1
|
Ryan AF, Juhn SK, Andalibi A, Bakaletz LO, Ehrlich GD, Jung TTK, Li JD, Lin J, Post CJ. 4A. Molecular Biology. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894051140s106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Dhouib R, Pg Othman DSM, Essilfie AT, Hansbro PM, Hanson JO, McEwan AG, Kappler U. Maturation of molybdoenzymes and its influence on the pathogenesis of non-typeable Haemophilus influenzae. Front Microbiol 2015; 6:1219. [PMID: 26594204 PMCID: PMC4633490 DOI: 10.3389/fmicb.2015.01219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023] Open
Abstract
Mononuclear molybdenum enzymes of the dimethylsulfoxide (DMSO) reductase family occur exclusively in prokaryotes, and a loss of some these enzymes has been linked to a loss of bacterial virulence in several cases. The MobA protein catalyzes the final step in the synthesis of the molybdenum guanine dinucleotide (MGD) cofactor that is exclusive to enzymes of the DMSO reductase family. MobA has been proposed as a potential target for control of virulence since its inhibition would affect the activities of all molybdoenzymes dependent upon MGD. Here, we have studied the phenotype of a mobA mutant of the host-adapted human pathogen Haemophilus influenzae. H. influenzae causes and contributes to a variety of acute and chronic diseases of the respiratory tract, and several enzymes of the DMSO reductase family are conserved and highly expressed in this bacterium. The mobA mutation caused a significant decrease in the activities of all Mo-enzymes present, and also resulted in a small defect in anaerobic growth. However, we did not detect a defect in in vitro biofilm formation nor in invasion and adherence to human epithelial cells in tissue culture compared to the wild-type. In a murine in vivo model, the mobA mutant showed only a mild attenuation compared to the wild-type. In summary, our data show that MobA is essential for the activities of molybdenum enzymes, but does not appear to affect the fitness of H. influenzae. These results suggest that MobA is unlikely to be a useful target for antimicrobials, at least for the purpose of treating H. influenzae infections.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Dk S M Pg Othman
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle Newcastle, NSW, Australia
| | - Phil M Hansbro
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle Newcastle, NSW, Australia
| | - Jeffrey O Hanson
- School of Biological Sciences, The University of Queensland St. Lucia, QLD, Australia
| | - Alastair G McEwan
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| |
Collapse
|
3
|
Su YC, Mukherjee O, Singh B, Hallgren O, Westergren-Thorsson G, Hood D, Riesbeck K. Haemophilus influenzae P4 Interacts With Extracellular Matrix Proteins Promoting Adhesion and Serum Resistance. J Infect Dis 2015; 213:314-23. [PMID: 26153407 DOI: 10.1093/infdis/jiv374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023] Open
Abstract
Interaction with the extracellular matrix (ECM) is one of the successful colonization strategies employed by nontypeable Haemophilus influenzae (NTHi). Here we identified Haemophilus lipoprotein e (P4) as a receptor for ECM proteins. Purified recombinant P4 displayed a high binding affinity for laminin (Kd = 9.26 nM) and fibronectin (Kd = 10.19 nM), but slightly less to vitronectin (Kd = 16.51 nM). A P4-deficient NTHi mutant showed a significantly decreased binding to these ECM components. Vitronectin acquisition conferred serum resistance to both P4-expressing NTHi and Escherichia coli transformants. P4-mediated bacterial adherence to pharynx, type II alveolar, and bronchial epithelial cells was mainly attributed to fibronectin. Importantly, a significantly reduced bacterial infection was observed in the middle ear of the Junbo mouse model when NTHi was devoid of P4. In conclusion, our data provide new insight into the role of P4 as an important factor for Haemophilus colonization and subsequent respiratory tract infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö
| | - Oindrilla Mukherjee
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö
| | - Oskar Hallgren
- Department for Experimental Medical Sciences Department of Respiratory Medicine and Allergology, Lund University, Sweden
| | | | - Derek Hood
- Mammalian Genetics Unit, MRC Harwell, Harwell Science & Innovation Campus, Oxfordshire, United Kingdom
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö
| |
Collapse
|
4
|
Su YC, Resman F, Hörhold F, Riesbeck K. Comparative genomic analysis reveals distinct genotypic features of the emerging pathogen Haemophilus influenzae type f. BMC Genomics 2014; 15:38. [PMID: 24438474 PMCID: PMC3928620 DOI: 10.1186/1471-2164-15-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of invasive disease caused by encapsulated Haemophilus influenzae type f (Hif) has increased in the post-H. influenzae type b (Hib) vaccine era. We previously annotated the first complete Hif genome from a clinical isolate (KR494) that caused septic shock and necrotizing myositis. Here, the full genome of Hif KR494 was compared to sequenced reference strains Hib 10810, capsule type d (Hid) Rd Kw20, and finally nontypeable H. influenzae 3655. The goal was to identify possible genomic characteristics that may shed light upon the pathogenesis of Hif. RESULTS The Hif KR494 genome exhibited large regions of synteny with other H. influenzae, but also distinct genome rearrangements. A predicted Hif core genome of 1390 genes was shared with the reference strains, and 6 unique genomic regions comprising half of the 191 unique coding sequences were revealed. The majority of these regions were inserted genetic fragments, most likely derived from the closely-related Haemophilus spp. including H. aegyptius, H. haemolyticus and H. parainfluenzae. Importantly, the KR494 genome possessed several putative virulence genes that were distinct from non-type f strains. These included the sap2 operon, aef3 fimbriae, and genes for kanamycin nucleotidyltranserase, iron-utilization proteins, and putative YadA-like trimeric autotransporters that may increase the bacterial virulence. Furthermore, Hif KR494 lacked a hisABCDEFGH operon for de novo histidine biosynthesis, hmg locus for lipooligosaccharide biosynthesis and biofilm formation, the Haemophilus antibiotic resistance island and a Haemophilus secondary molybdate transport system. We confirmed the histidine auxotrophy and kanamycin resistance in Hif by functional experiments. Moreover, the pattern of unique or missing genes of Hif KR494 was similar in 20 Hif clinical isolates obtained from different years and geographical areas. A cross-species comparison revealed that the Hif genome shared more characteristics with H. aegyptius than Hid and NTHi. CONCLUSIONS The genomic comparative analyses facilitated identification of genotypic characteristics that may be related to the specific virulence of Hif. In relation to non-type f H. influenzae strains, the Hif genome contains differences in components involved in metabolism and survival that may contribute to its invasiveness.
Collapse
Affiliation(s)
| | | | | | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| |
Collapse
|
5
|
|
6
|
van Ulsen P, Kuhn K, Prinz T, Legner H, Schmid P, Baumann C, Tommassen J. Identification of proteins of
Neisseria meningitidis
induced under iron-limiting conditions using the isobaric tandem mass tag (TMT) labeling approach. Proteomics 2009; 9:1771-81. [DOI: 10.1002/pmic.200800642] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Shen K, Antalis P, Gladitz J, Sayeed S, Ahmed A, Yu S, Hayes J, Johnson S, Dice B, Dopico R, Keefe R, Janto B, Chong W, Goodwin J, Wadowsky RM, Erdos G, Post JC, Ehrlich GD, Hu FZ. Identification, distribution, and expression of novel genes in 10 clinical isolates of nontypeable Haemophilus influenzae. Infect Immun 2005; 73:3479-91. [PMID: 15908377 PMCID: PMC1111819 DOI: 10.1128/iai.73.6.3479-3491.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We hypothesize that Haemophilus influenzae, as a species, possesses a much greater number of genes than that found in any single H. influenzae genome. This supragenome is distributed throughout naturally occurring infectious populations, and new strains arise through autocompetence and autotransformation systems. The effect is that H. influenzae populations can readily adapt to environmental stressors. The supragenome hypothesis predicts that significant differences exist between and among the genomes of individual infectious strains of nontypeable H. influenzae (NTHi). To test this prediction, we obtained 10 low-passage NTHi clinical isolates from the middle ear effusions of patients with chronic otitis media. DNA sequencing was performed with 771 clones chosen at random from a pooled genomic library. Homology searching demonstrated that approximately 10% of these clones were novel compared to the H. influenzae Rd KW20 genome, and most of them did not match any DNA sequence in GenBank. Amino acid homology searches using hypothetical translations of the open reading frames revealed homologies to a variety of proteins, including bacterial virulence factors not previously identified in the NTHi isolates. The distribution and expression of 53 of these genes among the 10 strains were determined by PCR- and reverse transcription PCR-based analyses. These unique genes were nonuniformly distributed among the 10 isolates, and transcription of these genes in planktonic cultures was detected in 50% (177 of 352) of the occurrences. All of the novel sequences were transcribed in one or more of the NTHi isolates. Seventeen percent (9 of 53) of the novel genes were identified in all 10 NTHi strains, with each of the remaining 44 being present in only a subset of the strains. These genic distribution analyses were more effective as a strain discrimination tool than either multilocus sequence typing or 23S ribosomal gene typing methods.
Collapse
Affiliation(s)
- Kai Shen
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, 320 East North Ave., 11th Floor South Tower, Pittsburgh, PA 15212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gilsdorf JR, Marrs CF, Foxman B. Haemophilus influenzae: genetic variability and natural selection to identify virulence factors. Infect Immun 2004; 72:2457-61. [PMID: 15102751 PMCID: PMC387884 DOI: 10.1128/iai.72.5.2457-2461.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Janet R Gilsdorf
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
9
|
Mason KM, Munson RS, Bakaletz LO. Nontypeable Haemophilus influenzae gene expression induced in vivo in a chinchilla model of otitis media. Infect Immun 2003; 71:3454-62. [PMID: 12761130 PMCID: PMC155704 DOI: 10.1128/iai.71.6.3454-3462.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative bacterium nontypeable Haemophilus influenzae (NTHI) is the predominant pathogen in chronic otitis media with effusion and, with Streptococcus pneumoniae and Moraxella catarrhalis, is a causative agent of acute otitis media. To identify potential virulence determinants, bacterial gene expression was monitored by differential fluorescence induction during early disease progression in one specific anatomical niche of a chinchilla model of NTHI-induced otitis media. Genomic DNA fragments from NTHI strain 86-028NP were cloned upstream of the promoterless gfpmut3 gene. NTHI strain 86-028NP served as the host for the promoter trap library. Pools of 2,000 transformants were inoculated into the left and right middle ear cavities of chinchillas. Middle ear effusions were recovered by epitympanic tap at 24 and 48 h, and clones containing promoter elements that were induced in vivo and producing green fluorescent protein were isolated by two-color fluorescence-activated cell sorting. Insert DNA was sequenced and compared to the complete genome sequence of H. influenzae strain Rd. In a screen of 16,000 clones, we have isolated 44 clones that contain unique gene fragments encoding biosynthetic enzymes, metabolic and regulatory proteins, and hypothetical proteins of unknown function. An additional eight clones contain gene fragments unique to our NTHI isolate. Using quantitative reverse transcription-PCR, we have confirmed that 26 clones demonstrated increased gene expression in vivo relative to expression in vitro. These data provide insight into the response of NTHI bacteria as they sense and respond to the middle ear microenvironment during early events of otitis media.
Collapse
Affiliation(s)
- Kevin M Mason
- Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University College of Medicine and Public Health, Columbus 43205, USA
| | | | | |
Collapse
|
10
|
Daines DA, Cohn LA, Coleman HN, Kim KS, Smith AL. Haemophilus influenzae Rd KW20 has virulence properties. J Med Microbiol 2003; 52:277-282. [PMID: 12676864 DOI: 10.1099/jmm.0.05025-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is a human-adapted commensal and pathogen that can cause mucosal infections such as sinusitis, otitis media and bronchitis. Certain strains also cause bacteraemia and meningitis. Clinical isolates are genetically heterogeneous and are often recalcitrant to standard genetic manipulation. H. influenzae strain Rd KW20 has traditionally been considered avirulent, since it does not survive in the bloodstream of animals, is readily killed by normal adult human sera and cannot colonize the nasopharynx of infant rats. The purpose of this study was to determine whether Rd KW20 could be used in certain infection models. It is shown here that strain Rd KW20 can invade certain human epithelial cell lines grown either as monolayers or as differentiated epithelium at the air-liquid interface. In addition, Rd KW20 can invade a monolayer of immortalized human brain microvascular endothelial cells. Finally, this strain can replicate and survive in human bronchial xenografts for up to 3 weeks. The complete genomic sequence of Rd KW20 is available and it is readily amenable to genetic manipulation. These properties and the results reported here indicate that this strain is a viable alternative to the use of clinical isolates for the investigation of H. influenzae virulence.
Collapse
Affiliation(s)
- Dayle A Daines
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leah A Cohn
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hannah N Coleman
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kwang Sik Kim
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arnold L Smith
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This review will consider recent developments in the clinical aspects of infections due to non-typeable Haemophilus influenzae. In addition, newer developments in the areas of mechanisms of pathogenesis, host pathogen interaction, immune responses and efforts toward vaccine development will be reviewed briefly. RECENT FINDINGS Non-typeable H. influenzae continues to be a common cause of otitis media in infants and children, sinusitis in children and adults, pneumonia in adults, and lower respiratory tract infection in adults with chronic obstructive pulmonary disease. While the rate of beta-lactamase production by isolates of H. influenzae varies geographically, most regions show a rate of 20-35% of isolates producing beta-lactamase. Recent studies have highlighted the possible role of bacterial biofilms formed by H. influenzae as a cause of otitis media. Several lines of evidence indicate that H. influenzae causes intracellular infection in the lower respiratory tract in chronic obstructive pulmonary disease and this observation has important implications in understanding the human immune response to the bacterium. Lipooligosaccharide is an important virulence factor for H. influenzae and research is generating new information on the complex role of this molecule in colonization and infection of the respiratory tract. Several surface molecules are under active evaluation as vaccine antigens. SUMMARY Non-typeable H. influenzae is an important cause of respiratory tract infections in children and adults. Most strains are susceptible to amoxicillin/clavulanate, fluoroquinolones and the newer macrolides. Research in the next decade promises substantial progress in the challenge of developing vaccines for nontypeable H. influenzae.
Collapse
Affiliation(s)
- Timothy F Murphy
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA.
| |
Collapse
|