screen described here are high sensitivity and specificity.
Collapse
Affiliation(s)
- Matteo Raneri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| | | | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| |
Collapse
|
30
|
Byrgazov K, Grishkovskaya I, Arenz S, Coudevylle N, Temmel H, Wilson DN, Djinovic-Carugo K, Moll I. Structural basis for the interaction of protein S1 with the Escherichia coli ribosome. Nucleic Acids Res 2015; 43:661-73. [PMID: 25510494 PMCID: PMC4288201 DOI: 10.1093/nar/gku1314] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
In Gram-negative bacteria, the multi-domain protein S1 is essential for translation initiation, as it recruits the mRNA and facilitates its localization in the decoding centre. In sharp contrast to its functional importance, S1 is still lacking from the high-resolution structures available for Escherichia coli and Thermus thermophilus ribosomes and thus the molecular mechanism governing the S1-ribosome interaction has still remained elusive. Here, we present the structure of the N-terminal S1 domain D1 when bound to the ribosome at atomic resolution by using a combination of NMR, X-ray crystallography and cryo-electron microscopy. Together with biochemical assays, the structure reveals that S1 is anchored to the ribosome primarily via a stabilizing π-stacking interaction within the short but conserved N-terminal segment that is flexibly connected to domain D1. This interaction is further stabilized by salt bridges involving the zinc binding pocket of protein S2. Overall, this work provides one hitherto enigmatic piece in the 'ribosome puzzle', namely the detailed molecular insight into the topology of the S1-ribosome interface. Moreover, our data suggest novel mechanisms that have the potential to modulate protein synthesis in response to environmental cues by changing the affinity of S1 for the ribosome.
Collapse
Affiliation(s)
- Konstantin Byrgazov
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Stefan Arenz
- Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Nicolas Coudevylle
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Hannes Temmel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Daniel N Wilson
- Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
31
|
Xu J, Liu C, Li M, Hu J, Zhu L, Zeng D, Yang Y, Peng Y, Ruan B, Guo L, Li H. A rice DEAD-box RNA helicase protein, OsRH17, suppresses 16S ribosomal RNA maturation in Escherichia coli. Gene 2014; 555:318-28. [PMID: 25447922 DOI: 10.1016/j.gene.2014.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
DEAD-box proteins comprise a large protein family. These proteins function in all types of processes in RNA metabolism and are highly conserved among eukaryotes. However, the precise functions of DEAD-box proteins in rice physiology and development remain unclear. In this study, we identified a rice DEAD-box protein, OsRH17, that contains a DEAD domain and all of the common conserved motifs of DEAD-box RNA helicases. OsRH17 was specifically expressed in pollen and differentiated callus and upregulated by application of the plant hormones naphthyl acetic acid (NAA) and abscisic acid (ABA). The OsRH17:GFP fusion protein was localized to the nucleus. Tiny amounts of OsRH17 and partial fragments (N-427 and C-167) were detected when they were expressed in Escherichia coli, a prokaryote. Growth of the host cells was suppressed in E. coli by OsRH17, N-427 or C-167, and this suppression was independent of the concentration of the NaCl in the medium. Expression analysis of rRNAs in E. coli revealed that the 16S rRNA precursor accumulated in transgenic E. coli cells, and the relative growth rate was inversely proportional to the levels of pre-16S rRNA accumulation. Results suggested that OsRH17 may play a role in ribosomal biogenesis and suppress 16S rRNA maturation in E. coli. No visible phenotype was observed in transgenic yeast and rice (overexpressing OsRH17, N-427, and C-167, as well as OsRH17 knockdown), and even in some abiotic and biotic stresses, which could be due to the redundancy in rice under normal conditions.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yaolong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Youlin Peng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Hongqing Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
32
|
Wang Y, Sun H, Du W, Blanzieri E, Viero G, Xu Y, Liang Y. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks. PLoS One 2014; 9:e108716. [PMID: 25268881 PMCID: PMC4182551 DOI: 10.1371/journal.pone.0108716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022] Open
Abstract
Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Department of Information and Communication Technology, University of Trento, Povo, Italy
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Huiyan Sun
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Wei Du
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Enrico Blanzieri
- Department of Information and Communication Technology, University of Trento, Povo, Italy
- * E-mail: (YCL); (EB)
| | - Gabriella Viero
- Institute of Biophysics, National Research Council, University of Trento, Povo, Italy
| | - Ying Xu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Yanchun Liang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- * E-mail: (YCL); (EB)
| |
Collapse
|
33
|
An extended Shine-Dalgarno sequence in mRNA functionally bypasses a vital defect in initiator tRNA. Proc Natl Acad Sci U S A 2014; 111:E4224-33. [PMID: 25246575 DOI: 10.1073/pnas.1411637111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiator tRNAs are special in their direct binding to the ribosomal P-site due to the hallmark occurrence of the three consecutive G-C base pairs (3GC pairs) in their anticodon stems. How the 3GC pairs function in this role, has remained unsolved. We show that mutations in either the mRNA or 16S rRNA leading to extended interaction between the Shine-Dalgarno (SD) and anti-SD sequences compensate for the vital need of the 3GC pairs in tRNA(fMet) for its function in Escherichia coli. In vivo, the 3GC mutant tRNA(fMet) occurred less abundantly in 70S ribosomes but normally on 30S subunits. However, the extended SD:anti-SD interaction increased its occurrence in 70S ribosomes. We propose that the 3GC pairs play a critical role in tRNA(fMet) retention in ribosome during the conformational changes that mark the transition of 30S preinitiation complex into elongation competent 70S complex. Furthermore, treating cells with kasugamycin, decreasing ribosome recycling factor (RRF) activity or increasing initiation factor 2 (IF2) levels enhanced initiation with the 3GC mutant tRNA(fMet), suggesting that the 70S mode of initiation is less dependent on the 3GC pairs in tRNA(fMet).
Collapse
|
34
|
Guo L, Ding J, Guo R, Hou Y, Wang DC, Huang L. Biochemical and structural insights into RNA binding by Ssh10b, a member of the highly conserved Sac10b protein family in Archaea. J Biol Chem 2013; 289:1478-90. [PMID: 24307170 DOI: 10.1074/jbc.m113.521351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Proteins of the Sac10b family are highly conserved in Archaea. Ssh10b, a member of the Sac10b family from the hyperthermophilic crenarchaeon Sulfolobus shibatae, binds to RNA in vivo. Here we show that binding by Ssh10b destabilizes RNA secondary structure. Structural analysis of Ssh10b in complex with a 25-bp RNA duplex containing local distortions reveals that Ssh10b binds the two RNA strands symmetrically as a tetramer with each dimer bound asymmetrically to a single RNA strand. Amino acid residues involved in double-stranded RNA binding are similar, but non-identical, to those in dsDNA binding. The dimer-dimer interaction mediated by the intermolecular β-sheet appears to facilitate the destabilization of base pairing in the secondary structure of RNA. Our results suggest that proteins of the Sac10b family may play important roles in RNA transactions requiring destabilization of RNA secondary structure in Sulfolobus.
Collapse
Affiliation(s)
- Li Guo
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology and
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
In all domains of life, initiator tRNA functions exclusively at the first step of protein synthesis while elongator tRNAs extend the polypeptide chain. Unique features of initiator tRNA enable it to preferentially bind the ribosomal P site and initiate translation. Recently, we showed that the abundance of initiator tRNA also contributes to its specialized role. This motivates the question, can a cell also use elongator tRNA to initiate translation under certain conditions? To address this, we introduced non-AUG initiation codons CCC (Pro), GAG (Glu), GGU (Gly), UCU (Ser), UGU (Cys), ACG (Thr), AAU (Asn), and AGA (Arg) into the uracil DNA glycosylase gene (ung) used as a reporter gene. Enzyme assays from log-phase cells revealed initiation from non-AUG codons when intracellular initiator tRNA levels were reduced. The activity increased significantly in stationary phase. Further increases in initiation from non-AUG codons occurred in both growth phases upon introduction of plasmid-borne genes of cognate elongator tRNAs. Since purine-rich Shine-Dalgarno sequences occur frequently on mRNAs (in places other than the canonical AUG codon initiation contexts), initiation with elongator tRNAs from the alternate contexts may generate proteome diversity under stress without compromising genomic integrity. Thus, by changing the relative amounts of initiator and elongator tRNAs within the cell, we have blurred the distinction between the two classes of tRNAs thought to be frozen through years of evolution.
Collapse
|
36
|
Byrgazov K, Vesper O, Moll I. Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr Opin Microbiol 2013; 16:133-9. [PMID: 23415603 PMCID: PMC3653068 DOI: 10.1016/j.mib.2013.01.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Translation of the mRNA-encoded genetic information into proteins is catalyzed by the intricate ribonucleoprotein machine, the ribosome. Historically, the bacterial ribosome is viewed as an unchangeable entity, constantly equipped with the entire complement of RNAs and proteins. Conversely, several lines of evidence indicate the presence of functional selective ribosomal subpopulations that exhibit variations in the RNA or the protein components and modulate the translational program in response to environmental changes. Here, we summarize these findings, which raise the functional status of the ribosome from a protein synthesis machinery only to a regulatory hub that integrates environmental cues in the process of protein synthesis, thereby adding an additional level of complexity to the regulation of gene expression.
Collapse
Affiliation(s)
- Konstantin Byrgazov
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
37
|
Iost I, Bizebard T, Dreyfus M. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:866-77. [PMID: 23415794 DOI: 10.1016/j.bbagrm.2013.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/18/2022]
Abstract
DEAD-box proteins are RNA-dependent ATPases that are widespread in all three kingdoms of life. They are thought to rearrange the structures of RNA or ribonucleoprotein complexes but their exact mechanism of action is rarely known. Whereas in yeast most DEAD-box proteins are essential, no example of an essential bacterial DEAD-box protein has been reported so far; at most, their absence results in cold-sensitive growth. Moreover, whereas yeast DEAD-box proteins are implicated in virtually all reactions involving RNA, in E. coli (the bacterium where DEAD-box proteins have been mostly studied) their role is limited to ribosome biogenesis, mRNA degradation, and possibly translation initiation. Plausible reasons for these differences are discussed here. In spite of their dispensability, E. coli DEAD-box proteins are valuable models for the mechanism of action of DEAD-box proteins in general because the reactions in which they participate can be reproduced in vitro. Here we review our present understanding of this mechanism of action. Using selected examples for which information is available: (i) we describe how, by interacting directly with a particular RNA motif or by binding to proteins that themselves recognize such a motif, DEAD-box proteins are brought to their specific RNA substrate(s); (ii) we discuss the nature of the structural transitions that DEAD-box proteins induce on their substrates; and (iii) we analyze the reasons why these proteins are mostly important at low temperatures. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
Affiliation(s)
- Isabelle Iost
- Univ. Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France.
| | | | | |
Collapse
|
38
|
Bacterial helicases in post-transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:878-83. [PMID: 23291566 DOI: 10.1016/j.bbagrm.2012.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022]
Abstract
Among the five superfamilies of helicases involved in RNA and DNA metabolism, superfamily 2 and superfamily 5 include bacterial RNA-helicases. These enzymes have been shown to be involved in ribosome biogenesis and post-transcriptional gene regulation. Here, we focus on bacterial regulatory mechanisms that are mediated by RNA helicases belonging to superfamily 2, which includes DEAD-box and DEAH-box helicases. Some of these helicases are part of bacterial degradosomes and were shown to unwind RNA duplexes. We will review examples where these enzymes have been implicated in translatability and metabolic stability of bacterial transcripts. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
39
|
Aseev LV, Chugunov AO, Efremov RG, Boni IV. A single missense mutation in a coiled-coil domain of Escherichia coli ribosomal protein S2 confers a thermosensitive phenotype that can be suppressed by ribosomal protein S1. J Bacteriol 2013; 195:95-104. [PMID: 23104805 PMCID: PMC3536177 DOI: 10.1128/jb.01305-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 10/21/2012] [Indexed: 01/01/2023] Open
Abstract
Ribosomal protein S2 is an essential component of translation machinery, and its viable mutated variants conferring distinct phenotypes serve as a valuable tool in studying the role of S2 in translation regulation. One of a few available rpsB mutants, rpsB1, shows thermosensitivity and ensures enhanced expression of leaderless mRNAs. In this study, we identified the nature of the rpsB1 mutation. Sequencing of the rpsB1 allele revealed a G-to-A transition in the part of the rpsB gene which encodes a coiled-coil domain of S2. The resulting E132K substitution resides in a highly conserved site, TKKE, a so-called N-terminal capping box, at the beginning of the second alpha helix. The protruding coiled-coil domain of S2 is known to provide binding with 16S rRNA in the head of the 30S subunit and, in addition, to interact with a key mRNA binding protein, S1. Molecular dynamics simulations revealed a detrimental impact of the E132K mutation on the coiled-coil structure and thereby on the interactions between S2 and 16S rRNA, providing a clue for the thermosensitivity of the rpsB1 mutant. Using a strain producing a leaderless lacZ transcript from the chromosomal lac promoter, we demonstrated that not only the rpsB1 mutation generating S2/S1-deficient ribosomes but also the rpsA::IS10 mutation leading to partial deficiency in S1 alone increased translation efficiency of the leaderless mRNA by about 10-fold. Moderate overexpression of S1 relieved all these effects and, moreover, suppressed the thermosensitive phenotype of rpsB1, indicating the role of S1 as an extragenic suppressor of the E132K mutation.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | | | | |
Collapse
|
40
|
Stampfl S, Doetsch M, Beich-Frandsen M, Schroeder R. Characterization of the kinetics of RNA annealing and strand displacement activities of the E. coli DEAD-box helicase CsdA. RNA Biol 2013; 10:149-56. [PMID: 23291905 PMCID: PMC3590231 DOI: 10.4161/rna.23475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CsdA is one of five E. coli DEAD-box helicases and as a cold-shock protein assists RNA structural remodeling at low temperatures. The helicase has been shown to catalyze duplex unwinding in an ATP-dependent way and accelerate annealing of complementary RNAs, but detailed kinetic analyses are missing. Therefore, we performed kinetic measurements using a coupled annealing and strand displacement assay with high temporal resolution to analyze how CsdA balances the two converse activities. We furthermore tested the hypothesis that the unwinding activity of DEAD-box helicases is largely determined by the substrate’s thermodynamic stability using full-length CsdA and a set of RNAs with constant length, but increasing GC content. The rate constants for strand displacement did indeed decrease with increasing duplex stability, with a calculated free energy between -31.3 and -40 kcal/mol being the limit for helix unwinding. Thus, our data generally support the above hypothesis, showing that for CsdA substrate thermal stability is an important rate limiting factor.
Collapse
Affiliation(s)
- Sabine Stampfl
- Max F. Perutz Laboratories, Department for Biochemistry, Vienna, Austria
| | | | | | | |
Collapse
|
41
|
Oun S, Redder P, Didier JP, François P, Corvaglia AR, Buttazzoni E, Giraud C, Girard M, Schrenzel J, Linder P. The CshA DEAD-box RNA helicase is important for quorum sensing control in Staphylococcus aureus. RNA Biol 2012; 10:157-65. [PMID: 23229022 PMCID: PMC3590232 DOI: 10.4161/rna.22899] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DEAD-box RNA helicases are present in almost all living organisms and participate in various processes of RNA metabolism. Bacterial proteins of this large family were shown to be required for translation initiation, ribosome biogenesis and RNA decay. The latter is primordial for rapid adaptation to changing environmental conditions. In particular, the RhlB RNA helicase from E. coli was shown to assist the bacterial degradosome machinery. Recently, the CshA DEAD-box proteins from Bacillus subtilis and Staphylococcus aureus were shown to interact with proteins that are believed to form the degradosome. S. aureus can cause life-threatening disease, with particular concern focusing on biofilm formation on catheters and prosthetic devices, since in this form the bacteria are almost impossible to eradicate both by the immune system and antibiotic treatment. This persistent state relies on the expression of surface encoded proteins that allow attachment to various surfaces, and contrasts with the dispersal mode of growth that relies on the secretion of proteins such as hemolysins and proteases. The switch between these two states is mainly mediated by the Staphylococcal cell density sensing system encoded by agr. We show that inactivation of the cshA DEAD-box gene results in dysregulation of biofilm formation and hemolysis through modulation of agr mRNA stability. Importantly, inactivation of the agrA gene in the cshA mutant background reverses the defect, indicating that cshA is genetically upstream of agr and that a delicate balance of agr mRNA abundance mediated through stability control by CshA is critical for proper expression of virulence factors.
Collapse
Affiliation(s)
- Stella Oun
- Department of Microbiology and Molecular Medicine, CMU, Medical Faculty, University of Geneva, Genève, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Similar to proteins, RNA molecules must fold into the correct conformation and associate with protein complexes in order to be functional within a cell. RNA helicases rearrange RNA secondary structure and RNA-protein interactions in an ATP-dependent reaction, performing crucial functions in all aspects of RNA metabolism. In prokaryotes, RNA helicase activity is associated with roles in housekeeping functions including RNA turnover, ribosome biogenesis, translation and small RNA metabolism. In addition, RNA helicase expression and/or activity are frequently altered during cellular response to abiotic stress, implying they perform defined roles during cellular adaptation to changes in the growth environment. Specifically, RNA helicases contribute to the formation of cold-adapted ribosomes and RNA degradosomes, implying a role in alleviation of RNA secondary structure stabilization at low temperature. A common emerging theme involves RNA helicases acting as scaffolds for protein-protein interaction and functioning as molecular clamps, holding RNA-protein complexes in specific conformations. This review highlights recent advances in DEAD-box RNA helicase association with cellular response to abiotic stress in prokaryotes.
Collapse
Affiliation(s)
- George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
43
|
Phadtare S. Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNPase and relevance to low-temperature RNA metabolism. Genes Cells 2012; 17:850-74. [PMID: 22957931 DOI: 10.1111/gtc.12002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022]
Abstract
Cold-shock response is elicited by the transfer of exponentially growing cells from their optimum temperature to a significantly lower growth temperature and is characterized by the induction of several cold-shock proteins. These proteins, which presumably possess a variety of different activities, are critical for survival and continued growth at low temperature. One of the main consequences of cold shock is stabilization of the secondary structures in nucleic acids leading to hindrance of RNA degradation. Cold-shock proteins, such as RNA helicase CsdA, and 3'-5' processing exoribonucleases, such as PNPase and RNase R, are presumably involved in facilitating the RNA metabolism at low temperature. As a step toward elucidating the individual contributions of these proteins to low-temperature RNA metabolism, the global transcript profiles of cells lacking CsdA, RNase R and PNPase proteins as well as cells individually over-expressing these proteins as compared to the wild-type cells were analyzed at 15 °C. The analysis showed distinct sets of genes, which are possible targets of each of these proteins. This analysis will help further our understanding of the low-temperature RNA metabolism.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, CABM, 679 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
Rapid depletion of target proteins allows identification of coincident physiological responses. J Bacteriol 2012; 194:5932-40. [PMID: 22942249 DOI: 10.1128/jb.00913-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted protein degradation is a powerful tool that can be used to create unique physiologies depleted of important factors. Current strategies involve modifying a gene of interest such that a degradation peptide is added to an expressed target protein and then conditionally activating proteolysis, either by expressing adapters, unmasking cryptic recognition determinants, or regulating protease affinities using small molecules. For each target, substantial optimization may be required to achieve a practical depletion, in that the target remains present at a normal level prior to induction and is then rapidly depleted to levels low enough to manifest a physiological response. Here, we describe a simplified targeted degradation system that rapidly depletes targets and that can be applied to a wide variety of proteins without optimizing target protease affinities. The depletion of the target is rapid enough that a primary physiological response manifests that is related to the function of the target. Using ribosomal protein S1 as an example, we show that the rapid depletion of this essential translation factor invokes concomitant changes to the levels of several mRNAs, even before appreciable cell division has occurred.
Collapse
|
45
|
Moll I, Engelberg-Kulka H. Selective translation during stress in Escherichia coli. Trends Biochem Sci 2012; 37:493-8. [PMID: 22939840 DOI: 10.1016/j.tibs.2012.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
The bacterial stress response, a strategy to cope with environmental changes, is generally known to operate on the transcriptional level. Here, we discuss a novel paradigm for stress adaptation at the post-transcriptional level, based on the recent discovery of a stress-induced modified form of the translation machinery in Escherichia coli that is generated by MazF, the toxin component of the toxin-antitoxin (TA) module mazEF. Under stress, the induced endoribonuclease MazF removes the 3'-terminal 43 nucleotides of the 16S rRNA of ribosomes and, concomitantly, the 5'-untranslated regions (UTRs) of specific transcripts. This elegant mechanism enables selective translation due to the complementary effect of MazF on ribosomes and mRNAs, and also represents the first example of functional ribosome heterogeneity based on rRNA alteration.
Collapse
Affiliation(s)
- Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
| | | |
Collapse
|
46
|
Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie 2012; 94:1544-53. [DOI: 10.1016/j.biochi.2012.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 01/16/2023]
|
47
|
Guo YW, Zhang Y, Huang X, Gao KS, Wang KJ, Ke CH, Huang HQ. Proteomic analysis of dimethoate-responsive proteins in the oyster (Saccostrea cucullata) gonad. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:2248-2258. [PMID: 22237506 DOI: 10.1007/s11356-011-0729-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/27/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION The organophosphorus pesticide dimethoate (DM) has been widely used in agriculture, and its extensive use could still have left many environmental problems. METHODS In the present study, the oyster (Saccostrea cucullata) was subjected to acute DM toxicity (2 mg/L), and gas chromatographic analysis revealed and quantified residues of DM in the oyster gonad. RESULTS Two-dimensional gel electrophoresis showed 12 differentially expressed proteins in the DM-exposed oyster gonad in comparison to the control. Among these 12 protein spots, nine were down-regulated, and three were up-regulated. Both matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry and database searching were utilized to identify these differential proteins, and revealed five proteins previously described as being related to DM toxicity. In addition, the levels of mRNA expression corresponding to these differential proteins were further proved in part by real-time PCR. The functions of these proteins were summarized as: carrying out energy metabolism, DNA repair, DNA transcriptional regulation, and oxidative protection. The remaining seven protein spots were of particular interest in terms of their responses to DM, which have seldom been reported. CONCLUSION These data might point to a number of novel and significant biomarkers for evaluating the contamination levels of DM and provide useful insight into the mechanisms of DM toxicity in vivo.
Collapse
Affiliation(s)
- Yan-Wei Guo
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Translation initiation is a crucial step of protein synthesis which largely defines how the composition of the cellular transcriptome is converted to the proteome and controls the response and adaptation to environmental stimuli. The efficiency of translation of individual mRNAs, and hence the basal shape of the proteome, is defined by the structures of the mRNA translation initiation regions. Initiation efficiency can be regulated by small molecules, proteins, or antisense RNAs, underscoring its importance in translational control. Although initiation has been studied in bacteria for decades, many aspects remain poorly understood. Recent evidence has suggested an unexpected diversity of pathways by which mRNAs can be recruited to the bacterial ribosome, the importance of structural dynamics of initiation intermediates, and the complexity of checkpoints for mRNA selection. In this review, we discuss how the ribosome shapes the landscape of translation initiation by non-linear kinetic processing of the transcriptome information. We summarize the major pathways by which mRNAs enter the ribosome depending on the structure of their 5' untranslated regions, the assembly and the structure of initiation intermediates, the individual and synergistic roles of initiation factors, and the mechanisms of mRNA and initiator tRNA selection.
Collapse
Affiliation(s)
- Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | | |
Collapse
|
49
|
Byrgazov K, Manoharadas S, Kaberdina AC, Vesper O, Moll I. Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli. PLoS One 2012; 7:e32702. [PMID: 22412910 PMCID: PMC3296737 DOI: 10.1371/journal.pone.0032702] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022] Open
Abstract
Despite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains. Moreover, protein S2 was shown to be required for binding of protein S1 to the ribosome. Here, we present evidence that the N-terminal domain of S1 (amino acids 1-106; S1(106)) is necessary and sufficient for the interaction with protein S2 as well as for ribosome binding. We show that over production of protein S1(106) affects E. coli growth by displacing native protein S1 from its binding pocket on the ribosome. In addition, our data reveal that the coiled-coil domain of protein S2 (S2α(2)) is sufficient to allow protein S1 to bind to the ribosome. Taken together, these data uncover the crucial elements required for the S1/S2 interaction, which is pivotal for translation initiation on canonical mRNAs in gram-negative bacteria. The results are discussed in terms of a model wherein the S1/S2 interaction surface could represent a possible target to modulate the selectivity of the translational machinery and thereby alter the translational program under distinct conditions.
Collapse
Affiliation(s)
- Konstantin Byrgazov
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Salim Manoharadas
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Anna C. Kaberdina
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Oliver Vesper
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
50
|
Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC, Engelberg-Kulka H, Moll I. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 2011; 147:147-57. [PMID: 21944167 DOI: 10.1016/j.cell.2011.07.047] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/11/2011] [Accepted: 07/21/2011] [Indexed: 01/17/2023]
Abstract
Escherichia coli (E. coli) mazEF is a stress-induced toxin-antitoxin (TA) module. The toxin MazF is an endoribonuclease that cleaves single-stranded mRNAs at ACA sequences. Here, we show that MazF cleaves at ACA sites at or closely upstream of the AUG start codon of some specific mRNAs and thereby generates leaderless mRNAs. Moreover, we provide evidence that MazF also targets 16S rRNA within 30S ribosomal subunits at the decoding center, thereby removing 43 nucleotides from the 3' terminus. As this region comprises the anti-Shine-Dalgarno (aSD) sequence that is required for translation initiation on canonical mRNAs, a subpopulation of ribosomes is formed that selectively translates the described leaderless mRNAs both in vivo and in vitro. Thus, we have discovered a modified translation machinery that is generated in response to MazF induction and that probably serves for stress adaptation in Escherichia coli.
Collapse
Affiliation(s)
- Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|