1
|
Santoriello FJ, Kirchberger PC, Boucher Y, Pukatzki S. Pandemic Vibrio cholerae acquired competitive traits from an environmental Vibrio species. Life Sci Alliance 2023; 6:6/2/e202201437. [PMID: 36446527 PMCID: PMC9711863 DOI: 10.26508/lsa.202201437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Vibrio cholerae is a human pathogen that thrives in estuarine environments. Within the environment and human host, V. cholerae uses the type VI secretion system (T6SS) to inject toxic effectors into neighboring microbes and to establish its replicative niche. V. cholerae strains encode a wide variety of horizontally shared effectors, but pandemic isolates encode an identical set of distinct effectors. Effector set retention in pandemic strains despite mobility between disparate strains suggests that horizontal acquisition of these effectors was crucial for evolving pandemic V. cholerae We attempted to locate the donor of the pandemic effectors to V. cholerae To this end, we identified potential gene transfer events of the pandemic-associated T6SS clusters between a fish pathogen, Vibrio anguillarum, and V. cholerae We supported the likelihood of interaction between these species by demonstrating that homologous effector-immunity pairs from V. cholerae and V. anguillarum can cross-neutralize one another. Thus, V. anguillarum constitutes an environmental reservoir of pandemic-associated V. cholerae T6SS effectors that may have initially facilitated competition between pre-pandemic V. cholerae and V. anguillarum for an environmental niche.
Collapse
Affiliation(s)
- Francis J Santoriello
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biology, The City College of New York, New York, NY, USA
| | - Paul C Kirchberger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Yann Boucher
- Saw Swee Hock School of Public Health and National University Hospital System, National University of Singapore, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| | - Stefan Pukatzki
- Department of Biology, The City College of New York, New York, NY, USA
| |
Collapse
|
2
|
Dordet-Frisoni E, Faucher M, Sagné E, Baranowski E, Tardy F, Nouvel LX, Citti C. Mycoplasma Chromosomal Transfer: A Distributive, Conjugative Process Creating an Infinite Variety of Mosaic Genomes. Front Microbiol 2019; 10:2441. [PMID: 31708906 PMCID: PMC6819513 DOI: 10.3389/fmicb.2019.02441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The capacity of Mycoplasmas to engage in horizontal gene transfers has recently been highlighted. Despite their small genome, some of these wall-less bacteria are able to exchange multiple, large portions of their chromosome via a conjugative mechanism that does not conform to canonical Hfr/oriT models. To understand the exact features underlying mycoplasma chromosomal transfer (MCT), extensive genomic analyses were performed at the nucleotide level, using individual mating progenies derived from our model organism, Mycoplasma agalactiae. Genome reconstruction showed that MCT resulted in the distributive transfer of multiple chromosomal DNA fragments and generated progenies composed of a variety of mosaic genomes, each being unique. Analyses of macro- and micro-events resulting from MCT revealed that the vast majority of the acquired fragments were unrelated and co-transferred independently from the selection marker, these resulted in up to 17% of the genome being exchanged. Housekeeping and accessory genes were equally affected by MCT, with up to 35 CDSs being gained or lost. This efficient HGT process also created a number of chimeric genes and genetic micro-variations that may impact gene regulation and/or expression. Our study unraveled the tremendous plasticity of M. agalactiae genome and point toward MCT as a major player in diversification and adaptation to changing environments, offering a significant advantage to this minimal pathogen.
Collapse
Affiliation(s)
| | - Marion Faucher
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Eveline Sagné
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | - Florence Tardy
- UMR Mycoplasmoses des Ruminants, VetAgro Sup, Laboratoire de Lyon, ANSES, Université de Lyon, Marcy-l'Étoile, France
| | | | | |
Collapse
|
3
|
Carrasco B, Serrano E, Martín-González A, Moreno-Herrero F, Alonso JC. Bacillus subtilis MutS Modulates RecA-Mediated DNA Strand Exchange Between Divergent DNA Sequences. Front Microbiol 2019; 10:237. [PMID: 30814990 PMCID: PMC6382021 DOI: 10.3389/fmicb.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
The efficiency of horizontal gene transfer, which contributes to acquisition and spread of antibiotic resistance and pathogenicity traits, depends on nucleotide sequence and different mismatch-repair (MMR) proteins participate in this process. To study how MutL and MutS MMR proteins regulate recombination across species boundaries, we have studied natural chromosomal transformation with DNA up to ∼23% sequence divergence. We show that Bacillus subtilis natural chromosomal transformation decreased logarithmically with increased sequence divergence up to 15% in wild type (wt) cells or in cells lacking MutS2 or mismatch repair proteins (MutL, MutS or both). Beyond 15% sequence divergence, the chromosomal transformation efficiency is ∼100-fold higher in ΔmutS and ΔmutSL than in ΔmutS2 or wt cells. In the first phase of the biphasic curve (up to 15% sequence divergence), RecA-catalyzed DNA strand exchange contributes to the delineation of species, and in the second phase, homology-facilitated illegitimate recombination might aid in the restoration of inactivated genes. To understand how MutS modulates the integration process, we monitored DNA strand exchange reactions using a circular single-stranded DNA and a linear double-stranded DNA substrate with an internal 77-bp region with ∼16% or ∼54% sequence divergence in an otherwise homologous substrate. The former substrate delayed, whereas the latter halted RecA-mediated strand exchange. Interestingly, MutS addition overcame the heterologous barrier. We propose that MutS assists DNA strand exchange by facilitating RecA disassembly, and indirectly re-engagement with the homologous 5′-end of the linear duplex. Our data supports the idea that MutS modulates bidirectional RecA-mediated integration of divergent sequences and this is important for speciation.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
4
|
Environmental DNA (eDNA): A Promising Biological Survey Tool for Aquatic Species Detection. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s12595-018-0268-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Dai K, He L, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401. Front Cell Infect Microbiol 2018; 8:32. [PMID: 29473023 PMCID: PMC5809987 DOI: 10.3389/fcimb.2018.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401.
Collapse
Affiliation(s)
- Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621-629. [PMID: 28690319 DOI: 10.1038/nrmicro.2017.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.
Collapse
|
7
|
Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 2017; 7:45133. [PMID: 28327641 PMCID: PMC5361080 DOI: 10.1038/srep45133] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
Type VI secretion systems (T6SS) enable bacteria to engage neighboring cells in contact-dependent competition. In Vibrio cholerae, three chromosomal clusters each encode a pair of effector and immunity genes downstream of those encoding the T6SS structural machinery for effector delivery. Different combinations of effector-immunity proteins lead to competition between strains of V. cholerae, which are thought to be protected only from the toxicity of their own effectors. Screening of all publically available V. cholerae genomes showed that numerous strains possess long arrays of orphan immunity genes encoded in the 3' region of their T6SS clusters. Phylogenetic analysis reveals that these genes are highly similar to those found in the effector-immunity pairs of other strains, indicating acquisition by horizontal gene transfer. Extensive genomic comparisons also suggest that successive addition of effector-immunity gene pairs replaces ancestral effectors, yet retains the cognate immunity genes. The retention of old immunity genes perhaps provides protection against nearby kin bacteria in which the old effector was not replaced. This mechanism, combined with frequent homologous recombination, is likely responsible for the high diversity of T6SS effector-immunity gene profiles observed for V. cholerae and closely related species.
Collapse
|
8
|
Abstract
The diversification of prokaryotes is accelerated by their ability to acquire DNA from other genomes. However, the underlying processes also facilitate genome infection by costly mobile genetic elements. The discovery that cells can uptake DNA by natural transformation was instrumental to the birth of molecular biology nearly a century ago. Surprisingly, a new study shows that this mechanism could efficiently cure the genome of mobile elements acquired through previous sexual exchanges. Natural transformation was thought to provide new genetic information to bacteria. Instead, a new study suggests it cures the genome of deleterious mobile elements.
Collapse
Affiliation(s)
- Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR3525, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J, Hellstrom M, Spens J, Thomsen PF, Bohmann K, Cappellini E, Schnell IB, Wales NA, Carøe C, Campos PF, Schmidt AMZ, Gilbert MTP, Hansen AJ, Orlando L, Willerslev E. Ancient and modern environmental DNA. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130383. [PMID: 25487334 PMCID: PMC4275890 DOI: 10.1098/rstb.2013.0383] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field.
Collapse
Affiliation(s)
- Mikkel Winther Pedersen
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Søren Overballe-Petersen
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - James Haile
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark Trace and Environmental DNA Laboratory, Curtin University, Kent Street, Bentley, Perth, Western Australia 6102, Australia
| | - Micaela Hellstrom
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Johan Spens
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark Department of Wildlife, Fish and Environmental Studies, SLU, Umeå S-901 83, Sweden
| | - Philip Francis Thomsen
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Kristine Bohmann
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Enrico Cappellini
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Ida Bærholm Schnell
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Nathan A Wales
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Christian Carøe
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Paula F Campos
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Astrid M Z Schmidt
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - M Thomas P Gilbert
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Anders J Hansen
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, The Natural History Museum of Denmark, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| |
Collapse
|
10
|
Coleman NV, Richardson-Harris J, Wilson NL, Holmes AJ. Insertion sequence ISPst4 activates pUC plasmid replication inPseudomonas stutzeri. FEMS Microbiol Lett 2014; 356:242-9. [DOI: 10.1111/1574-6968.12417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nicholas V. Coleman
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| | | | - Neil L. Wilson
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| | - Andrew J. Holmes
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| |
Collapse
|
11
|
Johnston C, Caymaris S, Zomer A, Bootsma HJ, Prudhomme M, Granadel C, Hermans PWM, Polard P, Martin B, Claverys JP. Natural genetic transformation generates a population of merodiploids in Streptococcus pneumoniae. PLoS Genet 2013; 9:e1003819. [PMID: 24086154 PMCID: PMC3784515 DOI: 10.1371/journal.pgen.1003819] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/08/2013] [Indexed: 12/29/2022] Open
Abstract
Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ∼3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ∼100 to ∼900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by transformation, which can be triggered by stresses such as antibiotic treatment in S. pneumoniae, reinforces the plasticity potential of this bacterium and transformable species generally. Merodiploids are defined as cells possessing a partial duplication of their genetic material, which potentially allows evolution of new genes. Historically, some have been observed in studies of natural genetic transformation. Transformation allows the bacteria to take up foreign DNA and incorporate it into their genome by homology. It is key to the high diversity observed in the human pathogen Streptococcus pneumoniae (the pneumococcus). Here we show that transformation with self DNA generates a population of merodiploids with varied chromosomal duplications, up to almost half a genome in size. We show that formation of merodiploids by transformation only requires uptake of a small donor DNA fragment partially repeated in the chromosome. The donor repeat recombines with an alternative repeat on one arm of a replicating chromosome, whilst the non-repeated part recombines with its complement on the other arm, bridging the two. Subsequent recombination events generate a merodiploid chromosome with the region between the two repeats duplicated. Our results demonstrate that transformation, which is induced by stresses such as antibiotic treatments, transiently increases the ability of a population to form merodiploids. We suggest that creating a variety of merodiploids at a time of stress maximizes the adaptive potential of this pathogen.
Collapse
Affiliation(s)
- Calum Johnston
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Stéphanie Caymaris
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Aldert Zomer
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J. Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marc Prudhomme
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Chantal Granadel
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Bernard Martin
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- * E-mail:
| |
Collapse
|
12
|
Yan BW, Zhao YF, Cao WG, Li N, Gou KM. Mechanism of random integration of foreign DNA in transgenic mice. Transgenic Res 2013; 22:983-92. [PMID: 23483296 DOI: 10.1007/s11248-013-9701-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/28/2013] [Indexed: 11/25/2022]
Abstract
Little is known about how foreign DNA is randomly integrated into chromosomes in transgenic animals. In the current study, the insertion sites of 36 transgenic mice were mapped by thermal asymmetric interlaced PCR, and 38 junction sequences were obtained from 30 samples. Analysis of the 38 sequences revealed that 44.7 % of integration events occurred within host gene regions, including 13.2 % (5/38) in exonic regions and 31.6 % (12/38) in intronic regions. The results also revealed that all non-end side integrations of foreign DNA were mediated by short sequence homologies (microhomologies) and that the end side integrations occurred in the presence or absence of microhomologies. In addition, microhomology-mediated mechanisms were also confirmed in four transgenic Arabidopsis thaliana lines. The results indicate that foreign DNA is easily integrated into host gene regions. These results also suggest that the integration of both ends of foreign DNA follows the above-mentioned mechanism in many transgenic/transformed organisms.
Collapse
Affiliation(s)
- Bo-Wen Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 2012; 37:336-63. [PMID: 22928673 DOI: 10.1111/j.1574-6976.2012.00353.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window.
Collapse
Affiliation(s)
- Patrick Seitz
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
14
|
Amarir-Bouhram J, Goin M, Petit MA. Low efficiency of homology-facilitated illegitimate recombination during conjugation in Escherichia coli. PLoS One 2011; 6:e28876. [PMID: 22194937 PMCID: PMC3240628 DOI: 10.1371/journal.pone.0028876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/16/2011] [Indexed: 12/01/2022] Open
Abstract
Homology-facilitated illegitimate recombination has been described in three naturally competent bacterial species. It permits integration of small linear DNA molecules into the chromosome by homologous recombination at one end of the linear DNA substrate, and illegitimate recombination at the other end. We report that homology-facilitated illegitimate recombination also occurs in Escherichia coli during conjugation with small non-replicative plasmids, but at a low frequency of 3×10−10 per recipient cell. The fate of linear DNA in E. coli is either RecBCD-dependent degradation, or circularisation by ligation, and integration into the chromosome by single crossing-over. We also report that the observed single crossing-overs are recA-dependent, but essentially recBCD, and recFOR independent. This suggests that other, still unknown, proteins may act as mediator for the loading of RecA on DNA during single crossing-over recombination in E. coli.
Collapse
Affiliation(s)
- Jihane Amarir-Bouhram
- INRA, UMR 1319, Micalis, Jouy en Josas, France
- AgroParisTech, UMR 1319, Micalis, Jouy en Josas, France
| | - Mélodie Goin
- INRA, UMR 1319, Micalis, Jouy en Josas, France
- AgroParisTech, UMR 1319, Micalis, Jouy en Josas, France
| | - Marie-Agnès Petit
- INRA, UMR 1319, Micalis, Jouy en Josas, France
- AgroParisTech, UMR 1319, Micalis, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
15
|
Demanèche S, Monier JM, Dugat-Bony E, Simonet P. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria. FEMS Microbiol Ecol 2011; 78:129-36. [PMID: 21564143 DOI: 10.1111/j.1574-6941.2011.01126.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.
Collapse
Affiliation(s)
- Sandrine Demanèche
- Environmental Microbial Genomics Group, Laboratoire AMPERE, UMR CNRS 5005, Ecole Centrale de Lyon, Université de Lyon, Ecully, France.
| | | | | | | |
Collapse
|
16
|
Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 2011; 35:707-35. [DOI: 10.1111/j.1574-6976.2010.00261.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
17
|
Burris K, Mentewab A, Ripp S, Stewart CN. An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli. Microb Biotechnol 2011; 1:191-5. [PMID: 21261836 PMCID: PMC3864452 DOI: 10.1111/j.1751-7915.2007.00010.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Escherichia coli, a kanamycin‐sensitive model bacterium, under simulated HGT, staged by subcloning Atwbc19 under the control of a bacterial promoter, genetically transforming to kanamycin‐sensitive bacteria, and assessing if resistance was conferred as compared with bacteria harbouring nptII, the standard kanamycin resistance gene used to produce transgenic plants. NptII provided much greater resistance than Atwbc19 and was significantly different from the no‐plasmid control at low concentrations. Atwbc19 was not significantly different from the no‐plasmid control at higher concentrations. Even though HGT risks are considered low with nptII, Atwbc19 should have even lower risks, as its encoded protein is possibly mistargeted in bacteria.
Collapse
Affiliation(s)
- Kellie Burris
- Department of Plant Sciences, The University of Tennessee, Knoxville, 252 Ellington Plant Sciences, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
| | | | | | | |
Collapse
|
18
|
Yan B, Li D, Gou K. Homologous illegitimate random integration of foreign DNA into the X chromosome of a transgenic mouse line. BMC Mol Biol 2010; 11:58. [PMID: 20707910 PMCID: PMC2928235 DOI: 10.1186/1471-2199-11-58] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/13/2010] [Indexed: 12/20/2022] Open
Abstract
Background It is not clear how foreign DNA molecules insert into the host genome. Recently, we have produced transgenic mice to investigate the role of the fad2 gene in the conversion of oleic acid to linoleic acid. Here we describe an integration mechanism of fad2 transgene by homologous illegitimate random integration. Results We confirmed that one fad2 line had a sole integration site on the X chromosome according to the inheritance patterns. Mapping of insertion sequences with thermal asymmetric interlaced and conventional PCR revealed that the foreign DNA was inserted into the XC1 region of the X chromosome by a homologous illegitimate replacement of an entire 45,556-bp endogenous genomic region, including the ovarian granulosa cell tumourigenesis-4 allele. For 5' and 3' junction sequences, there were very short (3-7 bp) common sequences in the AT-rich domains, which may mediate the recognition of the homologous arms between the transgene and the host genome. In addition, analysis of gene transcription indicated that the transgene was expressed in all tested fad2 tissues and that its transcription level in homozygous female tissues was about twice as high as in the heterozygous female (p < 0.05). Conclusions Taken together, the results indicated that the foreign fad2 behaved like an X-linked gene and that foreign DNA molecules were inserted into the eukaryotic genome through a homologous illegitimate random integration.
Collapse
Affiliation(s)
- Bowen Yan
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
19
|
Touzain F, Denamur E, Médigue C, Barbe V, El Karoui M, Petit MA. Small variable segments constitute a major type of diversity of bacterial genomes at the species level. Genome Biol 2010; 11:R45. [PMID: 20433696 PMCID: PMC2884548 DOI: 10.1186/gb-2010-11-4-r45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/15/2010] [Accepted: 04/30/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Analysis of large scale diversity in bacterial genomes has mainly focused on elements such as pathogenicity islands, or more generally, genomic islands. These comprise numerous genes and confer important phenotypes, which are present or absent depending on strains. We report that despite this widely accepted notion, most diversity at the species level is composed of much smaller DNA segments, 20 to 500 bp in size, which we call microdiversity. RESULTS We performed a systematic analysis of the variable segments detected by multiple whole genome alignments at the DNA level on three species for which the greatest number of genomes have been sequenced: Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. Among the numerous sites of variability, 62 to 73% were loci of microdiversity, many of which were located within genes. They contribute to phenotypic variations, as 3 to 6% of all genes harbor microdiversity, and 1 to 9% of total genes are located downstream from a microdiversity locus. Microdiversity loci are particularly abundant in genes encoding membrane proteins. In-depth analysis of the E. coli alignments shows that most of the diversity does not correspond to known mobile or repeated elements, and it is likely that they were generated by illegitimate recombination. An intriguing class of microdiversity includes small blocks of highly diverged sequences, whose origin is discussed. CONCLUSIONS This analysis uncovers the importance of this small-sized genome diversity, which we expect to be present in a wide range of bacteria, and possibly also in many eukaryotic genomes.
Collapse
Affiliation(s)
- Fabrice Touzain
- INRA, UMR1319, Micalis, Bat 222, Jouy en Josas, 78350, France
| | | | | | | | | | | |
Collapse
|
20
|
Brigulla M, Wackernagel W. Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol 2010; 86:1027-41. [DOI: 10.1007/s00253-010-2489-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/18/2009] [Accepted: 01/31/2010] [Indexed: 11/30/2022]
|
21
|
Coombs JM. Potential for horizontal gene transfer in microbial communities of the terrestrial subsurface. Methods Mol Biol 2009; 532:413-33. [PMID: 19271199 DOI: 10.1007/978-1-60327-853-9_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The deep terrestrial subsurface is a vast, largely unexplored environment that is oligotrophic, highly heterogeneous, and may contain extremes of both physical and chemical factors. In spite of harsh conditions, subsurface studies at several widely distributed geographic sites have revealed diverse communities of viable organisms, which have provided evidence of low but detectable metabolic activity. Although much of the terrestrial subsurface may be considered to be distant and isolated, the concept of horizontal gene transfer (HGT) in this environment has far-reaching implications for bioremediation efforts and groundwater quality, industrial harvesting of subsurface natural resources such as petroleum, and accurate assessment of the risks associated with DNA release and transport from genetically modified organisms. This chapter will explore what is known about some of the major mechanisms of HGT, and how the information gained from surface organisms might apply to conditions in the terrestrial subsurface. Evidence for the presence of mobile elements in subsurface bacteria and limited retrospective studies examining genetic signatures of potential past gene transfer events will be discussed.
Collapse
Affiliation(s)
- Jonna M Coombs
- Department of Biology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
22
|
Hülter N, Wackernagel W. Frequent integration of short homologous DNA tracks during Acinetobacter baylyi transformation and influence of transcription and RecJ and SbcCD DNases. MICROBIOLOGY-SGM 2009; 154:3676-3685. [PMID: 19047735 DOI: 10.1099/mic.0.2008/021378-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The minimal length of integrated homologous donor DNA tracks in Acinetobacter baylyi transformation and factors influencing the location and length of tracks were determined. Donor DNA contained the nptII gene region (kanamycin resistance, KmR). This region carried nine approximately evenly spaced silent nucleotide sequence tags and was embedded in heterologous DNA. Recipient cells carried the normal nptII gene with a central 10 bp deletion (kanamycin-sensitive). The Km(R) transformants obtained had donor DNA tracks integrated covering on average only 4.6 (2-7) of the nine tags, corresponding to about 60 % of the 959 nt homologous donor DNA segment. The track positions were biased towards the 3' end of nptII. While the replication direction of recipient DNA did not affect track positions, inhibited transcription (by rifampicin) shifted the beginning of tracks towards the nptII promoter. Absence of the RecJ DNase decreased the length of tracks. Absence of SbcCD DNase increased the integration frequency of the 5' part of nptII, which can form hairpin structures of 43-75 nt, suggesting that SbcCD DNase interferes with hairpins in transforming DNA. In homology-facilitated illegitimate recombination events during transformation (in which a homologous DNA segment serves as a recombinational anchor to facilitate illegitimate recombination in neighbouring heterologous DNA), on average only about half of the approximately 800 nt long tagged nptII anchor sequences were integrated. From donor DNA with an approximately 5000 nt long homologous segment having the nptII gene in the middle, most transformants (74 %) had only a part of the donor nptII integrated, showing that short track integration occurs frequently also from large homologous DNA. It is discussed how short track integration steps can also accomplish incorporation of large DNA molecules.
Collapse
Affiliation(s)
- Nils Hülter
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | - Wilfried Wackernagel
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
23
|
Harms K, Wackernagel W. The RecBCD and SbcCD DNases suppress homology-facilitated illegitimate recombination during natural transformation of Acinetobacter baylyi. MICROBIOLOGY-SGM 2008; 154:2437-2445. [PMID: 18667576 DOI: 10.1099/mic.0.2008/018382-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During natural transformation of Acinetobacter baylyi, the genomic integration of foreign (non-homologous) DNA is possible when the DNA contains a single segment homologous to the recipient genome (anchor) through homologous recombination in the anchor facilitating illegitimate recombination in the neighbouring foreign DNA (homology-facilitated illegitimate recombination; HFIR). DNA integration by HFIR occurs about 10 000 times less frequently than fully homologous recombination, but at least 100 000-fold more frequently than integration in the absence of any homology. We investigated the influence of the RecBCD enzyme (DNase/helicase) and SbcCD DNase (DNA-structure-specific single-strand endonuclease and exonuclease) on HFIR. In a recBCD null mutant the acquisition of foreign DNA was elevated 11-fold relative to wild-type cells by a 6.9-fold increased HFIR frequency and by the integration of longer stretches of foreign DNA in each event. In an sbcCD null mutant, the foreign DNA acquisition was 4.5-fold higher than in the wild-type, while homologous transformation with large DNA molecules was unaffected and increased 3.2-fold with small DNA fragments. The sbcCD mutation partially suppressed the high UV sensitivity and low viability of the recBCD mutant and also decreased its foreign DNA acquisition by HFIR to the lower level of the sbcCD mutant. We propose that suppression of HFIR results from the elimination of double-stranded intermediates of the HFIR process during transformation by RecBCD, and by SbcCD interfering with branched molecules. Our results provide evidence that the homologous recombination enzymes RecBCD and SbcCD control the level of foreign DNA acquisition by HFIR.
Collapse
Affiliation(s)
- Klaus Harms
- Genetics, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | - Wilfried Wackernagel
- Genetics, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
24
|
Coupat BÃ, Chaumeille-Dole F, Fall S, Prior P, Simonet P, Nesme X, Bertolla F. Natural transformation in the Ralstonia solanacearum species complex: number and size of DNA that can be transferred. FEMS Microbiol Ecol 2008; 66:14-24. [DOI: 10.1111/j.1574-6941.2008.00552.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Hülter N, Wackernagel W. Double illegitimate recombination events integrate DNA segments through two different mechanisms during natural transformation of Acinetobacter baylyi. Mol Microbiol 2008; 67:984-95. [PMID: 18194157 DOI: 10.1111/j.1365-2958.2007.06096.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acquisition of foreign DNA by horizontal gene transfer is seen as a major source of genetic diversity in prokaryotes. However, strongly divergent DNA is not genomically integrated by homologous recombination and would depend on illegitimate recombination (IR) events which are rare. We show that, by two mechanisms, during natural transformation of Acinetobacter baylyi two IR events can integrate DNA segments. One mechanism is double illegitimate recombination (DIR) acting in the absence of any homology (frequency: 7 x 10(-13) per cell). It occurs about 10(10)-fold less frequent than homologous transformation. The other mechanism is homology-facilitated double illegitimate recombination (HFDIR) being about 440-fold more frequent (3 x 10(-10) per cell) than DIR. HFDIR depends on a homologous sequence located between the IR sites and on recA(+). In HFDIR two IR events act on the same donor DNA molecule as shown by the joint inheritance of molecular DNA tags. While the IR events in HFDIR occurred at microhomologies, in DIR microhomologies were not used. The HFDIR phenomenon indicates that a temporal recA-dependent association of donor DNA at a homology in recipient DNA may facilitate two IR events on the 5' and 3' heterologous parts of the transforming DNA molecule.
Collapse
Affiliation(s)
- Nils Hülter
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | | |
Collapse
|
26
|
Maruyama F, Tani K, Kenzaka T, Yamaguchi N, Nasu M. Application of Real-Time Long and Short Polymerase Chain Reaction for Sensitive Monitoring of the Fate of Extracellular Plasmid DNA Introduced into River Waters. Microbes Environ 2008; 23:229-36. [DOI: 10.1264/jsme2.23.229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fumito Maruyama
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Katsuji Tani
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Takehiko Kenzaka
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Nobuyasu Yamaguchi
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masao Nasu
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
27
|
Pontiroli A, Simonet P, Frostegard A, Vogel TM, Monier JM. Fate of transgenic plant DNA in the environment. ACTA ACUST UNITED AC 2007; 6:15-35. [DOI: 10.1051/ebr:2007037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Richter B, Smalla K. Screening of rhizosphere and soil bacteria for transformability. ACTA ACUST UNITED AC 2007; 6:91-9. [PMID: 17961483 DOI: 10.1051/ebr:2007035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Natural transformation is assumed to be the most likely mechanism by which DNA from transgenic plants could be horizontally transferred to bacteria. In order to determine the occurrence of naturally transformable bacteria amongst bulk and rhizosphere soil bacteria, different transformation strategies were employed using either plasmid DNA (IncQ plasmids pSM1890 and pSM1885, conferring GFP, Sm(r), Gm(r) and GFP, Sm(r), Tc(r), respectively) or genomic DNA from rhizosphere isolates, which were chromosomally tagged with mini-Tn5 (GFP, Tc(r)), as transforming DNA. Transformation assays were done in microtiter plates (262 isolates and pSM1890 or pSM1885), on filters (i) with rhizosphere bacterial community mixed with pSM1890 or pSM1885, (ii) with 24 rhizosphere or soil bacterial isolates mixed with genomic DNA of the corresponding mini-Tn5-tagged strains, and in the rhizosphere of tobacco plants inoculated with rifampicin-resistant bacterial isolates and genomic DNA of the corresponding mini-Tn5-tagged strains added. One transformant colony was obtained when Brevundimonas vesicularis was transformed with genomic DNA of the corresponding mini-Tn5-tagged strain. Attempts to reproduce this result were unsuccessful. With this single exception, transformants were neither detected in the collection of isolates nor in the rhizosphere bacterial community. Acinetobacter baylyi BD413 used as a positive control showed drastically reduced transformation frequencies with plasmid pSM1890 as transforming DNA when mixed with the rhizosphere pellet. All transformants were characterized by BOX-PCR fingerprints, and three different BOX patterns were revealed. Sequencing the 16S rRNA gene showed that all transformants could be assigned to Acinetobacter sp. Since transformants were only observed in the positive control, the introduced BD413 either underwent genomic rearrangements, or competence of the Acinetobacter population present in the rhizosphere was stimulated by the introduction of BD413. The various transformation assays performed indicate that the proportion of rhizosphere or bulk soil bacteria which are naturally transformable is negligibly low.
Collapse
Affiliation(s)
- Babette Richter
- Federal Biological Research Centre for Agriculture and Forestry, Institute for Plant Virology, Microbiology and Biosafety, Messeweg 11-12, 38104, Braunschweig, Germany
| | | |
Collapse
|
29
|
Harms K, Schön V, Kickstein E, Wackernagel W. The RecJ DNase strongly suppresses genomic integration of short but not long foreign DNA fragments by homology-facilitated illegitimate recombination during transformation of Acinetobacter baylyi. Mol Microbiol 2007; 64:691-702. [PMID: 17462017 DOI: 10.1111/j.1365-2958.2007.05692.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Homology-facilitated illegitimate recombination (HFIR) promotes genomic integration of foreign DNA with a single segment homologous to the recipient genome by homologous recombination in the segment accompanied by illegitimate fusion of the heterologous sequence. During natural transformation of Acinetobacter baylyi HFIR occurs at about 0.01% of the frequency of fully homologous recombination. The role of the 5' single-strand-specific exonuclease RecJ in HFIR was investigated. Deletion of recJ increased HFIR frequency about 20-fold compared with wild type while homologous recombination was not affected. Illegitimate fusion sites were predominantly located within 360 nucleotides away from the homology whereas in wild type most fusion sites were distal (500-2500 nucleotides away). RecJ overproduction reduced the HFIR frequency to half compared with wild type, and transformants with short foreign DNA segments were diminished, leading to on average 866 foreign nucleotides integrated per event (682 in wild type, 115 in recJ). In recJ always the 3' ends of donor DNA were integrated at the homology whereas in wild type these were 3' or 5'. RecJ apparently suppresses HFIR by degrading 5' non-homologous DNA tails at the post-synaptic stage. We propose that the RecJ activity level controls the HFIR frequency during transformation and the amount of foreign DNA integrated per event.
Collapse
Affiliation(s)
- Klaus Harms
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | |
Collapse
|
30
|
Monier JM, Bernillon D, Kay E, Faugier A, Rybalka O, Dessaux Y, Simonet P, Vogel TM. Detection of potential transgenic plant DNA recipients among soil bacteria. ENVIRONMENTAL BIOSAFETY RESEARCH 2007; 6:71-83. [PMID: 17961481 DOI: 10.1051/ebr:2007036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The likelihood of gene transfer from transgenic plants to bacteria is dependent on gene number and the presence of homologous sequences. The large number of transgene copies in transplastomic (transgenes contained in the chloroplast genome) plant cells as well as the prokaryotic origin of the transgene, may thus significantly increase the likelihood of gene transfer to bacteria that colonize plant tissues. In order to assess the probability of such transfer, the length of homologous DNA sequences required between the transgene and the genome of the bacterial host was assessed. In addition, the probability that bacteria, which co-infect diseased plants, are transformable and have sequences similar to the flanking regions of the transgene was evaluated. Using Acinetobacter baylyi strain BD143 and transplastomic tobacco plants harboring the aadA gene (streptomycin and spectinomycin resistance), we found that sequences identical to the flanking regions containing as few as 55 nucleotides were sufficient for recombination to occur. Consequently, a collection of bacterial isolates able to colonize tobacco plant tissue infected by Ralstonia solanacearum strain K60 was obtained, screened for DNA sequence similarity with the chloroplastic genes accD and rbcL flanking the transgene, and tested for their ability to uptake extracellular DNA (broad host-range pBBR1MCS plasmids) by natural or electro-transformation. Results showed that among the 288 bacterial isolates tested, 8% presented DNA sequence similarity with one or both chloroplastic regions flanking the transgene. Two isolates, identified as Pseudomonas sp. and Acinetobacter sp., were able to integrate exogenous plasmid DNA by electro-transformation and natural transformation, respectively. Our data suggest that transplastomic plant DNA recipients might be present in soil bacterial communities.
Collapse
Affiliation(s)
- Jean-Michel Monier
- Ecologie Microbienne, Université de Lyon, 69003 Lyon, Lyon I, 69622, Villeurbanne, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 2006; 70:510-47. [PMID: 16760312 PMCID: PMC1489536 DOI: 10.1128/mmbr.00047-05] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri.
Collapse
Affiliation(s)
- Jorge Lalucat
- Department de Biologia, Microbiologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
32
|
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005; 3:711-21. [PMID: 16138099 DOI: 10.1038/nrmicro1234] [Citation(s) in RCA: 1259] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria evolve rapidly not only by mutation and rapid multiplication, but also by transfer of DNA, which can result in strains with beneficial mutations from more than one parent. Transformation involves the release of naked DNA followed by uptake and recombination. Homologous recombination and DNA-repair processes normally limit this to DNA from similar bacteria. However, if a gene moves onto a broad-host-range plasmid it might be able to spread without the need for recombination. There are barriers to both these processes but they reduce, rather than prevent, gene acquisition.
Collapse
Affiliation(s)
- Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
33
|
Sikorski J, Lalucat J, Wackernagel W. Genomovars 11 to 18 of Pseudomonas stutzeri, identified among isolates from soil and marine sediment. Int J Syst Evol Microbiol 2005; 55:1767-1770. [PMID: 16166664 DOI: 10.1099/ijs.0.63535-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amongst 440 strains of Pseudomonas stutzeri isolated from soil and marine sediment for a population genetic study, eight strains were each presumed to represent a novel genomic group and were compared with each other and to reference strains of P. stutzeri genomovars 1 to 10 and other Pseudomonas species by DNA–DNA hybridization, 16S rRNA and internally transcribed 16S–23S rRNA spacer region (ITS1) sequences and basic physiological properties defining the species. While 16S rRNA and ITS1 gene sequences positioned the eight strains within the phylogenetic branch of P. stutzeri, the DNA–DNA hybridizations with reference strains of the 10 described genomovars and among the novel strains were generally below 70 %, which is the threshold for species and genomovar differentiation. Since the physiological properties studied in the eight strains fitted the profile of P. stutzeri, eight new genomovars of P. stutzeri, numbered 11 to 18, are proposed, with strains 28a50, 28a39, 28a22, 28a3, 4C29, 24a13, 24a75 and MT-1 being the reference strains. The highly transformable reference strain 28a3 of genomovar 14 had a localized 16S rRNA gene sequence tag characteristic of genomovar strains 2 and 3, suggesting a possible horizontal gene transfer event involving part of the 16S rRNA gene.
Collapse
Affiliation(s)
- Johannes Sikorski
- Genetik, Institut für Biologie und Umweltwissenschaften, Universität Oldenburg, Germany
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Institut Mediterrani d'Estudis Avancats (CSICUIB), Palma de Mallorca, Spain
| | - Wilfried Wackernagel
- Genetik, Institut für Biologie und Umweltwissenschaften, Universität Oldenburg, Germany
| |
Collapse
|
34
|
Sekizaki T, Takamatsu D, Osaki M, Shimoji Y. Different foreign genes incidentally integrated into the same locus of the Streptococcus suis genome. J Bacteriol 2005; 187:872-83. [PMID: 15659665 PMCID: PMC545713 DOI: 10.1128/jb.187.3.872-883.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Some strains of Streptococcus suis possess a type II restriction-modification (RM) system, whose genes are thought to be inserted into the genome between purH and purD from a foreign source by illegitimate recombination. In this study, we characterized the purHD locus of the S. suis genomes of 28 serotype reference strains by DNA sequencing. Four strains contained the RM genes in the locus, as described before, whereas 11 strains possessed other genetic regions of seven classes. The genetic regions contained a single gene or multiple genes that were either unknown or similar to hypothetical genes of other bacteria. The mutually exclusive localization of the genetic regions with the atypical G+C contents indicated that these regions were also acquired from foreign sources. No transposable element or long-repeat sequence was found in the neighboring regions. An alignment of the nucleotide sequences, including the RM gene regions, suggested that the foreign regions were integrated by illegitimate recombination via short stretches of nucleotide identity. By using a thermosensitive suicide plasmid, the RM genes were experimentally introduced into an S. suis strain that did not contain any foreign genes in that locus. Integration of the plasmid into the S. suis genome did not occur in the purHD locus but occurred at various chromosomal loci, where there were 2 to 10 bp of nucleotide identity between the chromosome and the plasmid. These results suggest that various foreign genes described here were incidentally integrated into the same locus of the S. suis genome.
Collapse
Affiliation(s)
- Tsutomu Sekizaki
- Molecular Bacteriology Section, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | |
Collapse
|
35
|
Meier P, Wackernagel W. Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol 2005; 187:143-54. [PMID: 15601698 PMCID: PMC538834 DOI: 10.1128/jb.187.1.143-154.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 09/17/2004] [Indexed: 11/20/2022] Open
Abstract
In prokaryotic mismatch repair the MutS protein and its homologs recognize the mismatches. The mutS gene of naturally transformable Pseudomonas stutzeri ATCC 17587 (genomovar 2) was identified and characterized. The deduced amino acid sequence (859 amino acids; 95.6 kDa) displayed protein domains I to IV and a mismatch-binding motif similar to those in MutS of Escherichia coli. A mutS::aac mutant showed 20- to 163-fold-greater spontaneous mutability. Transformation experiments with DNA fragments of rpoB containing single nucleotide changes (providing rifampin resistance) indicated that mismatches resulting from both transitions and transversions were eliminated with about 90% efficiency in mutS+. The mutS+ gene of strain ATCC 17587 did not complement an E. coli mutant but partially complemented a P. stutzeri JM300 mutant (genomovar 4). The declining heterogamic transformation by DNA with 0.1 to 14.6% sequence divergence was partially alleviated by mutS::aac, indicating that there was a 14 to 16% contribution of mismatch repair to sexual isolation. Expression of mutS+ from a multicopy plasmid eliminated autogamic transformation and greatly decreased heterogamic transformation, suggesting that there is strong limitation of MutS in the wild type for marker rejection. Remarkably, mutS::aac altered foreign DNA acquisition by homology-facilitated illegitimate recombination (HFIR) during transformation, as follows: (i) the mean length of acquired DNA was increased in transformants having a net gain of DNA, (ii) the HFIR events became clustered (hot spots) and less dependent on microhomologies, which may have been due to topoisomerase action, and (iii) a novel type of transformants (14%) had integrated foreign DNA with no loss of resident DNA. We concluded that in P. stutzeri upregulation of MutS could enforce sexual isolation and downregulation could increase foreign DNA acquisition and that MutS affects mechanisms of HFIR.
Collapse
Affiliation(s)
- Petra Meier
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Germany
| | | |
Collapse
|
36
|
de Vries J, Herzfeld T, Wackernagel W. Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol 2004; 53:323-34. [PMID: 15225325 DOI: 10.1111/j.1365-2958.2004.04132.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acquisition of new genetic information by horizontal gene transfer is a major mechanism of genetic adaptation and evolution in prokaryotes. Naturally transformable cells of Acinetobacter sp. were exposed to plant DNA from leaf and root tissue of transplastomic tobacco. With the aadA gene (resistance against spectinomycin and streptomycin) as anchor sequence, the transfer of segments of the tobacco plastid DNA to Acinetobacter by homology-facilitated illegitimate recombination occurred at a frequency of 1.2 x 10(-7) per cell, which was about 0.1% of the frequency of fully homologous transfers. Without anchor sequence, transfer was not detected (=1.3 x 10(-10)). The integrated plastid DNA segments extended up to 2539 nucleotides and often encompassed tobacco genes (trnL, ycf5). Expression of trnL (leucyl-tRNA) in a transformant was shown by reverse transcription polymerase chain reaction. About 44% of integration events occurred at a single hot-spot and 38% at other multiply used sites. All illegitimate recombination sites were GC-rich microhomologies of 3-6 bp often neighboured by further microhomologies. The sites were located in plant DNA at the ends of distinct larger high-GC regions, which suggests a role for GC-aided association of heterologous sequences in illegitimate DNA end joining. The results show that integration of plant DNA into a bacterial genome by natural transformation is possible and is probably stimulated by hot-spots of illegitimate recombination.
Collapse
Affiliation(s)
- Johann de Vries
- Genetics Section, Institute of Biology and Environmental Sciences, C.v.O. University Oldenburg, PO Box 2503, D-26111 Oldenburg, Germany.
| | | | | |
Collapse
|
37
|
van den Eede G, Aarts H, Buhk HJ, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, van der Vossen J, von Wright A, Wackernagel W, Wilcks A. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 2004; 42:1127-56. [PMID: 15123384 DOI: 10.1016/j.fct.2004.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2003] [Accepted: 02/04/2004] [Indexed: 12/31/2022]
Abstract
In 2000, the thematic network ENTRANSFOOD was launched to assess four different topics that are all related to the testing or assessment of food containing or produced from genetically modified organisms (GMOs). Each of the topics was linked to a European Commission (EC)-funded large shared cost action (see http://www.entransfood.com). Since the exchange of genetic information through horizontal (lateral) gene transfer (HGT) might play a more important role, in quantity and quality, than hitherto imagined, a working group dealing with HGT in the context of food and feed safety was established. This working group was linked to the GMOBILITY project (GMOBILITY, 2003) and the results of the deliberations are laid down in this review paper. HGT is reviewed in relation to the potential risks of consuming food or feed derived from transgenic crops. First, the mechanisms for obtaining transgenic crops are described. Next, HGT mechanisms and its possible evolutionary role are described. The use of marker genes is presented in detail as a special case for genes that may pose a risk. Furthermore, the exposure to GMOs and in particular to genetically modified (GM) deoxyribonucleic acid (DNA) is discussed as part of the total risk assessment. The review finishes off with a number of conclusions related to GM food and feed safety. The aim of this paper is to provide a comprehensive overview to assist risk assessors as well as regulators and the general public in understanding the safety issues related to these mechanisms.
Collapse
Affiliation(s)
- G van den Eede
- European Commission Directorate General Joint Research Centre, Institute for Health and Consumer Protection, Biotechnology and GMOs Unit, Via E. Fermi 1-T.P. 331, I-21020 Ispra (VA), Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|