1
|
Petchiappan A, Majdalani N, Wall E, Gottesman S. RcsF-independent mechanisms of signaling within the Rcs Phosphorelay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610257. [PMID: 39372736 PMCID: PMC11451591 DOI: 10.1101/2024.08.29.610257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA. IgaA is essential; it negatively regulates the signaling by interacting with the phosphotransferase RcsD. We previously showed that RcsF-dependent signaling does not require the periplasmic domain of the histidine kinase RcsC and identified a dominant negative mutant of RcsD that can block signaling via increased interactions with IgaA. However, how the inducting signals are sensed and how signal is transduced to activate the transcription of the Rcs regulon remains unclear. In this study, we investigated how the Rcs cascade functions without its only known sensor, RcsF and characterized the underlying regulatory mechanisms for three distinct RcsF-independent inducers. Previous reports showed that Rcs signaling can be induced in the absence of RcsF by a loss of function mutation in the periplasmic oxidoreductase DsbA or by overexpression of the DnaK cochaperone DjlA. We identified an inner membrane protein, DrpB, as a multicopy RcsF-independent Rcs activator in E. coli. The loss of the periplasmic oxidoreductase DsbA and the overexpression of the DnaK cochaperone DjlA each trigger the Rcs cascade in the absence of RcsF by weakening IgaA-RcsD interactions in different ways. In contrast, the cell-division associated protein DrpB uniquely requires the RcsC periplasmic domain for signaling; this domain is not needed for RcsF-dependent signaling. This suggests the possibility that RcsC acts as a sensor for some Rcs signals. Overall, the results add new understanding to how this complex phosphorelay can be activated by diverse mechanisms.
Collapse
Affiliation(s)
- Anushya Petchiappan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| | - Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
- Current address: US Food and Drug Administration, Office of Pharmaceutical Quality, Silver Spring MD 20903
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| |
Collapse
|
2
|
Koksaldi I, Park D, Atilla A, Kang H, Kim J, Seker UOS. RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics. ACS Synth Biol 2024; 13:1026-1037. [PMID: 38588603 PMCID: PMC11036506 DOI: 10.1021/acssynbio.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
In the era of the COVID-19 pandemic, the significance of point-of-care (POC) diagnostic tools has become increasingly vital, driven by the need for quick and precise virus identification. RNA-based sensors, particularly toehold sensors, have emerged as promising candidates for POC detection systems due to their selectivity and sensitivity. Toehold sensors operate by employing an RNA switch that changes the conformation when it binds to a target RNA molecule, resulting in a detectable signal. This review focuses on the development and deployment of RNA-based sensors for POC viral RNA detection with a particular emphasis on toehold sensors. The benefits and limits of toehold sensors are explored, and obstacles and future directions for improving their performance within POC detection systems are presented. The use of RNA-based sensors as a technology for rapid and sensitive detection of viral RNA holds great potential for effectively managing (dealing/coping) with present and future pandemics in resource-constrained settings.
Collapse
Affiliation(s)
- Ilkay
Cisil Koksaldi
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Dongwon Park
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Abdurahman Atilla
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Hansol Kang
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Jongmin Kim
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Urartu Ozgur Safak Seker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
3
|
Ponath F, Zhu Y, Vogel J. Transcriptome fine-mapping in Fusobacterium nucleatum reveals FoxJ, a new σ E-dependent small RNA with unusual mRNA activation activity. mBio 2024; 15:e0353623. [PMID: 38436569 PMCID: PMC11005410 DOI: 10.1128/mbio.03536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
The oral commensal Fusobacterium nucleatum can spread to extra-oral sites, where it is associated with diverse pathologies, including pre-term birth and cancer. Due to the evolutionary distance of F. nucleatum to other model bacteria, we lack a deeper understanding of the RNA regulatory networks that allow this bacterium to adapt to its various niches. As a first step in that direction, we recently showed that F. nucleatum harbors a global stress response governed by the extracytoplasmic function sigma factor, σE, which displays a striking functional conservation with Proteobacteria and includes a noncoding arm in the form of a regulatory small RNA (sRNA), FoxI. To search for putative additional σE-dependent sRNAs, we comprehensively mapped the 5' and 3' ends of transcripts in the model strain ATCC 23726. This enabled the discovery of FoxJ, a ~156-nucleotide sRNA previously misannotated as the 5' untranslated region (UTR) of ylmH. FoxJ is tightly controlled by σE and activated by the same stress conditions as is FoxI. Both sRNAs act as mRNA repressors of the abundant porin FomA, but FoxJ also regulates genes that are distinct from the target suite of FoxI. Moreover, FoxJ differs from other σE-dependent sRNAs in that it also positively regulates genes at the post-transcriptional level. We provide preliminary evidence for a new mode of sRNA-mediated mRNA activation, which involves the targeting of intra-operonic terminators. Overall, our study provides an important resource through the comprehensive annotation of 5' and 3' UTRs in F. nucleatum and expands our understanding of the σE response in this evolutionarily distant bacterium.IMPORTANCEThe oral microbe Fusobacterium nucleatum can colonize secondary sites, including cancer tissue, and likely deploys complex regulatory systems to adapt to these new environments. These systems are largely unknown, partly due to the phylogenetic distance of F. nucleatum to other model organisms. Previously, we identified a global stress response mediated by σE that displays functional conservation with the envelope stress response in Proteobacteria, comprising a coding and noncoding regulatory arm. Through global identification of transcriptional start and stop sites, we uncovered the small RNA (sRNA) FoxJ as a novel component of the noncoding arm of the σE response in F. nucleatum. Together with its companion sRNA FoxI, FoxJ post-transcriptionally modulates the synthesis of envelope proteins, revealing a conserved function for σE-dependent sRNAs between Fusobacteriota and Proteobacteria. Moreover, FoxJ activates the gene expression for several targets, which is a mode of regulation previously unseen in the noncoding arm of the σE response.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Yan Zhu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
5
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Handler S, Kirkpatrick CL. New layers of regulation of the general stress response sigma factor RpoS. Front Microbiol 2024; 15:1363955. [PMID: 38505546 PMCID: PMC10948607 DOI: 10.3389/fmicb.2024.1363955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The general stress response (GSR) sigma factor RpoS from Escherichia coli has emerged as one of the key paradigms for study of how numerous signal inputs are accepted at multiple levels into a single pathway for regulation of gene expression output. While many studies have elucidated the key pathways controlling the production and activity of this sigma factor, recent discoveries have uncovered still more regulatory mechanisms which feed into the network. Moreover, while the regulon of this sigma factor comprises a large proportion of the E. coli genome, the downstream expression levels of all the RpoS target genes are not identically affected by RpoS upregulation but respond heterogeneously, both within and between cells. This minireview highlights the most recent developments in our understanding of RpoS regulation and expression, in particular those which influence the regulatory network at different levels from previously well-studied pathways.
Collapse
|
7
|
TagElDein MA, Mohamed NG, Shahein YE, Ziko L, Hussein NA. Altering Escherichia coli envelope integrity by mimicking the lipoprotein RcsF. Arch Microbiol 2023; 206:12. [PMID: 38070002 PMCID: PMC10710380 DOI: 10.1007/s00203-023-03733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Escherichia coli cell envelope is crucial for stress sensing and signal transduction, mediated by numerous protein-protein interactions to enable adaptation and survival. Interfering with these interactions might affect envelope integrity leading to bacterial death. The outer membrane lipoprotein (RcsF) is the stress sensor of the regulator of capsule synthesis (Rcs) phosphorelay that senses envelope threats. RcsF interacts with two essential proteins, IgaA (repressing the Rcs system) and BamA (inserting β-barrel proteins in the outer membrane). Disturbing RcsF interactions may alter Rcs signaling and/or membrane integrity thus affecting bacterial survival. Here, we derived the sequence of a peptide mimicking RcsF (RcsFmim), based on the in silico docking of RcsF with IgaA. Expression of rcsFmim caused 3-to-4-fold activation of the Rcs system and perturbation of the outer membrane. Both effects result in decreased E. coli growth rate. We anticipate that RcsFmim present a candidate for future antibacterial peptide development.
Collapse
Affiliation(s)
- Moustafa A TagElDein
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha G Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Laila Ziko
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted By the Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| |
Collapse
|
8
|
Liu F, Chen Z, Zhang S, Wu K, Bei C, Wang C, Chao Y. In vivo RNA interactome profiling reveals 3'UTR-processed small RNA targeting a central regulatory hub. Nat Commun 2023; 14:8106. [PMID: 38062076 PMCID: PMC10703908 DOI: 10.1038/s41467-023-43632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Small noncoding RNAs (sRNAs) are crucial regulators of gene expression in bacteria. Acting in concert with major RNA chaperones such as Hfq or ProQ, sRNAs base-pair with multiple target mRNAs and form large RNA-RNA interaction networks. To systematically investigate the RNA-RNA interactome in living cells, we have developed a streamlined in vivo approach iRIL-seq (intracellular RIL-seq). This generic approach is highly robust, illustrating the dynamic sRNA interactomes in Salmonella enterica across multiple stages of growth. We have identified the OmpD porin mRNA as a central regulatory hub that is targeted by a dozen sRNAs, including FadZ cleaved from the conserved 3'UTR of fadBA mRNA. Both ompD and FadZ are activated by CRP, constituting a type I incoherent feed-forward loop in the fatty acid metabolism pathway. Altogether, we have established an approach to profile RNA-RNA interactomes in live cells, highlighting the complexity of RNA regulatory hubs and RNA networks.
Collapse
Affiliation(s)
- Fang Liu
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ziying Chen
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200033, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shuo Zhang
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kejing Wu
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Bei
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200033, China
| | - Chuan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200033, China.
| | - Yanjie Chao
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
9
|
Adams J, Hoang J, Petroni E, Ashby E, Hardin J, Stoebel DM. The timing of transcription of RpoS-dependent genes varies across multiple stresses in Escherichia coli K-12. mSystems 2023; 8:e0066323. [PMID: 37623321 PMCID: PMC10654073 DOI: 10.1128/msystems.00663-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
IMPORTANCE Bacteria adapt to changing environments by altering the transcription of their genes. Specific proteins can regulate these changes. This study explored how a single protein called RpoS controls how many genes change expression during adaptation to three stresses. We found that: (i) RpoS is responsible for activating different genes in different stresses; (ii) that during a stress, the timing of gene activation depends on the what stress it is; and (iii) that how much RpoS a gene needs in order to be activated can predict when that gene will be activated during the stress of stationary phase.
Collapse
Affiliation(s)
- Josephine Adams
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Emily Petroni
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Ethan Ashby
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Johanna Hardin
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Daniel M. Stoebel
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
10
|
Liang Y, Zhao Y, Kwan J, Wang Y, Qiao Y. Escherichia coli has robust regulatory mechanisms against elevated peptidoglycan cleavage by lytic transglycosylases. J Biol Chem 2023; 299:104615. [PMID: 36931392 PMCID: PMC10139938 DOI: 10.1016/j.jbc.2023.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Peptidoglycan (PG) is an essential and conserved exoskeletal component in all bacteria that protects cells from lysis. Gram-negative bacteria such as Escherichia coli encode multiple redundant lytic transglycosylases (LTs) that engage in PG cleavage, a potentially lethal activity requiring proper regulation to prevent autolysis. To elucidate the potential effects and cellular regulatory mechanisms of elevated LT activity, we individually cloned the periplasmic domains of two membrane-bound LTs, MltA and MltB under the control of the arabinose-inducible system for overexpression in the periplasmic space in E. coli. Interestingly, upon induction, the culture undergoes an initial period of cell lysis followed by robust growth restoration. The LT-overexpressing E. coli exhibits altered morphology with larger spherical cells, which is in line with the weakening of the PG layer due to aberrant LT activity. On the other hand, the restored cells display a similar rod shape and peptidoglycan profile that is indistinguishable from the uninduced control. Quantitative proteomics analysis of the restored cells identified significant protein enrichment in the regulator of capsule synthesis (Rcs) regulon, a two-component stress response known to be specifically activated by PG damage. We showed that LT-overexpressing E. coli with an inactivated Rcs system partially impairs the growth restoration process, supporting the involvement of the Rcs system in countering aberrant PG cleavage. Furthermore, we demonstrated that the elevated LT activity specifically potentiates β-lactam antibiotics against E. coli with a defective Rcs regulon, suggesting the dual effects of augmented PG cleavage and blocked PG synthesis as a potential antimicrobial strategy.
Collapse
Affiliation(s)
- Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - JericMunChung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - Yue Wang
- A*STAR Infectious Disease Labs, Singapore 138648
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371.
| |
Collapse
|
11
|
Cho SH, Dekoninck K, Collet JF. Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria. J Microbiol 2023; 61:317-329. [PMID: 36892778 DOI: 10.1007/s12275-023-00030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial two-component systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. β-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking results in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium. .,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| | - Kilian Dekoninck
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.,University of California, Berkeley, CA, 94720, USA
| | - Jean-Francois Collet
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
12
|
Zhang Y, Wu Q, Forsythe S, Liu C, Chen N, Li Y, Zhang J, Wang J, Ding Y. The cascade regulation of small RNA and quorum sensing system: Focusing on biofilm formation of foodborne pathogens in food industry. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Carrier MC, Lalaouna D, Massé E. Hfq protein and GcvB small RNA tailoring of oppA target mRNA to levels allowing translation activation by MicF small RNA in Escherichia coli. RNA Biol 2023; 20:59-76. [PMID: 36860088 PMCID: PMC9988348 DOI: 10.1080/15476286.2023.2179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Lalaouna
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Brosse A, Boudry P, Walburger A, Magalon A, Guillier M. Synthesis of the NarP response regulator of nitrate respiration in Escherichia coli is regulated at multiple levels by Hfq and small RNAs. Nucleic Acids Res 2022; 50:6753-6768. [PMID: 35748881 PMCID: PMC9262595 DOI: 10.1093/nar/gkac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Two-component systems (TCS) and small RNAs (sRNA) are widespread regulators that participate in the response and the adaptation of bacteria to their environments. TCSs and sRNAs mostly act at the transcriptional and post-transcriptional levels, respectively, and can be found integrated in regulatory circuits, where TCSs control sRNAs transcription and/or sRNAs post-transcriptionally regulate TCSs synthesis. In response to nitrate and nitrite, the paralogous NarQ-NarP and NarX-NarL TCSs regulate the expression of genes involved in anaerobic respiration of these alternative electron acceptors to oxygen. In addition to the previously reported repression of NarP synthesis by the SdsN137 sRNA, we show here that RprA, another Hfq-dependent sRNA, also negatively controls narP. Interestingly, the repression of narP by RprA actually relies on two independent mechanisms of control. The first is via the direct pairing of the central region of RprA to the narP translation initiation region and presumably occurs at the translation initiation level. In contrast, the second requires only the very 5' end of the narP mRNA, which is targeted, most likely indirectly, by the full-length or the shorter, processed, form of RprA. In addition, our results raise the possibility of a direct role of Hfq in narP control, further illustrating the diversity of post-transcriptional regulation mechanisms in the synthesis of TCSs.
Collapse
Affiliation(s)
- Anaïs Brosse
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Pierre Boudry
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Maude Guillier
- To whom correspondence should be addressed. Tel: +33 01 58 41 51 49; Fax: +33 01 58 41 50 25;
| |
Collapse
|
15
|
Marmion M, Macori G, Whyte P, Scannell AGM. Stress response modulation: the key to survival of pathogenic and spoilage bacteria during poultry processing. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35451951 DOI: 10.1099/mic.0.001184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The control of bacterial contaminants on meat is a key area of interest in the food industry. Bacteria are exposed to a variety of stresses during broiler processing which challenge bacterial structures and metabolic pathways causing death or sublethal injury. To counter these stresses, bacteria possess robust response systems that can induce shifts in the transcriptome and proteome to enable survival. Effective adaptive responses, such as biofilm formation, shock protein production and metabolic flexibility, require rapid induction and implementation at a cellular and community level to facilitate bacterial survival in adverse conditions. This review aims to provide an overview of the scientific literature pertaining to the regulation of complex adaptive processes used by bacteria to survive the processing environment, with particular focus on species that impact the quality and safety of poultry products like Campylobacter spp., Salmonella enterica and Pseudomonas spp.
Collapse
Affiliation(s)
- Maitiú Marmion
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Guerrino Macori
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, Belfield, Dublin 4, D04V4W8, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Institute of Food and Health, Belfield, Dublin 4, D04V4W8, Ireland
| |
Collapse
|
16
|
Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community. THE ISME JOURNAL 2022; 16:1004-1011. [PMID: 34759303 PMCID: PMC8940935 DOI: 10.1038/s41396-021-01148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/12/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
On a surface, microorganisms grow into a multi-cellular community. When a community becomes densely populated, cells migrate away to expand the community's territory. How microorganisms regulate surface motility to optimize expansion remains poorly understood. Here, we characterized surface motility of Proteus mirabilis. P. mirabilis is well known for its ability to expand its colony rapidly on a surface. Cursory visual inspection of an expanding colony suggests partial migration, i.e., one fraction of a population migrates while the other is sessile. Quantitative microscopic imaging shows that this migration pattern is determined by spatially inhomogeneous regulation of cell motility. Further analyses reveal that this spatial regulation is mediated by the Rcs system, which represses the expression of the motility regulator (FlhDC) in a nutrient-dependent manner. Alleviating this repression increases the colony expansion speed but results in a rapid drop in the number of viable cells, lowering population fitness. These findings collectively demonstrate how Rcs regulates cell motility dynamically to increase the fitness of an expanding bacterial population, illustrating a fundamental trade-off underlying bacterial colonization of a surface.
Collapse
|
17
|
Mohanty BK, Kushner SR. Inactivation of RNase P in Escherichia coli significantly changes post-transcriptional RNA metabolism. Mol Microbiol 2022; 117:121-142. [PMID: 34486768 PMCID: PMC8766891 DOI: 10.1111/mmi.14808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Ribonuclease P (RNase P), which is required for the 5'-end maturation of tRNAs in every organism, has been shown to play a limited role in other aspects of RNA metabolism in Escherichia coli. Using RNA-sequencing (RNA-seq), we demonstrate that RNase P inactivation affects the abundances of ~46% of the expressed transcripts in E. coli and provide evidence that its essential function is its ability to generate pre-tRNAs from polycistronic tRNA transcripts. The RNA-seq results agreed with the published data and northern blot analyses of 75/83 transcripts (mRNAs, sRNAs, and tRNAs). Changes in transcript abundances in the RNase P mutant also correlated with changes in their half-lives. Inactivating the stringent response did not alter the rnpA49 phenotype. Most notably, increases in the transcript abundances were observed for all genes in the cysteine regulons, multiple toxin-antitoxin modules, and sigma S-controlled genes. Surprisingly, poly(A) polymerase (PAP I) modulated the abundances of ~10% of the transcripts affected by RNase P. A comparison of the transcriptomes of RNase P, RNase E, and RNase III mutants suggests that they affect distinct substrates. Together, our work strongly indicates that RNase P is a major player in all aspects of post-transcriptional RNA metabolism in E. coli.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602,Department of Microbiology, University of Georgia, Athens, GA 30602,To whom correspondence should be addressed.
| |
Collapse
|
18
|
Abstract
Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5' leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA;
| |
Collapse
|
19
|
Serra DO, Hengge R. Bacterial Multicellularity: The Biology of Escherichia coli Building Large-Scale Biofilm Communities. Annu Rev Microbiol 2021; 75:269-290. [PMID: 34343018 DOI: 10.1146/annurev-micro-031921-055801] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widespread multicellular form of bacterial life. The spatial structure and emergent properties of these communities depend on a polymeric extracellular matrix architecture that is orders of magnitude larger than the cells that build it. Using as a model the wrinkly macrocolony biofilms of Escherichia coli, which contain amyloid curli fibers and phosphoethanolamine (pEtN)-modified cellulose as matrix components, we summarize here the structure, building, and function of this large-scale matrix architecture. Based on different sigma and other transcription factors as well as second messengers, the underlying regulatory network reflects the fundamental trade-off between growth and survival. It controls matrix production spatially in response to long-range chemical gradients, but it also generates distinct patterns of short-range matrix heterogeneity that are crucial for tissue-like elasticity and macroscopic morphogenesis. Overall, these biofilms confer protection and a potential for homeostasis, thereby reducing maintenance energy, which makes multicellularity an emergent property of life itself. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Diego O Serra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
20
|
Disorder is a critical component of lipoprotein sorting in Gram-negative bacteria. Nat Chem Biol 2021; 17:1093-1100. [PMID: 34326538 DOI: 10.1038/s41589-021-00845-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
Gram-negative bacteria express structurally diverse lipoproteins in their cell envelope. Here, we find that approximately half of lipoproteins destined to the Escherichia coli outer membrane display an intrinsically disordered linker at their N terminus. Intrinsically disordered regions are common in proteins, but establishing their importance in vivo has remained challenging. As we sought to unravel how lipoproteins mature, we discovered that unstructured linkers are required for optimal trafficking by the Lol lipoprotein sorting system, whereby linker deletion re-routes three unrelated lipoproteins to the inner membrane. Focusing on the stress sensor RcsF, we found that replacing the linker with an artificial peptide restored normal outer-membrane targeting only when the peptide was of similar length and disordered. Overall, this study reveals the role played by intrinsic disorder in lipoprotein sorting, providing mechanistic insight into the biogenesis of these proteins and suggesting that evolution can select for intrinsic disorder that supports protein function.
Collapse
|
21
|
Grützner J, Remes B, Eisenhardt KMH, Scheller D, Kretz J, Madhugiri R, McIntosh M, Klug G. sRNA-mediated RNA processing regulates bacterial cell division. Nucleic Acids Res 2021; 49:7035-7052. [PMID: 34125915 PMCID: PMC8266604 DOI: 10.1093/nar/gkab491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
Tight control of cell division is essential for survival of most organisms. For prokaryotes, the regulatory mechanisms involved in the control of cell division are mostly unknown. We show that the small non-coding sRNA StsR has an important role in controlling cell division and growth in the alpha-proteobacterium Rhodobacter sphaeroides. StsR is strongly induced by stress conditions and in stationary phase by the alternative sigma factors RpoHI/HII, thereby providing a regulatory link between cell division and environmental cues. Compared to the wild type, a mutant lacking StsR enters stationary phase later and more rapidly resumes growth after stationary phase. A target of StsR is UpsM, the most abundant sRNA in the exponential phase. It is derived from partial transcriptional termination within the 5' untranslated region of the mRNA of the division and cell wall (dcw) gene cluster. StsR binds to UpsM as well as to the 5' UTR of the dcw mRNA and the sRNA-sRNA and sRNA-mRNA interactions lead to a conformational change that triggers cleavage by the ribonuclease RNase E, affecting the level of dcw mRNAs and limiting growth. These findings provide interesting new insights into the role of sRNA-mediated regulation of cell division during the adaptation to environmental changes.
Collapse
Affiliation(s)
- Julian Grützner
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Bernhard Remes
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Katrin M H Eisenhardt
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Daniel Scheller
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, University of Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
22
|
Reis RS, Deforges J, Schmidt RR, Schippers JHM, Poirier Y. An antisense noncoding RNA enhances translation via localized structural rearrangements of its cognate mRNA. THE PLANT CELL 2021; 33:1381-1397. [PMID: 33793857 DOI: 10.1093/plcell/koab010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/22/2020] [Indexed: 05/20/2023]
Abstract
A large portion of eukaryotic genes are associated with noncoding, natural antisense transcripts (NATs). Despite sharing extensive sequence complementarity with their sense mRNAs, mRNA-NAT pairs elusively often evade dsRNA-cleavage and siRNA-triggered silencing. More surprisingly, some NATs enhance translation of their sense mRNAs by yet unknown mechanism(s). Here, we show that translation enhancement of the rice (Oryza sativa) PHOSPHATE1.2 (PHO1.2) mRNA is enabled by specific structural rearrangements guided by its noncoding antisense RNA (cis-NATpho1.2). Their interaction in vitro revealed no evidence of widespread intermolecular dsRNA formation, but rather specific local changes in nucleotide base pairing, leading to higher flexibility of PHO1.2 mRNA at a key high guanine-cytosine�(GC) regulatory region inhibiting translation, ∼350-nt downstream of the start codon. Sense-antisense RNA interaction increased formation of the 80S complex in PHO1.2, possibly by inducing structural rearrangement within this inhibitory region, thus making this mRNA more accessible to 60S. This work presents a framework for nucleotide resolution studies of functional mRNA-antisense pairs.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Romy R Schmidt
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Durand S, Guillier M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front Mol Biosci 2021; 8:667758. [PMID: 34026838 PMCID: PMC8139620 DOI: 10.3389/fmolb.2021.667758] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
In oxygen (O2) limiting environments, numerous aerobic bacteria have the ability to shift from aerobic to anaerobic respiration to release energy. This process requires alternative electron acceptor to replace O2 such as nitrate (NO3 -), which has the next best reduction potential after O2. Depending on the organism, nitrate respiration involves different enzymes to convert NO3 - to ammonium (NH4 +) or dinitrogen (N2). The expression of these enzymes is tightly controlled by transcription factors (TFs). More recently, bacterial small regulatory RNAs (sRNAs), which are important regulators of the rapid adaptation of microorganisms to extremely diverse environments, have also been shown to control the expression of genes encoding enzymes or TFs related to nitrate respiration. In turn, these TFs control the synthesis of multiple sRNAs. These results suggest that sRNAs play a central role in the control of these metabolic pathways. Here we review the complex interplay between the transcriptional and the post-transcriptional regulators to efficiently control the respiration on nitrate.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
24
|
Tej S, Mukherji S. Small RNA-driven feed-forward loop: fine-tuning of protein synthesis through sRNA-mediated crosstalk. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:55. [PMID: 33871749 DOI: 10.1140/epje/s10189-021-00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Often in bacterial regulatory networks, small non-coding RNAs (sRNA) interact with several mRNA species. The competition among mRNAs for binding to the common pool of sRNA might lead to crosstalk between the mRNAs. This is similar to the competing endogenous RNA effect that leads to complex gene regulation with stabilized gene expression in Eukaryotes. Here, we study an sRNA-driven feed-forward loop (sFFL) where the top-tier regulator, an sRNA, translationally activates the target protein (TP) as well as a transcriptional activator of the TP through binding to the respective mRNAs. We show that the sRNA-mediated crosstalk between the two mRNA species enables the sFFL to function in three different regimes depending on the synthesis rate of the transcriptional activator mRNA. Of these three regimes, there exists a sensitive regime where the TP level shows interesting features depending on the precise mechanism of target translation. In the case of translation entirely from sRNA-mRNA bound complexes, the TP level becomes maximum around the sensitive regime. Through stochastic analysis and simulations, we show that relative fluctuations in the TP level is minimized here. For translation both from mRNA and sRNA-mRNA bound complexes, the target expression shows a threshold response across the sensitive regime.
Collapse
Affiliation(s)
- Swathi Tej
- Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore, Karnataka, 570 020, India
| | - Sutapa Mukherji
- Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore, Karnataka, 570 020, India.
- Mathematical and Physical Sciences Division, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009, India.
| |
Collapse
|
25
|
Huesa J, Giner-Lamia J, Pucciarelli MG, Paredes-Martínez F, García-del Portillo F, Marina A, Casino P. Structure-based analyses of Salmonella RcsB variants unravel new features of the Rcs regulon. Nucleic Acids Res 2021; 49:2357-2374. [PMID: 33638994 PMCID: PMC7913699 DOI: 10.1093/nar/gkab060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
RcsB is a transcriptional regulator that controls expression of numerous genes in enteric bacteria. RcsB accomplishes this role alone or in combination with auxiliary transcriptional factors independently or dependently of phosphorylation. To understand the mechanisms by which RcsB regulates such large number of genes, we performed structural studies as well as in vitro and in vivo functional studies with different RcsB variants. Our structural data reveal that RcsB binds promoters of target genes such as rprA and flhDC in a dimeric active conformation. In this state, the RcsB homodimer docks the DNA-binding domains into the major groove of the DNA, facilitating an initial weak read-out of the target sequence. Interestingly, comparative structural analyses also show that DNA binding may stabilize an active conformation in unphosphorylated RcsB. Furthermore, RNAseq performed in strains expressing wild-type or several RcsB variants provided new insights into the contribution of phosphorylation to gene regulation and assign a potential role of RcsB in controlling iron metabolism. Finally, we delimited the RcsB box for homodimeric active binding to DNA as the sequence TN(G/A)GAN4TC(T/C)NA. This RcsB box was found in promoter, intergenic and intragenic regions, facilitating both increased or decreased gene transcription.
Collapse
Affiliation(s)
- Juanjo Huesa
- Departamento de Bioquímica y Biología Molecular, Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain.,Instituto universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain
| | - Joaquín Giner-Lamia
- Laboratorio de Patógenos Bacterianos Intracelulares. Centro Nacional de Biotecnología (CNB)-CSIC. Darwin 3, 28049 Madrid. Spain.,Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo, E-28223 Pozuelo de Alarcón, Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politócnica de Madrid, 28040 Madrid, Spain
| | - M Graciela Pucciarelli
- Laboratorio de Patógenos Bacterianos Intracelulares. Centro Nacional de Biotecnología (CNB)-CSIC. Darwin 3, 28049 Madrid. Spain.,Centro de Biología Molecular 'Severo Ochoa' (CBMSO)-CSIC. Departamento de Biología Molecular. Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Paredes-Martínez
- Departamento de Bioquímica y Biología Molecular, Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain.,Instituto universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain
| | - Francisco García-del Portillo
- Laboratorio de Patógenos Bacterianos Intracelulares. Centro Nacional de Biotecnología (CNB)-CSIC. Darwin 3, 28049 Madrid. Spain
| | - Alberto Marina
- Department of Genomic and Proteomic, Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig 11, 46010 Valencia, Spain.,Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, Spain
| | - Patricia Casino
- Departamento de Bioquímica y Biología Molecular, Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain.,Instituto universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València. Dr Moliner 50, 46100 Burjassot, Spain.,Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, Spain
| |
Collapse
|
26
|
TusA Is a Versatile Protein That Links Translation Efficiency to Cell Division in Escherichia coli. J Bacteriol 2021; 203:JB.00659-20. [PMID: 33526615 DOI: 10.1128/jb.00659-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
To enable accurate and efficient translation, sulfur modifications are introduced posttranscriptionally into nucleosides in tRNAs. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems for the incorporation of sulfur atoms in different nucleosides of tRNA. One of the proteins that is involved in inserting the sulfur for 5-methylaminomethyl-2-thiouridine (mnm5s2U34) modifications in tRNAs is the TusA protein. TusA, however, is a versatile protein that is also involved in numerous other cellular pathways. Despite its role as a sulfur transfer protein for the 2-thiouridine formation in tRNA, a fundamental role of TusA in the general physiology of Escherichia coli has also been discovered. Poor viability, a defect in cell division, and a filamentous cell morphology have been described previously for tusA-deficient cells. In this report, we aimed to dissect the role of TusA for cell viability. We were able to show that the lack of the thiolation status of wobble uridine (U34) nucleotides present on Lys, Gln, or Glu in tRNAs has a major consequence on the translation efficiency of proteins; among the affected targets are the proteins RpoS and Fis. Both proteins are major regulatory factors, and the deregulation of their abundance consequently has a major effect on the cellular regulatory network, with one consequence being a defect in cell division by regulating the FtsZ ring formation.IMPORTANCE More than 100 different modifications are found in RNAs. One of these modifications is the mnm5s2U modification at the wobble position 34 of tRNAs for Lys, Gln, and Glu. The functional significance of U34 modifications is substantial since it restricts the conformational flexibility of the anticodon, thus providing translational fidelity. We show that in an Escherichia coli TusA mutant strain, involved in sulfur transfer for the mnm5s2U34 thio modifications, the translation efficiency of RpoS and Fis, two major cellular regulatory proteins, is altered. Therefore, in addition to the transcriptional regulation and the factors that influence protein stability, tRNA modifications that ensure the translational efficiency provide an additional crucial regulatory factor for protein synthesis.
Collapse
|
27
|
Meng J, Young G, Chen J. The Rcs System in Enterobacteriaceae: Envelope Stress Responses and Virulence Regulation. Front Microbiol 2021; 12:627104. [PMID: 33658986 PMCID: PMC7917084 DOI: 10.3389/fmicb.2021.627104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial cell envelope is a protective barrier at the frontline of bacterial interaction with the environment, and its integrity is regulated by various stress response systems. The Rcs (regulator of capsule synthesis) system, a non-orthodox two-component regulatory system (TCS) found in many members of the Enterobacteriaceae family, is one of the envelope stress response pathways. The Rcs system can sense envelope damage or defects and regulate the transcriptome to counteract stress, which is particularly important for the survival and virulence of pathogenic bacteria. In this review, we summarize the roles of the Rcs system in envelope stress responses (ESRs) and virulence regulation. We discuss the environmental and intrinsic sources of envelope stress that cause activation of the Rcs system with an emphasis on the role of RcsF in detection of envelope stress and signal transduction. Finally, the different regulation mechanisms governing the Rcs system's control of virulence in several common pathogens are introduced. This review highlights the important role of the Rcs system in the environmental adaptation of bacteria and provides a theoretical basis for the development of new strategies for control, prevention, and treatment of bacterial infections.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Glenn Young
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Jorgenson MA, Bryant JC. A genetic screen to identify factors affected by undecaprenyl phosphate recycling uncovers novel connections to morphogenesis in Escherichia coli. Mol Microbiol 2021; 115:191-207. [PMID: 32979869 PMCID: PMC10568968 DOI: 10.1111/mmi.14609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 01/30/2023]
Abstract
Undecaprenyl phosphate (Und-P) is an essential lipid carrier that ferries cell wall intermediates across the cytoplasmic membrane in bacteria. Und-P is generated by dephosphorylating undecaprenyl pyrophosphate (Und-PP). In Escherichia coli, BacA, PgpB, YbjG, and LpxT dephosphorylate Und-PP and are conditionally essential. To identify vulnerabilities that arise when Und-P metabolism is defective, we developed a genetic screen for synthetic interactions which, in combination with ΔybjG ΔlpxT ΔbacA, are lethal or reduce fitness. The screen uncovered novel connections to cell division, DNA replication/repair, signal transduction, and glutathione metabolism. Further analysis revealed several new morphogenes; loss of one of these, qseC, caused cells to enlarge and lyse. QseC is the sensor kinase component of the QseBC two-component system. Loss of QseC causes overactivation of the QseB response regulator by PmrB cross-phosphorylation. Here, we show that deleting qseB completely reverses the shape defect of ΔqseC cells, as does overexpressing rprA (a small RNA). Surprisingly, deleting pmrB only partially suppressed qseC-related shape defects. Thus, QseB is activated by multiple factors in QseC's absence and prior functions ascribed to QseBC may originate from cell wall defects. Altogether, our findings provide a framework for identifying new determinants of cell integrity that could be targeted in future therapies.
Collapse
Affiliation(s)
- Matthew A. Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Joseph C. Bryant
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
29
|
Peng J, Schachterle JK, Sundin GW. Orchestration of virulence factor expression and modulation of biofilm dispersal in Erwinia amylovora through activation of the Hfq-dependent small RNA RprA. MOLECULAR PLANT PATHOLOGY 2021; 22:255-270. [PMID: 33314618 PMCID: PMC7814967 DOI: 10.1111/mpp.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is the causative agent of the devastating disease fire blight of pome fruit trees. After infection of host plant leaves at apple shoot tips, E. amylovora cells form biofilms in xylem vessels, restrict water flow, and cause wilting symptoms. Although E. amylovora is well known to be able to cause systemic infection, how biofilm cells of E. amylovora transit from the sessile mode of growth in xylem to the planktonic mode of growth in cortical parenchyma remains unknown. Increasing evidence has suggested the important modulatory roles of Hfq-dependent small RNAs (sRNAs) in the pathogenesis of E. amylovora. Here, we demonstrate that the sRNA RprA acts as a positive regulator of amylovoran exopolysaccharide production, the type III secretion system (T3SS), and flagellar-dependent motility, and as a negative regulator of levansucrase activity and cellulose production. We also show that RprA affects the promoter activity of multiple virulence factor genes and regulates hrpS, a critical T3SS regulator, at the posttranscriptional level. We determined that rprA expression can be activated by the Rcs phosphorelay, and that expression is active during T3SS-mediated host infection in an immature pear fruit infection model. We further showed that overexpression of rprA activated the in vitro dispersal of E. amylovora cells from biofilms. Thus, our investigation of the varied role of RprA in affecting E. amylovora virulence provides important insights into the functions of this sRNA in biofilm control and systemic infection.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey K. Schachterle
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Present address:
US National Arboretum – Floral and Nursery Plants Research UnitUSDA‐ARSBeltsvilleMarylandUSA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
30
|
Smith LM, Jackson SA, Malone LM, Ussher JE, Gardner PP, Fineran PC. The Rcs stress response inversely controls surface and CRISPR-Cas adaptive immunity to discriminate plasmids and phages. Nat Microbiol 2021; 6:162-172. [PMID: 33398095 DOI: 10.1038/s41564-020-00822-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Bacteria harbour multiple innate defences and adaptive CRISPR-Cas systems that provide immunity against bacteriophages and mobile genetic elements. Although some bacteria modulate defences in response to population density, stress and metabolic state, a lack of high-throughput methods to systematically reveal regulators has hampered efforts to understand when and how immune strategies are deployed. We developed a robust approach called SorTn-seq, which combines saturation transposon mutagenesis, fluorescence-activated cell sorting and deep sequencing to characterize regulatory networks controlling CRISPR-Cas immunity in Serratia sp. ATCC 39006. We applied our technology to assess csm gene expression for ~300,000 mutants and uncovered multiple pathways regulating type III-A CRISPR-Cas expression. Mutation of igaA or mdoG activated the Rcs outer-membrane stress response, eliciting cell-surface-based innate immunity against diverse phages via the transcriptional regulators RcsB and RcsA. Activation of this Rcs phosphorelay concomitantly attenuated adaptive immunity by three distinct type I and III CRISPR-Cas systems. Rcs-mediated repression of CRISPR-Cas defence enabled increased acquisition and retention of plasmids. Dual downregulation of cell-surface receptors and adaptive immunity in response to stress by the Rcs pathway enables protection from phage infection without preventing the uptake of plasmids that may harbour beneficial traits.
Collapse
Affiliation(s)
- Leah M Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Genetics Otago, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. .,Genetics Otago, University of Otago, Dunedin, New Zealand. .,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
31
|
Regulation of gene expression by protein lysine acetylation in Salmonella. J Microbiol 2020; 58:979-987. [PMID: 33201432 DOI: 10.1007/s12275-020-0483-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Protein lysine acetylation influences many physiological functions, such as gene regulation, metabolism, and disease in eukaryotes. Although little is known about the role of lysine acetylation in bacteria, several reports have proposed its importance in various cellular processes. Here, we discussed the function of the protein lysine acetylation and the post-translational modifications (PTMs) of histone-like proteins in bacteria focusing on Salmonella pathogenicity. The protein lysine residue in Salmonella is acetylated by the Pat-mediated enzymatic pathway or by the acetyl phosphate-mediated non-enzymatic pathway. In Salmonella, the acetylation of lysine 102 and lysine 201 on PhoP inhibits its protein activity and DNA-binding, respectively. Lysine acetylation of the transcriptional regulator, HilD, also inhibits pathogenic gene expression. Moreover, it has been reported that the protein acetylation patterns significantly differ in the drug-resistant and -sensitive Salmonella strains. In addition, nucleoid-associated proteins such as histone-like nucleoid structuring protein (H-NS) are critical for the gene silencing in bacteria, and PTMs in H-NS also affect the gene expression. In this review, we suggest that protein lysine acetylation and the post-translational modifications of H-NS are important factors in understanding the regulation of gene expression responsible for pathogenicity in Salmonella.
Collapse
|
32
|
Ng Kwan Lim E, Sasseville C, Carrier MC, Massé E. Keeping Up with RNA-Based Regulation in Bacteria: New Roles for RNA Binding Proteins. Trends Genet 2020; 37:86-97. [PMID: 33077249 DOI: 10.1016/j.tig.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
RNA binding proteins (RBPs) are ubiquitously found in all kingdoms of life. They are involved in a plethora of regulatory events, ranging from direct regulation of gene expression to guiding modification of RNA molecules. As bacterial regulators, RBPs can act alone or in concert with RNA-based regulators, such as small regulatory RNAs (sRNAs), riboswitches, or clustered regularly interspaced short palindromic repeats (CRISPR) RNAs. Various functions of RBPs, whether dependent or not on an RNA regulator, have been described in the past. However, the past decade has been a fertile ground for the development of novel high-throughput methods. These methods acted as stepping-stones for the discovery of new functions of RBPs and helped in the understanding of the molecular mechanisms behind previously described regulatory events. Here, we present an overview of the recently identified roles of major bacterial RBPs from different model organisms. Moreover, the tight relationship between RBPs and RNA-based regulators will be explored.
Collapse
Affiliation(s)
- Evelyne Ng Kwan Lim
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Charles Sasseville
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Marie-Claude Carrier
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Eric Massé
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada.
| |
Collapse
|
33
|
Dekoninck K, Létoquart J, Laguri C, Demange P, Bevernaegie R, Simorre JP, Dehu O, Iorga BI, Elias B, Cho SH, Collet JF. Defining the function of OmpA in the Rcs stress response. eLife 2020; 9:60861. [PMID: 32985973 PMCID: PMC7553776 DOI: 10.7554/elife.60861] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
OmpA, a protein commonly found in the outer membrane of Gram-negative bacteria, has served as a paradigm for the study of β-barrel proteins for several decades. In Escherichia coli, OmpA was previously reported to form complexes with RcsF, a surface-exposed lipoprotein that triggers the Rcs stress response when damage occurs in the outer membrane and the peptidoglycan. How OmpA interacts with RcsF and whether this interaction allows RcsF to reach the surface has remained unclear. Here, we integrated in vivo and in vitro approaches to establish that RcsF interacts with the C-terminal, periplasmic domain of OmpA, not with the N-terminal β-barrel, thus implying that RcsF does not reach the bacterial surface via OmpA. Our results suggest a novel function for OmpA in the cell envelope: OmpA competes with the inner membrane protein IgaA, the downstream Rcs component, for RcsF binding across the periplasm, thereby regulating the Rcs response.
Collapse
Affiliation(s)
- Kilian Dekoninck
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Juliette Létoquart
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Robin Bevernaegie
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | - Olivia Dehu
- de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bogdan I Iorga
- de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Seung-Hyun Cho
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Francois Collet
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
34
|
Abstract
Enterohemorrhagic E. coli is a significant human pathogen that can cause severe disease due to the release of Shiga toxins. The toxins are encoded within lysogenic bacteriophage and controlled by antitermination of the phage late promoter, PR′. This promoter is always active, but terminated immediately downstream during lysogeny. A byproduct of antitermination regulation is transcription of a short RNA that is thought to be nonfunctional. Here we demonstrate that in Shiga toxin-encoding phages, this short RNA is a Hfq-binding regulatory small RNA. The small RNA represses toxin production threefold under lysogenic conditions and promotes high cell density growth. Lysogenic bacteriophages are highly abundant and our results suggest that antiterminated phage promoters may be a rich source of regulatory RNAs. Enterohemorrhagic Escherichia coli is a significant human pathogen that causes disease ranging from hemorrhagic colitis to hemolytic uremic syndrome. The latter can lead to potentially fatal renal failure and is caused by the release of Shiga toxins that are encoded within lambdoid bacteriophages. The toxins are encoded within the late transcript of the phage and are regulated by antitermination of the PR′ late promoter during lytic induction of the phage. During lysogeny, the late transcript is prematurely terminated at tR′ immediately downstream of PR′, generating a short RNA that is a byproduct of antitermination regulation. We demonstrate that this short transcript binds the small RNA chaperone Hfq, and is processed into a stable 74-nt regulatory small RNA that we have termed StxS. StxS represses expression of Shiga toxin 1 under lysogenic conditions through direct interactions with the stx1AB transcript. StxS acts in trans to activate expression of the general stress response sigma factor, RpoS, through direct interactions with an activating seed sequence within the 5′ UTR. Activation of RpoS promotes high cell density growth under nutrient-limiting conditions. Many phages utilize antitermination to regulate the lytic/lysogenic switch and our results demonstrate that short RNAs generated as a byproduct of this regulation can acquire regulatory small RNA functions that modulate host fitness.
Collapse
|
35
|
Wall EA, Majdalani N, Gottesman S. IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein. PLoS Genet 2020; 16:e1008610. [PMID: 32716926 PMCID: PMC7418988 DOI: 10.1371/journal.pgen.1008610] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/11/2020] [Accepted: 06/10/2020] [Indexed: 01/13/2023] Open
Abstract
Two-component systems and phosphorelays play central roles in the ability of bacteria to rapidly respond to changing environments. In E. coli and related enterobacteria, the complex Rcs phosphorelay is a critical player in the bacterial response to antimicrobial peptides, beta-lactam antibiotics, and other disruptions at the cell surface. The Rcs system is unusual in that an inner membrane protein, IgaA, is essential due to its negative regulation of the RcsC/RcsD/RcsB phosphorelay. While it is known that IgaA transduces signals from the outer membrane lipoprotein RcsF, how it interacts with the phosphorelay has remained unknown. Here we performed in vivo interaction assays and genetic dissection of the critical proteins and found that IgaA interacts with the phosphorelay protein RcsD, and that this interaction is necessary for regulation. Interactions between IgaA and RcsD within their respective periplasmic domains of these two proteins anchor repression of signaling. However, the signaling response depends on a second interaction between cytoplasmic loop 1 of IgaA and a truncated Per-Arndt-Sim (PAS-like) domain in RcsD. A single point mutation in the PAS-like domain increased interactions between the two proteins and blocked induction of the phosphorelay. IgaA may regulate RcsC, the histidine kinase that initiates phosphotransfer through the phosphorelay, indirectly, via its contacts with RcsD. Unlike RcsD, and unlike many other histidine kinases, the periplasmic domain of RcsC is dispensable for the response to signals that induce the Rcs phosphorelay system. The multiple contacts between IgaA and RcsD constitute a poised sensing system, preventing potentially toxic over-activation of this phosphorelay while enabling it to rapidly and quantitatively respond to signals. The Rcs phosphorelay system plays a central role in allowing enterobacteria to sense and respond to antibiotics, host-produced antimicrobials, and interactions with surfaces. A unique negative regulator, IgaA, attenuates signaling from this pathway when it is not needed, but how IgaA controls the phosphorelay has been unclear. We define a set of critical interactions between IgaA and the phosphotransfer protein RcsD, including a periplasmic contact between IgaA and RcsD that mediates a necessary inhibition of Rcs signaling. Inhibition is further modulated by regulated interactions between the cytoplasmic domains of each protein, providing a sensitive regulatory switch.
Collapse
Affiliation(s)
- Erin A. Wall
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nadim Majdalani
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan Gottesman
- National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Rodríguez-Alonso R, Létoquart J, Nguyen VS, Louis G, Calabrese AN, Iorga BI, Radford SE, Cho SH, Remaut H, Collet JF. Structural insight into the formation of lipoprotein-β-barrel complexes. Nat Chem Biol 2020; 16:1019-1025. [PMID: 32572278 PMCID: PMC7610366 DOI: 10.1038/s41589-020-0575-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The β-barrel assembly machinery (BAM) inserts outer membrane β-barrel proteins (OMPs) in the outer membrane of Gram-negative bacteria. In Enterobacteriacea, BAM also mediates export of the stress sensor lipoprotein RcsF to the cell surface by assembling RcsF-OMP complexes. Here, we report the crystal structure of the key BAM component BamA in complex with RcsF. BamA adopts an inward-open conformation, with the lateral gate to the membrane closed. RcsF is lodged deep inside the lumen of the BamA barrel, binding regions proposed to undergo an outward and lateral opening during OMP insertion. On the basis of our structural and biochemical data, we propose a push-and-pull model for RcsF export upon conformational cycling of BamA and provide a mechanistic explanation for how RcsF uses its interaction with BamA to detect envelope stress. Our data also suggest that the flux of incoming OMP substrates is involved in the control of BAM activity.
Collapse
Affiliation(s)
- Raquel Rodríguez-Alonso
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Juliette Létoquart
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Van Son Nguyen
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium
| | - Gwennaelle Louis
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bogdan I Iorga
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.,Université Paris-Saclay, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Seung-Hyun Cho
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium. .,de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium. .,Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium.
| | - Jean-François Collet
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium. .,de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
37
|
Salvail H, Groisman EA. The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica. PLoS Genet 2020; 16:e1008722. [PMID: 32392214 PMCID: PMC7241856 DOI: 10.1371/journal.pgen.1008722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/21/2020] [Accepted: 03/18/2020] [Indexed: 11/18/2022] Open
Abstract
To survive an environmental stress, organisms must detect the stress and mount an appropriate response. One way that bacteria do so is by phosphorelay systems that respond to a stress by activating a regulator that modifies gene expression. To ensure an appropriate response, a given regulator is typically activated solely by its cognate phosphorelay protein(s). However, we now report that the regulator RcsB is activated by both cognate and non-cognate phosphorelay proteins, depending on the condition experienced by the bacterium Salmonella enterica serovar Typhimurium. The RcsC and RcsD proteins form a phosphorelay that activates their cognate regulator RcsB in response to outer membrane stress and cell wall perturbations, conditions Salmonella experiences during infection. Surprisingly, the non-cognate phosphorelay protein BarA activates RcsB during logarithmic growth in Luria-Bertani medium in three ways. That is, BarA’s cognate regulator SirA promotes transcription of the rcsDB operon; the SirA-dependent regulatory RNAs CsrB and CsrC further increase RcsB-activated gene transcription; and BarA activates RcsB independently of the RcsC, RcsD, and SirA proteins. Activation of a regulator by multiple sensors broadens the spectrum of environments in which a set of genes is expressed without evolving binding sites for different regulators at each of these genes. The phosphorelay is a form of signal transduction used by organisms in all three domains of life. Typically, a phosphorelay consists of sensor proteins that respond to specific signals by activating a cognate regulatory protein that alters gene expression. Phosphorelays exhibit specificity towards their cognate regulators, thereby ensuring that any changes in gene expression help an organism cope with the experienced stress (and not with an unrelated stress). However, we now report that the regulator RcsB is activated by both cognate and non-cognate phosphorelay proteins in the bacterium Salmonella enterica serovar Typhimurium. The phosphorelay proteins RcsC and RcsD activate RcsB upon cell envelope perturbations, whereas the non-cognate phosphorelay protein BarA activates RcsB during rapid growth in Luria-Bertani medium. Our findings establish that BarA controls gene expression via both its cognate regulator SirA and the non-cognate regulator RcsB. In addition, they demonstrate that RcsB controls gene expression in response to multiple signals detected by the RcsC, RcsD, and BarA proteins.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Microbial Sciences Institute, West Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Microbial Sciences Institute, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
38
|
Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope. Nat Commun 2020; 11:1789. [PMID: 32286264 PMCID: PMC7156740 DOI: 10.1038/s41467-020-15489-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanical properties of the cell envelope in Gram-negative bacteria are controlled by the peptidoglycan, the outer membrane, and the proteins interacting with both layers. In Escherichia coli, the lipoprotein Lpp provides the only covalent crosslink between the outer membrane and the peptidoglycan. Here, we use single-cell atomic force microscopy and genetically engineered strains to study the contribution of Lpp to cell envelope mechanics. We show that Lpp contributes to cell envelope stiffness in two ways: by covalently connecting the outer membrane to the peptidoglycan, and by controlling the width of the periplasmic space. Furthermore, mutations affecting Lpp function substantially increase bacterial susceptibility to the antibiotic vancomycin, indicating that Lpp-dependent effects can affect antibacterial drug efficacy. Lipoprotein Lpp provides a covalent crosslink between the outer membrane and the peptidoglycan in E. coli. Here, the authors use atomic force microscopy to show that Lpp contributes to cell envelope stiffness by covalently connecting the two layers and by controlling the width of the periplasmic space.
Collapse
|
39
|
Jørgensen MG, Pettersen JS, Kallipolitis BH. sRNA-mediated control in bacteria: An increasing diversity of regulatory mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194504. [PMID: 32061884 DOI: 10.1016/j.bbagrm.2020.194504] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Small regulatory RNAs (sRNAs) act as post-transcriptional regulators controlling bacterial adaptation to environmental changes. Our current understanding of the mechanisms underlying sRNA-mediated control is mainly based on studies in Escherichia coli and Salmonella. Ever since the discovery of sRNAs decades ago, these Gram-negative species have served as excellent model organisms in the field of sRNA biology. More recently, the role of sRNAs in gene regulation has become the center of attention in a broader range of species, including Gram-positive model organisms. Here, we highlight some of the most apparent similarities and differences between Gram-negative and Gram-positive bacteria with respect to the mechanisms underlying sRNA-mediated control. Although key aspects of sRNA regulation appear to be highly conserved, novel themes are arising from studies in Gram-positive species, such as a clear abundance of sRNAs acting through multiple C-rich motifs, and an apparent lack of RNA-binding proteins with chaperone activity.
Collapse
Affiliation(s)
- Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
40
|
Abstract
The Gram-negative envelope is a complex structure that consists of the inner membrane, the periplasm, peptidoglycan and the outer membrane, and protects the bacterial cell from the environment. Changing environmental conditions can cause damage, which triggers the envelope stress responses to maintain cellular homeostasis. In this Review, we explore the causes, both environmental and intrinsic, of envelope stress, as well as the cellular stress response pathways that counter these stresses. Furthermore, we discuss the damage to the cell that occurs when these pathways are aberrantly activated either in the absence of stress or to an excessive degree. Finally, we review the mechanisms whereby the σE response constantly acts to prevent cell death caused by highly toxic unfolded outer membrane proteins. Together, the recent work that we discuss has provided insights that emphasize the necessity for proper levels of stress response activation and the detrimental consequences that can occur in the absence of proper regulation.
Collapse
|
41
|
Sueki A, Stein F, Savitski MM, Selkrig J, Typas A. Systematic Localization of Escherichia coli Membrane Proteins. mSystems 2020; 5:e00808-19. [PMID: 32127419 PMCID: PMC7055658 DOI: 10.1128/msystems.00808-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
The molecular architecture and function of the Gram-negative bacterial cell envelope are dictated by protein composition and localization. Proteins that localize to the inner membranes (IM) and outer membranes (OM) of Gram-negative bacteria play critical and distinct roles in cellular physiology; however, approaches to systematically interrogate their distribution across both membranes and the soluble cell fraction are lacking. Here, we employed multiplexed quantitative mass spectrometry using tandem mass tag (TMT) labeling to assess membrane protein localization in a proteome-wide fashion by separating IM and OM vesicles from exponentially growing Escherichia coli K-12 cells on a sucrose density gradient. The migration patterns for >1,600 proteins were classified in an unbiased manner, accurately recapitulating decades of knowledge in membrane protein localization in E. coli For 559 proteins that are currently annotated as peripherally associated with the IM (G. Orfanoudaki and A. Economou, Mol Cell Proteomics 13:3674-3687, 2014, https://doi.org/10.1074/mcp.O114.041137) and that display potential for dual localization to either the IM or cytoplasm, we could allocate 110 proteins to the IM and 206 proteins to the soluble cell fraction based on their fractionation patterns. In addition, we uncovered 63 cases, in which our data disagreed with current localization annotation in protein databases. For 42 of these cases, we were able to find supportive evidence for our localization findings in the literature. We anticipate that our systems-level analysis of the E. coli membrane proteome will serve as a useful reference data set to query membrane protein localization, as well as to provide a novel methodology to rapidly and systematically map membrane protein localization in more poorly characterized Gram-negative species.IMPORTANCE Current knowledge of protein localization, particularly outer membrane proteins, is highly dependent on bioinformatic predictions. To date, no systematic experimental studies have directly compared protein localization spanning the inner and outer membranes of E. coli By combining sucrose density gradient fractionation of inner membrane (IM) and outer membrane (OM) proteins with multiplex quantitative proteomics, we systematically quantified localization patterns for >1,600 proteins, providing high-confidence localization annotations for 1,368 proteins. Of these proteins, we resolve the predominant localization of 316 proteins that currently have dual annotation (cytoplasmic and IM) in protein databases and identify new annotations for 42 additional proteins. Overall, we present a novel quantitative methodology to systematically map membrane proteins in Gram-negative bacteria and use it to unravel the biological complexity of the membrane proteome architecture in E. coli.
Collapse
Affiliation(s)
- Anna Sueki
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
42
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
43
|
Delhaye A, Collet JF, Laloux G. A Fly on the Wall: How Stress Response Systems Can Sense and Respond to Damage to Peptidoglycan. Front Cell Infect Microbiol 2019; 9:380. [PMID: 31799211 PMCID: PMC6863773 DOI: 10.3389/fcimb.2019.00380] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023] Open
Abstract
The envelope of Gram-negative bacteria is critical for survival across a wide range of environmental conditions. The inner membrane, the periplasm and the outer membrane form a complex compartment, home to many essential processes. Hence, constant monitoring by envelope stress response systems ensure correct biogenesis of the envelope and maintain its homeostasis. Inside the periplasm, the cell wall, made of peptidoglycan, has been under the spotlight for its critical role in bacterial growth as well as being the target of many antibiotics. While much research is centered around understanding the role of the many enzymes involved in synthesizing the cell wall, much less is known about how the cell can detect perturbations of this assembly process, and how it is regulated during stress. In this review, we explore the current knowledge of cell wall defects sensing by stress response systems, mainly in the model bacterium Escherichia coli. We also discuss how these systems can respond to cell wall perturbations to increase fitness, and what implications this has on cell wall regulation.
Collapse
Affiliation(s)
- Antoine Delhaye
- de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Jean-François Collet
- de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | | |
Collapse
|
44
|
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa possesses multiple quorum sensing systems that regulate and coordinate production of virulence factors and adaptation to different environments. Despite extensive research, the regulatory elements that play a role in this complex network are still not fully understood. By using several RNA sequencing techniques, we were able to identify a small regulatory RNA we named RhlS. RhlS increases translation of RhlI, a key enzyme in the quorum sensing pathway, and represses the fpvA mRNA encoding one of the siderophore pyoverdine receptors. Our results highlight a new regulatory layer of P. aeruginosa quorum sensing and contribute to the growing understanding of the role regulatory RNAs play in bacterial physiology. N-Acyl homoserine lactone (AHL) quorum sensing (QS) controls expression of over 200 genes in Pseudomonas aeruginosa. There are two AHL regulatory systems: the LasR-LasI circuit and the RhlR-RhlI system. We mapped transcription termination sites affected by AHL QS in P. aeruginosa, and in doing so we identified AHL-regulated small RNAs (sRNAs). Of interest, we noted that one particular sRNA was located within the rhlI locus. We found that rhlI, which encodes the enzyme that produces the AHL N-butanoyl-homoserine lactone (C4-HSL), is controlled by a 5′ untranslated region (UTR)-derived sRNA we name RhlS. We also identified an antisense RNA encoded opposite the beginning of the rhlI open reading frame, which we name asRhlS. RhlS accumulates as wild-type cells enter stationary phase and is required for the production of normal levels of C4-HSL through activation of rhlI translation. RhlS also directly posttranscriptionally regulates at least one other unlinked gene, fpvA. The asRhlS appears to be expressed at maximal levels during logarithmic growth, and we suggest RhlS may act antagonistically to the asRhlS to regulate rhlI translation. The rhlI-encoded sRNAs represent a novel aspect of RNA-mediated tuning of P. aeruginosa QS.
Collapse
|
45
|
Bianco CM, Fröhlich KS, Vanderpool CK. Bacterial Cyclopropane Fatty Acid Synthase mRNA Is Targeted by Activating and Repressing Small RNAs. J Bacteriol 2019; 201:e00461-19. [PMID: 31308070 PMCID: PMC6755755 DOI: 10.1128/jb.00461-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Altering membrane protein and lipid composition is an important strategy for maintaining membrane integrity during environmental stress. Many bacterial small RNAs (sRNAs) control membrane protein production, but sRNA-mediated regulation of membrane fatty acid composition is less well understood. The sRNA RydC was previously shown to stabilize cfa (cyclopropane fatty acid synthase) mRNA, resulting in higher levels of cyclopropane fatty acids in the cell membrane. Here, we report that additional sRNAs, ArrS and CpxQ, also directly regulate cfa posttranscriptionally. RydC and ArrS act through masking an RNase E cleavage site in the cfa mRNA 5' untranslated region (UTR), and both sRNAs posttranscriptionally activate cfa In contrast, CpxQ binds to a different site in the cfa mRNA 5' UTR and represses cfa expression. Alteration of membrane lipid composition is a key mechanism for bacteria to survive low-pH environments, and we show that cfa translation increases in an sRNA-dependent manner when cells are subjected to mild acid stress. This work suggests an important role for sRNAs in the acid stress response through regulation of cfa mRNA.IMPORTANCE Small RNAs (sRNAs) in bacteria are abundant and play important roles in posttranscriptional regulation of gene expression, particularly under stress conditions. Some mRNAs are targets for regulation by multiple sRNAs, each responding to different environmental signals. Uncovering the regulatory mechanisms governing sRNA-mRNA interactions and the relevant conditions for these interactions is an ongoing challenge. In this study, we discovered that multiple sRNAs control membrane lipid composition by regulating stability of a single mRNA target. The sRNA-dependent regulation occurred in response to changing pH and was important for cell viability under acid stress conditions. This work reveals yet another aspect of bacterial physiology controlled at the posttranscriptional level by sRNA regulators.
Collapse
Affiliation(s)
- Colleen M Bianco
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | | | - Carin K Vanderpool
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
46
|
Wang Z, Zhao S, Jiang S, Wang Y, Buck M, Matthews S, Liu B. Resonance assignments of N-terminal receiver domain of sigma factor S regulator RssB from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:333-337. [PMID: 31228091 DOI: 10.1007/s12104-019-09901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Sigma factor S (σS) are master regulator responsible for the survival of bacteria under extreme conditions. Bacteria start specific gene expression via σS promoter recognition, activating various responses to cope with external conditions. Although this self-protection mechanism is vital for bacteria to propagate and evolve, there are many puzzling research questions to be answered. For example, while interactions between σS, transcription regulator RssB, and anti-adaptor Ira proteins are believed to be responsible for controlling the cellular level of σS, their competition mechanism among them remains elusive. Furthermore, there are still debates on the location of the interface of Ira proteins and RssB and whether phosphorylation on the receiver domain is essential for σS activation remains elusive. While there is one crystal structure for the Escherichia coli receiver domain deposited in the database, the missing regions in the structure become an obstacle for functional and interactive studies. Despite attempts, there is no structure for any protein complex in this important biological process, making it one overlooked area in bacterial transcription. Here, using solution-state NMR, our near-complete resonance assignment for the receiver domain of E. coli RssB provides a basis for future structure determination and interaction studies with its many known and putative ligands.
Collapse
Affiliation(s)
- Zhihao Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710061, China
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Siyu Zhao
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Songzi Jiang
- National Facility for Protein Science, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Martin Buck
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Steve Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710061, China.
| |
Collapse
|
47
|
Kim W, Lee Y. Mechanism for coordinate regulation of rpoS by sRNA-sRNA interaction in Escherichia coli. RNA Biol 2019; 17:176-187. [PMID: 31552789 DOI: 10.1080/15476286.2019.1672514] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
RpoS is a key regulator of general stress responses in Escherichia coli. Its expression is post-transcriptionally up-regulated by the small RNAs (sRNAs), ArcZ, DsrA and RprA, through sRNA-rpoS mRNA interactions. Although overexpression of the sRNA, CyaR, was reported to down-regulate rpoS expression, how CyaR regulates rpoS has not been determined. Here, we report that CyaR represses rpoS expression by base-pairing with a region next to the ArcZ binding site in the 5' UTR of rpoS mRNA and that CyaR expression itself is down-regulated by ArcZ through sRNA-sRNA interaction. The short form of ArcZ, but not the full-length form, can base-pair with CyaR. This ArcZ-CyaR interaction triggers degradation of CyaR by RNase E, alleviating the CyaR-mediated rpoS repression. These results suggest that ArcZ not only participates in rpoS translation as an activator, but also acts as a regulator of the reciprocally acting CyaR, maximizing its rpoS-activating effect.
Collapse
|
48
|
Reprogramming of gene expression in Escherichia coli cultured on pyruvate versus glucose. Mol Genet Genomics 2019; 294:1359-1371. [PMID: 31363904 DOI: 10.1007/s00438-019-01597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/22/2019] [Indexed: 12/30/2022]
Abstract
Previous studies revealed important roles of small RNAs (sRNAs) in regulation of bacterial metabolism, stress responses and virulence. However, only a minor fraction of sRNAs is well characterized with respect to the spectra of their targets, conditional expression profiles and actual mechanisms they use to regulate gene expression to control particular biological pathways. To learn more about the specific contribution of sRNAs to the global regulatory network controlling the Escherichia coli central carbon metabolism (CCM), we employed microarray analysis and compared transcriptome profiles of E. coli cells grown on two alternative minimal media supplemented with either pyruvate or glucose, respectively. Microarray analysis revealed that utilization of these alternative carbon sources led to profound differences in gene expression affecting all major gene clusters associated with CCM as well as expression of several known (CyaR, RyhB, GcvB and RyeA) and putative (C0652) sRNAs. To assess the impact of transcriptional reprogramming of gene expression on E. coli protein abundance, we also employed two-dimensional protein gel electrophoresis. Our experimental data made it possible to determine the major pathways for pyruvate assimilation when it is used as a sole carbon source and reveal the impact of other key processes (i.e., energy production, molecular transport and cell resistance to stress) associated with the CCM in E. coli. Moreover, some of these processes were apparently controlled by GcvB, RyhB and CyaR at the post-transcriptional level, thus indicating the complexity and interconnection of the regulatory networks that control CCM in bacteria.
Collapse
|
49
|
Lalaouna D, Prévost K, Laliberté G, Houé V, Massé E. Contrasting silencing mechanisms of the same target mRNA by two regulatory RNAs in Escherichia coli. Nucleic Acids Res 2019; 46:2600-2612. [PMID: 29294085 PMCID: PMC5861431 DOI: 10.1093/nar/gkx1287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Small RNAs are key components of complex regulatory networks. These molecules can integrate multiple cellular signals to control specific target mRNAs. The recent development of high-throughput methods tremendously helped to characterize the full targetome of sRNAs. Using MS2-affinity purification coupled with RNA sequencing (MAPS) technology, we reveal the targetomes of two sRNAs, CyaR and RprA. Interestingly, both CyaR and RprA interact with the 5′-UTR of hdeD mRNA, which encodes an acid-resistance membrane protein. We demonstrate that CyaR classically binds to the RBS of hdeD, interfering with translational initiation. We identified an A/U-rich motif on hdeD, which is bound by the RNA chaperone Hfq. Our results indicate that binding of this motif by Hfq is required for CyaR-induced degradation of hdeD mRNA. Additional data suggest that two molecules of RprA must bind the 5′-UTR of hdeD to block translation initiation. Surprisingly, while both CyaR and RprA sRNAs bind to the same motif on hdeD mRNA, RprA solely acts at the translational level, leaving the target RNA intact. By interchanging the seed region of CyaR and RprA sRNAs, we also swap their regulatory behavior. These results suggest that slight changes in the seed region could modulate the regulation of target mRNAs.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karine Prévost
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guillaume Laliberté
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Houé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
50
|
Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem 2019; 294:11685-11700. [PMID: 31197038 DOI: 10.1074/jbc.rev119.005593] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria can rapidly and reversibly respond to changing environments via complex transcriptional and post-transcriptional regulatory mechanisms. Many of these adaptations are specific, with the regulatory output tailored to the inducing signal (for instance, repairing damage to cell components or improving acquisition and use of growth-limiting nutrients). However, the general stress response, activated in bacterial cells entering stationary phase or subjected to nutrient depletion or cellular damage, is unique in that its common, broad output is induced in response to many different signals. In many different bacteria, the key regulator for the general stress response is a specialized sigma factor, the promoter specificity subunit of RNA polymerase. The availability or activity of the sigma factor is regulated by complex regulatory circuits, the majority of which are post-transcriptional. In Escherichia coli, multiple small regulatory RNAs, each made in response to a different signal, positively regulate translation of the general stress response sigma factor RpoS. Stability of RpoS is regulated by multiple anti-adaptor proteins that are also synthesized in response to different signals. In this review, the modes of signaling to and levels of regulation of the E. coli general stress response are discussed. They are also used as a basis for comparison with the general stress response in other bacteria with the aim of extracting key principles that are common among different species and highlighting important unanswered questions.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|