1
|
Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K, Gründling A. Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter. J Bacteriol 2016; 198:98-110. [PMID: 26195599 PMCID: PMC4686210 DOI: 10.1128/jb.00480-15] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Nucleotide signaling molecules are important intracellular messengers that regulate a wide range of biological functions. The human pathogen Staphylococcus aureus produces the signaling nucleotide cyclic di-AMP (c-di-AMP). This molecule is common among Gram-positive bacteria and in many organisms is essential for survival under standard laboratory growth conditions. In this study, we investigated the interaction of c-di-AMP with the S. aureus KdpD protein. The sensor kinase KdpD forms a two-component signaling system with the response regulator KdpE and regulates the expression of the kdpDE genes and the kdpFABC operon coding for the Kdp potassium transporter components. Here we show that the S. aureus KdpD protein binds c-di-AMP specifically and with an affinity in the micromolar range through its universal stress protein (USP) domain. This domain is located within the N-terminal cytoplasmic region of KdpD, and amino acids of a conserved SXS-X20-FTAXY motif are important for this binding. We further show that KdpD2, a second KdpD protein found in some S. aureus strains, also binds c-di-AMP, and our bioinformatics analysis indicates that a subclass of KdpD proteins in c-di-AMP-producing bacteria has evolved to bind this signaling nucleotide. Finally, we show that c-di-AMP binding to KdpD inhibits the upregulation of the kdpFABC operon under salt stress, thus indicating that c-di-AMP is a negative regulator of potassium uptake in S. aureus. IMPORTANCE Staphylococcus aureus is an important human pathogen and a major cause of food poisoning in Western countries. A common method for food preservation is the use of salt to drive dehydration. This study sheds light on the regulation of potassium uptake in Staphylococcus aureus, an important aspect of this bacterium's ability to tolerate high levels of salt. We show that the signaling nucleotide c-di-AMP binds to a regulatory component of the Kdp potassium uptake system and that this binding has an inhibitory effect on the expression of the kdp genes encoding a potassium transporter. c-di-AMP binds to the USP domain of KdpD, thus providing for the first time evidence for the ability of such a domain to bind a cyclic dinucleotide.
Collapse
Affiliation(s)
- Joana A Moscoso
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Hannah Schramke
- Center for Integrated Protein Science (CiPSM), Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Yong Zhang
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Tommaso Tosi
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Amina Dehbi
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Kirsten Jung
- Center for Integrated Protein Science (CiPSM), Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Abstract
Escherichia coli and Salmonella encounter osmotic pressure variations in natural environments that include host tissues, food, soil, and water. Osmotic stress causes water to flow into or out of cells, changing their structure, physics, and chemistry in ways that perturb cell functions. E. coli and Salmonella limit osmotically induced water fluxes by accumulating and releasing electrolytes and small organic solutes, some denoted compatible solutes because they accumulate to high levels without disturbing cell functions. Osmotic upshifts inhibit membrane-based energy transduction and macromolecule synthesis while activating existing osmoregulatory systems and specifically inducing osmoregulatory genes. The osmoregulatory response depends on the availability of osmoprotectants (exogenous organic compounds that can be taken up to become compatible solutes). Without osmoprotectants, K+ accumulates with counterion glutamate, and compatible solute trehalose is synthesized. Available osmoprotectants are taken up via transporters ProP, ProU, BetT, and BetU. The resulting compatible solute accumulation attenuates the K+ glutamate response and more effectively restores cell hydration and growth. Osmotic downshifts abruptly increase turgor pressure and strain the cytoplasmic membrane. Mechanosensitive channels like MscS and MscL open to allow nonspecific solute efflux and forestall cell lysis. Research frontiers include (i) the osmoadaptive remodeling of cell structure, (ii) the mechanisms by which osmotic stress alters gene expression, (iii) the mechanisms by which transporters and channels detect and respond to osmotic pressure changes, (iv) the coordination of osmoregulatory programs and selection of available osmoprotectants, and (v) the roles played by osmoregulatory mechanisms as E. coli and Salmonella survive or thrive in their natural environments.
Collapse
|
3
|
The KdpD Sensor Kinase of Escherichia coli Responds to Several Distinct Signals To Turn on Expression of the Kdp Transport System. J Bacteriol 2015; 198:212-20. [PMID: 26350129 DOI: 10.1128/jb.00602-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kdp, one of three saturable K(+) uptake systems in Escherichia coli, is the system with the highest affinity for K(+) and the only one whose expression is strongly controlled by medium K(+) concentration. Expression is controlled by a two-component system of KdpD, the sensor kinase, and KdpE, the response regulator. There is general agreement that expression occurs when the growth rate of cells begins to become limited by K(+) availability. How K(+) limitation results in expression has been controversial. Studying the roles of the major components of the growth medium shows that KdpD senses at least two distinct signals inside the cell, those of Na(+) and NH4 (+), and it probably senses other monovalent cations in the cell. KdpD does not sense turgor. IMPORTANCE The expression of the Kdp K(+) transport system of E. coli occurs when cells become limited in their growth rate by the availability of K(+). Cells sense limited K(+) and try to compensate by taking up other monovalent cations, particularly Na(+) and NH4 (+). These cations are sensed in the cytoplasm by the KdpD response regulator, presumably to stimulate its kinase activity. It is shown that KdpD does not sense turgor, as was suggested earlier.
Collapse
|
4
|
Foo YH, Gao Y, Zhang H, Kenney LJ. Cytoplasmic sensing by the inner membrane histidine kinase EnvZ. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:119-29. [PMID: 25937465 DOI: 10.1016/j.pbiomolbio.2015.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
Two-component regulatory systems drive signal transduction in bacteria. The simplest of these employs a membrane sensor kinase and a cytoplasmic response regulator. Environmental sensing is typically coupled to gene regulation. The histidine kinase EnvZ and its cognate response regulator OmpR regulate expression of outer membrane proteins (porins) in response to osmotic stress. We used hydrogen:deuterium exchange mass spectrometry to identify conformational changes in the cytoplasmic domain of EnvZ (EnvZc) that were associated with osmosensing. The osmosensor localized to a seventeen amino acid region of the four-helix bundle of the cytoplasmic domain and flanked the His(243) autophosphorylation site. High osmolality increased autophosphorylation of His(243), suggesting that these two events were linked. The transmembrane domains were not required for osmosensing, but mutants in the transmembrane domains altered EnvZ activity. A photoactivatable fusion protein composed of EnvZc fused to the fluorophore mEos2 (EnvZc-mEos2) was as capable as EnvZc in supporting OmpR-dependent ompF and ompC transcription. Over-expression of EnvZc reduced activity, indicating that the EnvZ/OmpR system is not robust. Our results support a model in which osmolytes stabilize helix one in the four-helix bundle of EnvZ by increased hydrogen bonding of the peptide backbone, increasing autophosphorylation and downstream signaling. The likelihood that additional histidine kinases use similar cytoplasmic sensing mechanisms is discussed.
Collapse
Affiliation(s)
- Yong Hwee Foo
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yunfeng Gao
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Hongfang Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, Singapore; Jesse Brown Veterans Affairs Medical Center, Chicago, USA; University of Illinois-Chicago, USA.
| |
Collapse
|
5
|
Laermann V, Ćudić E, Kipschull K, Zimmann P, Altendorf K. The sensor kinase KdpD ofEscherichia colisenses external K+. Mol Microbiol 2013; 88:1194-204. [DOI: 10.1111/mmi.12251] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Vera Laermann
- Universität Osnabrück; Fachbereich Biologie/Chemie; Barbarastrasse 11; 49076; Osnabrück; Germany
| | - Emina Ćudić
- Universität Osnabrück; Fachbereich Biologie/Chemie; Barbarastrasse 11; 49076; Osnabrück; Germany
| | - Kerstin Kipschull
- Universität Osnabrück; Fachbereich Biologie/Chemie; Barbarastrasse 11; 49076; Osnabrück; Germany
| | - Petra Zimmann
- University of Applied Sciences; Fakultät Agrarwissenschaften & Landschaftsarchitektur; Oldenburger Landstrasse 62; 49090; Osnabrück; Germany
| | - Karlheinz Altendorf
- Universität Osnabrück; Fachbereich Biologie/Chemie; Barbarastrasse 11; 49076; Osnabrück; Germany
| |
Collapse
|
6
|
Heermann R, Jung K. The complexity of the 'simple' two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol Lett 2010; 304:97-106. [PMID: 20146748 DOI: 10.1111/j.1574-6968.2010.01906.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The KdpD/KdpE two-component system of Escherichia coli activates the expression of the kdpFABC operon encoding the high-affinity K(+) uptake system KdpFABC in response to K(+) limitation or salt stress. Earlier, it was proposed that the histidine kinase KdpD is a turgor sensor; recent studies suggest that KdpD integrates three chemical stimuli from the cytoplasm. The histidine kinase KdpD contains several structural features and subdomains that are important for stimulus perception, modulation of the kinase to phosphatase ratio, and signaling. The response regulator KdpE receives the phosphoryl group from KdpD and induces kdpFABC transcription. The three-dimensional structure of the receiver domain was resolved, providing insights into the activation mechanism of this transcriptional regulator. Two accessory components, the universal stress protein UspC and the phosphotransferase system component IIA(Ntr), are known to interact with KdpD, allowing the modulation of kdpFABC expression under certain physiological conditions. Here, we will discuss the complexity of a 'simple' two-component system and its interconnectivity with metabolism and the general stress response.
Collapse
Affiliation(s)
- Ralf Heermann
- Munich Center for integrated Protein Science (CiPSM) at Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Martinsried, Germany.
| | | |
Collapse
|
7
|
Heermann R, Lippert ML, Jung K. Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling. BMC Microbiol 2009; 9:133. [PMID: 19589130 PMCID: PMC2714519 DOI: 10.1186/1471-2180-9-133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The KdpD/KdpE two-component system of Escherichia coli regulates expression of the kdpFABC operon encoding the high affinity K+ transport system KdpFABC. The input domain of KdpD comprises a domain that belongs to the family of universal stress proteins (Usp). It has been previously demonstrated that UspC binds to this domain, resulting in KdpD/KdpE scaffolding under salt stress. However the mechanistic significance of this domain for signaling remains unclear. Here, we employed a "domain swapping" approach to replace the KdpD-Usp domain with four homologous domains or with the six soluble Usp proteins of E. coli. RESULTS Full response to salt stress was only achieved with a chimera that contains UspC, probably due to unaffected scaffolding of the KdpD/KdpE signaling cascade by soluble UspC. Unexpectedly, chimeras containing either UspF or UspG not only prevented kdpFABC expression under salt stress but also under K+ limiting conditions, although these hybrid proteins exhibited kinase and phosphotransferase activities in vitro. These are the first KdpD derivatives that do not respond to K+ limitation due to alterations in the N-terminal domain. Analysis of the KdpD-Usp tertiary structure revealed that this domain has a net positively charged surface, while UspF and UspG are characterized by net negative surface charges. CONCLUSION The Usp domain within KdpD not only functions as a binding surface for the scaffold UspC, but it is also important for KdpD signaling. We propose that KdpD sensing/signaling involves alterations of electrostatic interactions between the large N- and C-terminal cytoplasmic domains.
Collapse
Affiliation(s)
- Ralf Heermann
- Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
8
|
Heermann R, Weber A, Mayer B, Ott M, Hauser E, Gabriel G, Pirch T, Jung K. The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress. J Mol Biol 2008; 386:134-48. [PMID: 19101563 DOI: 10.1016/j.jmb.2008.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/14/2008] [Accepted: 12/03/2008] [Indexed: 11/29/2022]
Abstract
The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K(+)-transport system KdpFABC in response to K(+) limitation or salt stress. Under K(+) limiting conditions the Kdp system restores the intracellular K(+) concentration, while in response to salt stress K(+) is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K(+), so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD-->KdpE-->DNA) resulting in phosphorylation of KdpE at a K(+) concentration that would otherwise almost prevent phosphorylation. In agreement, in a DeltauspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K(+) limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE~P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins.
Collapse
Affiliation(s)
- Ralf Heermann
- Ludwig-Maximilians-Universität München, Bereich Mikrobiologie, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli. J Bacteriol 2008; 190:2360-7. [PMID: 18245296 DOI: 10.1128/jb.01635-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulus perception by the KdpD/KdpE two-component system of Escherichia coli is still controversial with respect to the nature of the stimulus that is perceived by the sensor kinase KdpD. Limiting potassium concentrations in the medium or high osmolality leads to KdpD/KdpE signal transduction, resulting in kdpFABC expression. It has been hypothesized that changes in turgor are sensed by KdpD through alterations in the physical state of the cytoplasmic membrane. However, in this study the quantitative determination of expression levels of the kdpFABC operon revealed that the system responds very effectively to K(+)-limiting conditions in the medium but barely and to various degrees to salt and sugar stress. Since the current view of stimulus perception calls for mainly intracellular parameters, which might be sensed by KdpD, we set out to test the cytoplasmic concentrations of ATP, K(+), Na(+), glutamate, proline, glycine, trehalose, putrescine, and spermidine under K(+)-limiting conditions. As a first result, the determination of the cytoplasmic volume, which is a prerequisite for such measurements, revealed that a transient shrinkage of the cytoplasmic volume, which is indicative of a reduction in turgor, occurred only under osmotic upshift but not under K(+)-limiting conditions. Furthermore, the intracellular ATP concentration significantly increased under osmotic upshift, whereas only a slight increase occurred after a potassium downshift. Finally, the cytoplasmic K(+) concentration rose severalfold only after an osmotic upshock. For the first time, these data indicate that stimulus perception by KdpD correlates neither with changes in the cytoplasmic volume nor with changes in the intracellular ATP or K(+) concentration or those of the other solutes tested. In conclusion, we propose that a reduction in turgor cannot be the stimulus for KdpD.
Collapse
|
10
|
Möker N, Reihlen P, Krämer R, Morbach S. Osmosensing Properties of the Histidine Protein Kinase MtrB from. J Biol Chem 2007; 282:27666-77. [PMID: 17650500 DOI: 10.1074/jbc.m701749200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MtrB-MtrA two component system of Corynebacterium glutamicum was recently shown to be in involved in the osmostress response as well as cell wall metabolism. To address the question of whether the histidine protein kinase MtrB is an osmosensor, the kinase was purified and reconstituted into liposomes in a functionally active form. The activity regulation was investigated by varying systematically physicochemical parameters, which are putative stimuli that could be used by the bacterial cell to detect osmotic conditions. Membrane shrinkage was ruled out as a stimulus for activation of MtrB. Instead, MtrB was shown to be activated upon the addition of various chemical compounds, like sugars, amino acids, and polyethylene glycols. Because of the different chemical nature of the solutes, it seems unlikely that they bind to a specific binding site. Instead, they are proposed to act via a change of the hydration state of the protein shifting MtrB into the active state. For MtrB activation it was essential that these solutes were added at the same side as the cytoplasmic domains of the kinase were located, indicating that hypertonicity is sensed by MtrB via cytoplasmatically located protein domains. This was confirmed by the analysis of two MtrB mutants in which either the large periplasmic loop or the HAMP domain was deleted. These mutants were regulated similar to wild type MtrB. Thus, we postulate that MtrB belongs to a class of histidine protein kinases that sense environmental changes at cytoplasmatic protein domains independently of the periplasmic loop and the cytoplasmic HAMP domain.
Collapse
Affiliation(s)
- Nina Möker
- Institut für Biochemie der Universität zu Köln, Zülpicher Strasse 47, 50674 Köln, Germany
| | | | | | | |
Collapse
|
11
|
Zimmann P, Steinbrügge A, Schniederberend M, Jung K, Altendorf K. The extension of the fourth transmembrane helix of the sensor kinase KdpD of Escherichia coli is involved in sensing. J Bacteriol 2007; 189:7326-34. [PMID: 17704218 PMCID: PMC2168452 DOI: 10.1128/jb.00976-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The KdpD sensor kinase and the KdpE response regulator control expression of the kdpFABC operon coding for the KdpFABC high-affinity K+ transport system of Escherichia coli. In search of a distinct part of the input domain of KdpD which is solely responsible for K+ sensing, sequences of kdpD encoding the transmembrane region and adjacent N-terminal and C-terminal extensions were subjected to random mutagenesis. Nine KdpD derivatives were identified that had lost tight regulation of kdpFABC expression. They all carried single amino acid replacements located in a region encompassing the fourth transmembrane helix and the adjacent arginine cluster of KdpD. All mutants exhibited high levels of kdpFABC expression regardless of the external K+ concentration. However, 3- to 14-fold induction was observed under extreme K+-limiting conditions and in response to an osmotic upshift when sucrose was used as an osmolyte. These KdpD derivatives were characterized by a reduced phosphatase activity in comparison to the autokinase activity in vitro, which explains constitutive expression. Whereas for wild-type KdpD the autokinase activity and also, in turn, the phosphotransfer activity to KdpE were inhibited by increasing concentrations of K+, both activities were unaffected in the KdpD derivatives. These data clearly show that the extension of the fourth transmembrane helix encompassing the arginine cluster is mainly involved in sensing both K+ limitation and osmotic upshift, which may not be separated mechanistically.
Collapse
Affiliation(s)
- Petra Zimmann
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Barbarastr 11, D-49069, Osnabrück, Germany
| | | | | | | | | |
Collapse
|
12
|
Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 2007; 70:910-38. [PMID: 17158704 PMCID: PMC1698512 DOI: 10.1128/mmbr.00020-06] [Citation(s) in RCA: 526] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two-component signal-transducing systems are ubiquitously distributed communication interfaces in bacteria. They consist of a histidine kinase that senses a specific environmental stimulus and a cognate response regulator that mediates the cellular response, mostly through differential expression of target genes. Histidine kinases are typically transmembrane proteins harboring at least two domains: an input (or sensor) domain and a cytoplasmic transmitter (or kinase) domain. They can be identified and classified by virtue of their conserved cytoplasmic kinase domains. In contrast, the sensor domains are highly variable, reflecting the plethora of different signals and modes of sensing. In order to gain insight into the mechanisms of stimulus perception by bacterial histidine kinases, we here survey sensor domain architecture and topology within the bacterial membrane, functional aspects related to this topology, and sequence and phylogenetic conservation. Based on these criteria, three groups of histidine kinases can be differentiated. (i) Periplasmic-sensing histidine kinases detect their stimuli (often small solutes) through an extracellular input domain. (ii) Histidine kinases with sensing mechanisms linked to the transmembrane regions detect stimuli (usually membrane-associated stimuli, such as ionic strength, osmolarity, turgor, or functional state of the cell envelope) via their membrane-spanning segments and sometimes via additional short extracellular loops. (iii) Cytoplasmic-sensing histidine kinases (either membrane anchored or soluble) detect cellular or diffusible signals reporting the metabolic or developmental state of the cell. This review provides an overview of mechanisms of stimulus perception for members of all three groups of bacterial signal-transducing histidine kinases.
Collapse
Affiliation(s)
- Thorsten Mascher
- Department of General Microbiology, Georg-August-University, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
13
|
Schleussinger E, Schmid R, Bakker EP. New type of kdp region with a split sensor-kinase kdpD gene located within two divergent kdp operons from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. ACTA ACUST UNITED AC 2006; 1759:437-41. [PMID: 17023259 DOI: 10.1016/j.bbaexp.2006.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/10/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
The kdp region from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius consists of two divergent operons: kdpZFABCN, which is tenfold induced at low K+ concentrations and encodes the K+-translocating P-type ATPase KdpZFABC as well as KdpN, a novel covalent homo-dimer of the cytoplasmic N-terminal part from sensor kinase KdpD; and secondly, the constitutively expressed kdpHE operon, encoding the remainder of KdpD and the response regulator KdpE.
Collapse
Affiliation(s)
- Erik Schleussinger
- Abteilung Mikrobiologie, Universität Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
14
|
Li L, Kim BG, Cheong YH, Pandey GK, Luan S. A Ca(2)+ signaling pathway regulates a K(+) channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A 2006; 103:12625-30. [PMID: 16895985 PMCID: PMC1567929 DOI: 10.1073/pnas.0605129103] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nutrient sensing is critical for plant adaptation to the environment. Because of extensive farming and erosion, low content of mineral nutrients such as potassium (K(+)) in soils becomes a limiting factor for plant growth. In response to low-K conditions, plants enhance their capability of K(+) uptake through an unknown signaling mechanism. Here we report the identification of a Ca(2+)-dependent pathway for low-K response in Arabidopsis. We are not aware of any other example of a molecular pathway for a nutrient response in plants. Earlier genetic analyses revealed three genes encoding two Ca(2+) sensors (CBL1 and CBL9) and their target protein kinase (CIPK23) to be critical for plant growth on low-K media and for stomatal regulation, indicating that these calcium signaling components participate in the low-K response and turgor regulation. In this study, we show that the protein kinase CIPK23 interacted with, and phosphorylated, a voltage-gated inward K(+) channel (AKT1) required for K(+) acquisition in Arabidopsis. In the Xenopus oocyte system, our studies showed that interacting calcium sensors (CBL1 and CBL9) together with target kinase CIPK23, but not either component alone, activated the AKT1 channel in a Ca(2+)-dependent manner, connecting the Ca(2+) signal to enhanced K(+) uptake through activation of a K(+) channel. Disruption of both CBL1 and CBL9 or CIPK23 gene in Arabidopsis reduced the AKT1 activity in the mutant roots, confirming that the Ca(2+)-CBL-CIPK pathway functions to orchestrate transporting activities in planta according to external K(+) availability.
Collapse
Affiliation(s)
- Legong Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Beom-Gi Kim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Yong Hwa Cheong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Girdhar K. Pandey
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Rothenbücher MC, Facey SJ, Kiefer D, Kossmann M, Kuhn A. The cytoplasmic C-terminal domain of the Escherichia coli KdpD protein functions as a K+ sensor. J Bacteriol 2006; 188:1950-8. [PMID: 16484207 PMCID: PMC1426542 DOI: 10.1128/jb.188.5.1950-1958.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The KdpD protein is a K(+) sensor kinase located in the cytoplasmic membrane of Escherichia coli. It contains four transmembrane stretches and two short periplasmic loops of 4 and 10 amino acid residues, respectively. To determine which part of KdpD functions as a K(+) sensor, genetic variants were constructed with truncations or altered arrangements of the transmembrane segments. All KdpD constructs were tested by complementation of an E. coli kdpD deletion strain for their ability to grow at a K(+) concentration of 0.1 mM in the medium. A soluble protein composed of the C-terminal cytoplasmic domain was able to complement the kdpD deletion strain. In addition, analysis of the beta-galactosidase activity of an E. coli strain which carries a transcriptional fusion of the upstream region of the kdpFABC operon and a promoterless lacZ gene revealed that this soluble KdpD mutant responds to changes in the K(+) concentration in the extracellular medium. The results suggest that the sensing and response functions are both located in the C-terminal domain and might be modulated by the N-terminal domain as well as by membrane anchoring.
Collapse
|
16
|
Ashley MK, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:425-36. [PMID: 16364949 DOI: 10.1093/jxb/erj034] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The availability of potassium to the plant is highly variable, due to complex soil dynamics, which are strongly influenced by root-soil interactions. A low plant potassium status triggers expression of high affinity K+ transporters, up-regulates some K+ channels, and activates signalling cascades, some of which are similar to those involved in wounding and other stress responses. The molecules that signal low K+ status in plants include reactive oxygen species and phytohormones, such as auxin, ethylene and jasmonic acid. Apart from up-regulation of transport proteins and adjustment of metabolic processes, potassium deprivation triggers developmental responses in roots. All these acclimation strategies enable plants to survive and compete for nutrients in a dynamic environment with a variable availability of potassium.
Collapse
Affiliation(s)
- M K Ashley
- Division of Biology, Imperial College London, Wye Campus, Wye, Ashford TN25 5AH, Kent, UK
| | | | | |
Collapse
|
17
|
Ballal A, Bramkamp M, Rajaram H, Zimmann P, Apte SK, Altendorf K. An atypical KdpD homologue from the cyanobacterium Anabaena sp. strain L-31: cloning, in vivo expression, and interaction with Escherichia coli KdpD-CTD. J Bacteriol 2005; 187:4921-7. [PMID: 15995207 PMCID: PMC1169523 DOI: 10.1128/jb.187.14.4921-4927.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The kdpFABC operon of Escherichia coli, coding for the high-affinity K(+) transport system KdpFABC, is transcriptionally regulated by the products of the adjacently located kdpDE genes. The KdpD protein is a membrane-bound sensor kinase consisting of a large N-terminal domain and a C-terminal transmitter domain interconnected by four transmembrane segments (the transmembrane segments together with the C-terminal transmitter domain of KdpD are referred to as CTD), while KdpE is a cytosolic response regulator. We have cloned and sequenced the kdp operon from a nitrogen-fixing, filamentous cyanobacterium, Anabaena sp. strain L-31 (GenBank accession. number AF213466). The kdpABC genes are similar in size to those of E. coli, but the kdpD gene is short (coding only for 365 amino acids), showing homology only to the N-terminal domain of E. coli KdpD. A kdpE-like gene is absent in the vicinity of this operon. Anabaena KdpD with six C-terminal histidines was overproduced in E. coli and purified by Ni(2+)-nitrilotriacetic acid affinity chromatography. With antisera raised against the purified Anabaena KdpD, the protein was detected in Anabaena sp. strain L-31 membranes. The membrane-associated or soluble form of the Anabaena KdpD(6His) could be photoaffinity labeled with the ATP analog 8-azido-ATP, indicating the presence of an ATP binding site. The coproduction of Anabaena KdpD with E. coli KdpD-CTD decreased E. coli kdpFABC expression in response to K(+) limitation in vivo relative to the wild-type KdpD-CTD protein. In vitro experiments revealed that the kinase activity of the E. coli KdpD-CTD was unaffected, but its phosphatase activity increased in the presence of Anabaena KdpD(6His). To our knowledge this is the first report where a heterologous N-terminal domain (Anabaena KdpD) is shown to affect in trans KdpD-CTD (E. coli) activity, which is just opposite to that observed for the KdpD-N-terminal domain of E. coli.
Collapse
Affiliation(s)
- Anand Ballal
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Galperin MY. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 2005; 5:35. [PMID: 15955239 PMCID: PMC1183210 DOI: 10.1186/1471-2180-5-35] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 06/14/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. RESULTS This paper presents results of a comprehensive census of signal transduction proteins--histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases--encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. CONCLUSION The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes, are found among the poorly studied beta-, delta- and epsilon-proteobacteria. Among all bacterial phyla, only cyanobacteria appear to be true introverts, probably due to their capacity to conduct oxygenic photosynthesis, using a complex system of intracellular membranes. The census data, available at http://www.ncbi.nlm.nih.gov/Complete_Genomes/SignalCensus.html, can be used to get an insight into metabolic and behavioral propensities of each given organism and improve prediction of the organism's properties based solely on its genome sequence.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
19
|
Abstract
Bacterial signalling network includes an array of numerous interacting components that monitor environmental and intracellular parameters and effect cellular response to changes in these parameters. The complexity of bacterial signalling systems makes comparative genome analysis a particularly valuable tool for their studies. Comparative studies revealed certain general trends in the organization of diverse signalling systems. These include (i) modular structure of signalling proteins; (ii) common organization of signalling components with the flow of information from N-terminal sensory domains to the C-terminal transmitter or signal output domains (N-to-C flow); (iii) use of common conserved sensory domains by different membrane receptors; (iv) ability of some organisms to respond to one environmental signal by activating several regulatory circuits; (v) abundance of intracellular signalling proteins, typically consisting of a PAS or GAF sensor domains and various output domains; (vi) importance of secondary messengers, cAMP and cyclic diguanylate; and (vii) crosstalk between components of different signalling pathways. Experimental characterization of the novel domains and domain combinations would be needed for achieving a better understanding of the mechanisms of signalling response and the intracellular hierarchy of different signalling pathways.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| |
Collapse
|
20
|
Heermann R, Jung K. Structural features and mechanisms for sensing high osmolarity in microorganisms. Curr Opin Microbiol 2004; 7:168-74. [PMID: 15063855 DOI: 10.1016/j.mib.2004.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During their lifetime, most organisms experience osmotic stress, mostly due to fluctuating external osmolarities, but also as a result of desiccation or freezing. Under these conditions, the ratio of osmolytes to water and macromolecules in the cells is significantly altered. To survive, cells must continuously sense these alterations and adapt accordingly. Osmolarity is a physico-chemical parameter that causes pleiotropic alterations in cell physiology. Recent research has revealed various mechanisms to sense high external osmolarity, based on monitoring cellular changes that are associated with the altered environment.
Collapse
Affiliation(s)
- Ralf Heermann
- TU Darmstadt, Institute for Microbiology and Genetics, Schnittspahnstrasse10, D-64287 Darmstadt, Germany
| | | |
Collapse
|
21
|
Heermann R, Altendorf K, Jung K. The N-terminal input domain of the sensor kinase KdpD of Escherichia coli stabilizes the interaction between the cognate response regulator KdpE and the corresponding DNA-binding site. J Biol Chem 2003; 278:51277-84. [PMID: 14534307 DOI: 10.1074/jbc.m303801200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sensor kinase/response regulator system KdpD/KdpE of Escherichia coli regulates expression of the kdpFABC operon, which encodes the high affinity K+ transport system KdpFABC. The membrane-bound sensor kinase KdpD consists of an N-terminal input domain (comprising a large cytoplasmic domain and four transmembrane domains) and a cytoplasmic C-terminal transmitter domain. Here we show that the cytoplasmic N-terminal domain of KdpD (KdpD/1-395) alone supports semi-constitutive kdpFABC expression, which becomes dependent on the extracellular K+ concentration under K+-limiting growth conditions. However, it should be noted that the non-phosphorylatable derivative KdpD/H673Q or the absence of KdpD abolishes kdpFABC expression completely. KdpD/1-395 mediated kdpFABC expression requires the corresponding response regulator KdpE with an intact phosphorylation site. Experiments with an Escherichia coli mutant unable to synthesize acetyl phosphate as well as transposon mutagenesis suggest that KdpE is phosphorylated in vivo by low molecular weight phosphodonors in the absence of the full-length sensor kinase. Various biochemical approaches provide first evidence that kdpFABC expression mediated by KdpD/1-395 is due to a stabilizing effect of this domain on the binding of KdpE approximately P to its corresponding DNA-binding site. Such a stabilizing effect of a sensor kinase domain on the DNA-protein interaction of the cognate response regulator has never been observed before for any other sensor kinase. It describes a new mechanism in bacterial two-component signal transduction.
Collapse
Affiliation(s)
- Ralf Heermann
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
22
|
Parro V, Moreno-Paz M. Gene function analysis in environmental isolates: the nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans. Proc Natl Acad Sci U S A 2003; 100:7883-8. [PMID: 12808145 PMCID: PMC164682 DOI: 10.1073/pnas.1230487100] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A random genomic library from an environmental isolate of the Gram-negative bacterium Leptospirillum ferrooxidans has been printed on a microarray. Gene expression analysis was carried out with total RNA extracted from L. ferrooxidans cultures in the presence or absence of ammonium as nitrogen source under aerobic conditions. Although practically nothing is known about the genome sequence of this bacterium, this approach allowed us the selection and sequencing of only those clones bearing genes that showed an altered expression pattern. By sequence comparison, we have identified most of the genes of nitrogen fixation regulon in L. ferrooxidans, like the nifHDKENX operon, encoding the structural components of Mo-Fe nitrogenase; nifSU-hesB-hscBA-fdx operon, for Fe-S cluster assembly; the amtB gene (ammonium transporter); modA (molybdenum ABC type transporter); some regulatory genes like ntrC, nifA (the specific activator of nif genes); or two glnB-like genes (encoding the PII regulatory protein). Our results show that shotgun DNA microarrays are very powerful tools to accomplish gene expression studies with environmental bacteria whose genome sequence is still unknown, avoiding the time and effort necessary for whole genome sequencing projects.
Collapse
Affiliation(s)
- Victor Parro
- Laboratorio de Ecología Molecular, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial Esteban Terradas, Madrid, Spain.
| | | |
Collapse
|
23
|
Epstein W. The roles and regulation of potassium in bacteria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:293-320. [PMID: 14604015 DOI: 10.1016/s0079-6603(03)75008-9] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Potassium is the major intracellular cation in bacteria as well as in eucaryotic cells. Bacteria accumulate K+ by a number of different transport systems that vary in kinetics, energy coupling, and regulation. The Trk and Kdp systems of enteric organisms have been well studied and are found in many distantly related species. The Ktr system, resembling Trk in many ways, is also found in many bacteria. In most species two or more independent saturable K(+)-transport systems are present. The KefB and KefC type of system that is activated by treatment of cells with toxic electrophiles is the only specific K(+)-efflux system that has been well characterized. Pressure-activated channels of at least three types are found in bacteria; these represent nonspecific paths of efflux when turgor pressure is dangerously high. A close homolog of eucaryotic K+ channels is found in many bacteria, but its role remains obscure. K+ transporters are regulated both by ion concentrations and turgor. A very general property is activation of K+ uptake by an increase in medium osmolarity. This response is modulated by both internal and external concentrations of K+. Kdp is the only K(+)-transport system whose expression is regulated by environmental conditions. Decrease in turgor pressure and/or reduction in external K+ rapidly increase expression of Kdp. The signal created by these changes, inferred to be reduced turgor, is transmitted by the KdpD sensor kinase to the KdpE-response regulator that in turn stimulates transcription of the kdp genes. K+ acts as a cytoplasmic-signaling molecule, activating and/or inducing enzymes and transport systems that allow the cell to adapt to elevated osmolarity. The signal could be ionic strength or specifically K+. This signaling response is probably mediated by a direct sensing of internal ionic strength by each particular system and not by a component or system that coordinates this response by different systems to elevated K+.
Collapse
Affiliation(s)
- Wolfgang Epstein
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|