1
|
Choi JY, Lopes L, Ben Mamoun C, Voelker DR. Maturation of the malarial phosphatidylserine decarboxylase is mediated by high affinity binding to anionic phospholipids. J Biol Chem 2023; 299:104659. [PMID: 36997087 PMCID: PMC10172927 DOI: 10.1016/j.jbc.2023.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA; Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lauren Lopes
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA.
| |
Collapse
|
2
|
Anwar O, Islam M, Thakur V, Kaur I, Mohmmed A. Defining ER-mitochondria contact dynamics in Plasmodium falciparum by targeting component of phospholipid synthesis pathway, Phosphatidylserine synthase (PfPSS). Mitochondrion 2022; 65:124-138. [PMID: 35623558 DOI: 10.1016/j.mito.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
The malaria parasite completes the asexual cycle inside the host erythrocyte, which requires extensive membrane biogenesis for its development and multiplication. Metabolic pathways for the synthesis of membrane phospholipids (PL), including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), are crucial for parasite survival. Here, we have studied the P. falciparum enzyme responsible for PS synthesis, Phosphatidylserine synthase (PfPSS), GFP targeting approach confirmed it to be localized in the parasite ER as well as in ER-protrusions. Detailed high resolution microscopy, using these transgenic parasites expressing PfPSS-GFP, redefined the dynamics of ER during the intraerythrocytic life cycle and its association with the mitochondria. We report for the first time presence of ER-mitochondria contact (ERMC) in Plasmodium; ERMC is formed by PfPSS containing ER-protrusions, which associate with the mitochondria surface throughout the parasite growth cycle. Further, ERMC is found to be stable and refractory to ER and mitochondrial stresses, suggesting that it is formed through strong tethering complexes. PfPSS was found to interact with other major key enzyme involved in PL synthesis, choline/Etn-phosphotransferase (CEPT), which suggest that ER is the major site for PL biosynthesis. Overall, this study defines the morphological organisation of ERMC which mediates PL synthesis/transport in the Plasmodium.
Collapse
Affiliation(s)
- Omair Anwar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Muzahidul Islam
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
3
|
Hendricson A, Umlauf S, Choi JY, Thekkiniath J, Surovtseva YV, Fuller KK, Reynolds TB, Voelker DR, Ben Mamoun C. High-throughput screening for phosphatidylserine decarboxylase inhibitors using a distyrylbenzene-bis-aldehyde (DSB-3)-based fluorescence assay. J Biol Chem 2019; 294:12146-12156. [PMID: 31227523 DOI: 10.1074/jbc.ra119.007766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylserine decarboxylases (PSDs) catalyze the decarboxylation of phosphatidylserine to generate phosphatidylethanolamine, a critical step in phospholipid metabolism in both prokaryotes and eukaryotes. Most PSDs are membrane-bound, and classical radioisotope-based assays for determining their activity in vitro are not suitable for high-throughput drug screening. The finding that the PkPSD from Plasmodium knowlesi can be purified in a soluble and active form and the recent development of a fluorescence-based distyrylbenzene-bis-aldehyde (DSB-3) assay to measure PSD activity in vitro have laid the groundwork for screening chemical libraries for PSD inhibitors. Using this assay, here we conducted a high-throughput screen of a structurally diverse 130,858-compound library against PkPSD. Further characterization of the hits identified in this screening yielded five PkPSD inhibitors with IC50 values ranging from 3.1 to 42.3 μm Lead compounds were evaluated against the pathogenic yeast Candida albicans in the absence or presence of exogenous ethanolamine, and YU253467 and YU254403 were identified as inhibiting both native C. albicans PSD mitochondrial activity and C. albicans growth, with an MIC50 of 22.5 and 15 μg/ml without ethanolamine and an MIC50 of 75 and 60 μg/ml with ethanolamine, respectively. Together, these results provide the first proof of principle for the application of DSB-3-based fluorescent readouts in high-throughput screening for PSD inhibitors. The data set the stage for future analyses to identify more selective and potent PSD inhibitors with antimicrobial or antitumor activities.
Collapse
Affiliation(s)
- Adam Hendricson
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516
| | - Sheila Umlauf
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516
| | - Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Jose Thekkiniath
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520
| | | | - Kevin K Fuller
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Todd B Reynolds
- Department of Microbiology, College of Arts and Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
4
|
Wein S, Ghezal S, Buré C, Maynadier M, Périgaud C, Vial HJ, Lefebvre-Tournier I, Wengelnik K, Cerdan R. Contribution of the precursors and interplay of the pathways in the phospholipid metabolism of the malaria parasite. J Lipid Res 2018; 59:1461-1471. [PMID: 29853527 PMCID: PMC6071779 DOI: 10.1194/jlr.m085589] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/24/2018] [Indexed: 12/17/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, develops and multiplies in the human erythrocyte. It needs to synthesize considerable amounts of phospholipids (PLs), principally phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). Several metabolic pathways coexist for their de novo biosynthesis, involving a dozen enzymes. Given the importance of these PLs for the survival of the parasite, we sought to determine their sources and to understand the connections and dependencies between the multiple pathways. We used three deuterated precursors (choline-d9, ethanolamine-d4, and serine-d3) to follow and quantify simultaneously their incorporations in the intermediate metabolites and the final PLs by LC/MS/MS. We show that PC is mainly derived from choline, itself provided by lysophosphatidylcholine contained in the serum. In the absence of choline, the parasite is able to use both other precursors, ethanolamine and serine. PE is almost equally synthesized from ethanolamine and serine, with both precursors being able to compensate for each other. Serine incorporated in PS is mainly derived from the degradation of host cell hemoglobin by the parasite. P. falciparum thus shows an unexpected adaptability of its PL synthesis pathways in response to different disturbances. These data provide new information by mapping the importance of the PL metabolic pathways of the malaria parasite and could be used to design future therapeutic approaches.
Collapse
Affiliation(s)
- Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Salma Ghezal
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Corinne Buré
- Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Centre de Génomique Fonctionnelle, Université Bordeaux 2, 33076 Bordeaux Cedex, France
| | - Marjorie Maynadier
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Henri J Vial
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Isabelle Lefebvre-Tournier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Kai Wengelnik
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Rachel Cerdan
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| |
Collapse
|
5
|
Kong P, Lehmann MJ, Helms JB, Brouwers JF, Gupta N. Lipid analysis of Eimeria sporozoites reveals exclusive phospholipids, a phylogenetic mosaic of endogenous synthesis, and a host-independent lifestyle. Cell Discov 2018; 4:24. [PMID: 29844921 PMCID: PMC5964319 DOI: 10.1038/s41421-018-0023-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
Abstract
Successful inter-host transmission of most apicomplexan parasites requires the formation of infective sporozoites within the oocysts. Unlike all other infective stages that are strictly intracellular and depend on host resources, the sporozoite stage develops outside the host cells, but little is known about its self-governing metabolism. This study deployed Eimeria falciformis, a parasite infecting the mouse as its natural host, to investigate the process of phospholipid biogenesis in sporozoites. Lipidomic analyses demonstrated the occurrence of prototypical phospholipids along with abundant expression of at least two exclusive lipids, phosphatidylthreonine (PtdThr) and inositol phosphorylceramide with a phytosphingosine backbone, in sporozoites. To produce them de novo, the parasite harbors nearly the entire biogenesis network, which is an evolutionary mosaic of eukaryotic-type and prokaryotic-type enzymes. Notably, many have no phylogenetic counterpart or functional equivalent in the mammalian host. Using Toxoplasma gondii as a gene-tractable surrogate to examine Eimeria enzymes, we show a highly compartmentalized network of lipid synthesis spread primarily in the apicoplast, endoplasmic reticulum, mitochondrion, and Golgi complex. Likewise, trans-genera complementation of a Toxoplasma mutant with the PtdThr synthase from Eimeria reveals a convergent role of PtdThr in fostering the lytic cycle of coccidian parasites. Taken together, our work establishes a model of autonomous membrane biogenesis involving significant inter-organelle cooperation and lipid trafficking in sporozoites. Phylogenetic divergence of certain pathways offers attractive drug targets to block the sporulation and subsequent transmission. Not least, our results vindicate the possession of an entire de novo lipid synthesis network in a representative protist adapted to an obligate intracellular parasitic lifestyle.
Collapse
Affiliation(s)
- Pengfei Kong
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, 10115 Germany
| | - Maik J. Lehmann
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, 10115 Germany
- Present Address: Department of Life Sciences and Engineering, University of Applied Sciences, Bingen, 55411 Germany
| | - J. Bernd Helms
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, 3584CM The Netherlands
| | - Jos F. Brouwers
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, 3584CM The Netherlands
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, 10115 Germany
| |
Collapse
|
6
|
Cassilly CD, Reynolds TB. PS, It's Complicated: The Roles of Phosphatidylserine and Phosphatidylethanolamine in the Pathogenesis of Candida albicans and Other Microbial Pathogens. J Fungi (Basel) 2018; 4:jof4010028. [PMID: 29461490 PMCID: PMC5872331 DOI: 10.3390/jof4010028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
The phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) play important roles in the virulence of Candida albicans and loss of PS synthesis or synthesis of PE from PS (PS decarboxylase) severely compromises virulence in C. albicans in a mouse model of systemic candidiasis. This review discusses synthesis of PE and PS in C. albicans and mechanisms by which these lipids impact virulence in this fungus. This is further compared to how PS and PE synthesis impact virulence in other fungi, parasites and bacteria. Furthermore, the impact of PS asymmetry on virulence and extracellular vesicle formation in several microbes is reviewed. Finally, the potential for PS and PE synthases as drug targets in these various kingdoms is also examined.
Collapse
Affiliation(s)
- Chelsi D Cassilly
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
7
|
Choi JY, Surovtseva YV, Van Sickle SM, Kumpf J, Bunz UHF, Ben Mamoun C, Voelker DR. A novel fluorescence assay for measuring phosphatidylserine decarboxylase catalysis. J Biol Chem 2017; 293:1493-1503. [PMID: 29247006 DOI: 10.1074/jbc.ra117.000525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/07/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylserine decarboxylases (PSDs) are central enzymes in phospholipid metabolism that produce phosphatidylethanolamine (PE) in bacteria, protists, plants, and animals. We developed a fluorescence-based assay for selectively monitoring production of PE in reactions using a maltose-binding protein fusion with Plasmodium knowlesi PSD (MBP-His6-Δ34PkPSD) as the enzyme. The PE detection by fluorescence (λex = 403 nm, λem = 508 nm) occurred after the lipid reacted with a water-soluble distyrylbenzene-bis-aldehyde (DSB-3), and provided strong discrimination against the phosphatidylserine substrate. The reaction conditions were optimized for enzyme, substrate, product, and DSB-3 concentrations with the purified enzyme and also tested with crude extracts and membrane fractions from bacteria and yeast. The assay is readily amenable to application in 96- and 384-well microtiter plates and should prove useful for high-throughput screening for inhibitors of PSD enzymes across diverse phyla.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- From the Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | | | - Sam M Van Sickle
- From the Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Jan Kumpf
- the Organisch-Chemisches Institut, Ruprecht-Karls-Universitat, Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H F Bunz
- the Organisch-Chemisches Institut, Ruprecht-Karls-Universitat, Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Choukri Ben Mamoun
- the Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520, and
| | - Dennis R Voelker
- From the Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206,
| |
Collapse
|
8
|
Farine L, Jelk J, Choi J, Voelker DR, Nunes J, Smith TK, Bütikofer P. Phosphatidylserine synthase 2 and phosphatidylserine decarboxylase are essential for aminophospholipid synthesis in Trypanosoma brucei. Mol Microbiol 2017; 104:412-427. [PMID: 28142188 PMCID: PMC5413845 DOI: 10.1111/mmi.13637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 01/09/2023]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T. brucei PS synthase 2 (TbPSS2) and T. brucei PS decarboxylase (TbPSD), two key enzymes involved in aminophospholipid synthesis, for trypanosome viability. By using tetracycline-inducible down-regulation of gene expression and in vivo and in vitro metabolic labeling, we found that TbPSS2 (i) is necessary for normal growth of procyclic trypanosomes, (ii) localizes to the endoplasmic reticulum and (iii) represents the unique route for PS formation in T. brucei. In addition, we identified TbPSD as type I PS decarboxylase in the mitochondrion and found that it is processed proteolytically at a WGSS cleavage site into a heterodimer. Down-regulation of TbPSD expression affected mitochondrial integrity in both procyclic and bloodstream form trypanosomes, decreased ATP production via oxidative phosphorylation in procyclic form and affected parasite growth.
Collapse
Affiliation(s)
- Luce Farine
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
| | - Jennifer Jelk
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
| | - Jae‐Yeon Choi
- Department of MedicineNational Jewish HealthDenverCO80206USA
| | | | - Jon Nunes
- Biomedical Sciences Research ComplexUniversity of St. AndrewsSt. AndrewsScotland
| | - Terry K. Smith
- Biomedical Sciences Research ComplexUniversity of St. AndrewsSt. AndrewsScotland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
| |
Collapse
|
9
|
Di Bartolomeo F, Wagner A, Daum G. Cell biology, physiology and enzymology of phosphatidylserine decarboxylase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:25-38. [PMID: 27650064 DOI: 10.1016/j.bbalip.2016.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 12/17/2022]
Abstract
Phosphatidylethanolamine is one of the most abundant phospholipids whose major amounts are formed by phosphatidylserine decarboxylases (PSD). Here we provide a comprehensive description of different types of PSDs in the different kingdoms of life. In eukaryotes, type I PSDs are mitochondrial enzymes, whereas other PSDs are localized to other cellular compartments. We describe the role of mitochondrial Psd1 proteins, their function, enzymology, biogenesis, assembly into mitochondria and their contribution to phospholipid homeostasis in much detail. We also discuss briefly the cellular physiology and the enzymology of Psd2. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Francesca Di Bartolomeo
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | - Ariane Wagner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria.
| |
Collapse
|
10
|
Choi JY, Kumar V, Pachikara N, Garg A, Lawres L, Toh JY, Voelker DR, Ben Mamoun C. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening. Mol Microbiol 2015; 99:999-1014. [PMID: 26585333 DOI: 10.1111/mmi.13280] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 11/30/2022]
Abstract
Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Vidya Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, CT 06520, USA
| | - Niseema Pachikara
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, CT 06520, USA
| | - Aprajita Garg
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, CT 06520, USA
| | - Lauren Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, CT 06520, USA
| | - Justin Y Toh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, CT 06520, USA
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, CT 06520, USA
| |
Collapse
|
11
|
Hartmann A, Hellmund M, Lucius R, Voelker DR, Gupta N. Phosphatidylethanolamine synthesis in the parasite mitochondrion is required for efficient growth but dispensable for survival of Toxoplasma gondii. J Biol Chem 2014; 289:6809-6824. [PMID: 24429285 DOI: 10.1074/jbc.m113.509406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Toxoplasma gondii is a highly prevalent obligate intracellular parasite of the phylum Apicomplexa, which also includes other parasites of clinical and/or veterinary importance, such as Plasmodium, Cryptosporidium, and Eimeria. Acute infection by Toxoplasma is hallmarked by rapid proliferation in its host cells and requires a significant synthesis of parasite membranes. Phosphatidylethanolamine (PtdEtn) is the second major phospholipid class in T. gondii. Here, we reveal that PtdEtn is produced in the parasite mitochondrion and parasitophorous vacuole by decarboxylation of phosphatidylserine (PtdSer) and in the endoplasmic reticulum by fusion of CDP-ethanolamine and diacylglycerol. PtdEtn in the mitochondrion is synthesized by a phosphatidylserine decarboxylase (TgPSD1mt) of the type I class. TgPSD1mt harbors a targeting peptide at its N terminus that is required for the mitochondrial localization but not for the catalytic activity. Ablation of TgPSD1mt expression caused up to 45% growth impairment in the parasite mutant. The PtdEtn content of the mutant was unaffected, however, suggesting the presence of compensatory mechanisms. Indeed, metabolic labeling revealed an increased usage of ethanolamine for PtdEtn synthesis by the mutant. Likewise, depletion of nutrients exacerbated the growth defect (∼56%), which was partially restored by ethanolamine. Besides, the survival and residual growth of the TgPSD1mt mutant in the nutrient-depleted medium also indicated additional routes of PtdEtn biogenesis, such as acquisition of host-derived lipid. Collectively, the work demonstrates a metabolic cooperativity between the parasite organelles, which ensures a sustained lipid synthesis, survival and growth of T. gondii in varying nutritional milieus.
Collapse
Affiliation(s)
- Anne Hartmann
- Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Maria Hellmund
- Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Richard Lucius
- Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Nishith Gupta
- Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany; Department of Parasitology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
12
|
Sen P, Vial HJ, Radulescu O. Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways. BMC SYSTEMS BIOLOGY 2013; 7:123. [PMID: 24209716 PMCID: PMC3829661 DOI: 10.1186/1752-0509-7-123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/01/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND Plasmodium is the causal parasite of malaria, infectious disease responsible for the death of up to one million people each year. Glycerophospholipid and consequently membrane biosynthesis are essential for the survival of the parasite and are targeted by a new class of antimalarial drugs developed in our lab. In order to understand the highly redundant phospholipid synthethic pathways and eventual mechanism of resistance to various drugs, an organism specific kinetic model of these metabolic pathways need to be developed in Plasmodium species. RESULTS Fluxomic data were used to build a quantitative kinetic model of glycerophospholipid pathways in Plasmodium knowlesi. In vitro incorporation dynamics of phospholipids unravels multiple synthetic pathways. A detailed metabolic network with values of the kinetic parameters (maximum rates and Michaelis constants) has been built. In order to obtain a global search in the parameter space, we have designed a hybrid, discrete and continuous, optimization method. Discrete parameters were used to sample the cone of admissible fluxes, whereas the continuous Michaelis and maximum rates constants were obtained by local minimization of an objective function.The model was used to predict the distribution of fluxes within the network of various metabolic precursors.The quantitative analysis was used to understand eventual links between different pathways. The major source of phosphatidylcholine (PC) is the CDP-choline Kennedy pathway.In silico knock-out experiments showed comparable importance of phosphoethanolamine-N-methyltransferase (PMT) and phosphatidylethanolamine-N-methyltransferase (PEMT) for PC synthesis.The flux values indicate that, major part of serine derived phosphatidylethanolamine (PE) is formed via serine decarboxylation, whereas major part of phosphatidylserine (PS) is formed by base-exchange reactions.Sensitivity analysis of CDP-choline pathway shows that the carrier-mediated choline entry into the parasite and the phosphocholine cytidylyltransferase reaction have the largest sensitivity coefficients in this pathway, but does not distinguish a reaction as an unique rate-limiting step. CONCLUSION We provide a fully parametrized kinetic model for the multiple phospholipid synthetic pathways in P. knowlesi. This model has been used to clarify the relative importance of the various reactions in these metabolic pathways. Future work extensions of this modelling strategy will serve to elucidate the regulatory mechanisms governing the development of Plasmodium during its blood stages, as well as the mechanisms of action of drugs on membrane biosynthetic pathways and eventual mechanisms of resistance.
Collapse
Affiliation(s)
- Partho Sen
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235 CNRS, UM1, UM2, CP 107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Henri J Vial
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235 CNRS, UM1, UM2, CP 107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Ovidiu Radulescu
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235 CNRS, UM1, UM2, CP 107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
13
|
Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res 2013; 52:488-512. [PMID: 23827884 DOI: 10.1016/j.plipres.2013.06.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.
Collapse
|
14
|
Gupta N, Hartmann A, Lucius R, Voelker DR. The obligate intracellular parasite Toxoplasma gondii secretes a soluble phosphatidylserine decarboxylase. J Biol Chem 2012; 287:22938-47. [PMID: 22563079 DOI: 10.1074/jbc.m112.373639] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite capable of causing fatal infections in immunocompromised individuals and neonates. Examination of the phosphatidylserine (PtdSer) metabolism of T. gondii reveals that the parasite secretes a soluble form of PtdSer decarboxylase (TgPSD1), which preferentially decarboxylates liposomal PtdSer with an apparent K(m) of 67 μM. The specific enzyme activity increases by 3-fold during the replication of T. gondii, and soluble phosphatidylserine decarboxylase (PSD) accounts for ∼20% of the total PSD, prior to the parasite egress from the host cells. Extracellular T. gondii secreted ∼20% of its total PSD activity at 37 °C, and the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) inhibited the process by 50%. Cycloheximide, brefeldin A, ionic composition of the medium, and exogenous PtdSer did not modulate the enzyme secretion, which suggests a constitutive discharge of a presynthesized pool of PSD in axenic T. gondii. TgPSD1 consists of 968 amino acids with a 26-amino acid hydrophobic peptide at the N terminus and no predicted membrane domains. Parasites overexpressing TgPSD1-HA secreted 10-fold more activity compared with the parental strain. Exposure of apoptotic Jurkat cells to transgenic parasites demonstrated interfacial catalysis by secreted TgPSD1 that reduced host cell surface exposure of PtdSer. Immunolocalization experiments revealed that TgPSD1 resides in the dense granules of T. gondii and is also found in the parasitophorous vacuole of replicating parasites. Together, these findings demonstrate novel features of the parasite enzyme because a secreted, soluble, and interfacially active form of PSD has not been previously described for any organism.
Collapse
Affiliation(s)
- Nishith Gupta
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
15
|
Choi JY, Augagneur Y, Mamoun CB, Voelker DR. Identification of gene encoding Plasmodium knowlesi phosphatidylserine decarboxylase by genetic complementation in yeast and characterization of in vitro maturation of encoded enzyme. J Biol Chem 2011; 287:222-232. [PMID: 22057268 DOI: 10.1074/jbc.m111.313676] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 23-megabase genome of Plasmodium falciparum, the causative agent of severe human malaria, contains ∼5300 genes, most of unknown function or lacking homologs in other organisms. Identification of these gene functions will help in the discovery of novel targets for the development of antimalarial drugs and vaccines. The P. falciparum genome is unusually A+T-rich, which hampers cloning and expressing these genes in heterologous systems for functional analysis. The large repertoire of genetic tools available for Saccharomyces cerevisiae makes this yeast an ideal system for large scale functional complementation analyses of parasite genes. Here, we report the construction of a cDNA library from P. knowlesi, which has a lower A+T content compared with P. falciparum. This library was applied in a yeast complementation assay to identify malaria genes involved in the decarboxylation of phosphatidylserine. Transformation of a psd1Δpsd2Δdpl1Δ yeast strain, defective in phosphatidylethanolamine synthesis, with the P. knowlesi library led to identification of a new parasite phosphatidylserine decarboxylase (PkPSD). Unlike phosphatidylserine decarboxylase enzymes from other eukaryotes that are tightly associated with membranes, the PkPSD enzyme expressed in yeast was equally distributed between membrane and soluble fractions. In vitro studies reveal that truncated forms of PkPSD are soluble and undergo auto-endoproteolytic maturation in a phosphatidylserine-dependent reaction that is inhibited by other anionic phospholipids. This study defines a new system for probing the function of Plasmodium genes by library-based genetic complementation and its usefulness in revealing new biochemical properties of encoded proteins.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Yoann Augagneur
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado 80206.
| |
Collapse
|
16
|
Déchamps S, Shastri S, Wengelnik K, Vial HJ. Glycerophospholipid acquisition in Plasmodium - a puzzling assembly of biosynthetic pathways. Int J Parasitol 2010; 40:1347-65. [PMID: 20600072 DOI: 10.1016/j.ijpara.2010.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 01/06/2023]
Abstract
Throughout the Plasmodium life cycle, malaria parasites repeatedly undergo rapid cellular growth and prolific divisions, necessitating intense membrane neogenesis and, in particular, the acquisition of high amounts of phospholipids. At the intraerythrocytic stage, glycerophospholipids are the main parasite membrane constituents, which mostly originate from the Plasmodium-encoded enzymatic machinery. Several proteins and entire pathways have been characterized and their features reported, thereby generating a global view of glycerophospholipid synthesis across Plasmodium spp. The malaria parasite displays a panoply of pathways that are seldom found together in a single organism. The major glycerophospholipids are synthesized via ancestral prokaryotic CDP-diacylglycerol-dependent pathways and eukaryotic-type de novo pathways. The parasite exhibits additional reactions that bridge some of these routes and are otherwise restricted to some organisms, such as plants, while base-exchange mechanisms are largely unexplored in Plasmodium. Marked differences between Plasmodium spp. have also been reported in phosphatidylcholine and phosphatidylethanolamine synthesis. Little is currently known about glycerophospholipid acquisition at non-erythrocytic stages, but recent data reveal that intrahepatocytic parasites, oocysts and sporozoites import various host lipids, and that de novo fatty acid synthesis is only crucial at the late liver stage. More studies on the different Plasmodium developmental stages are needed, to further assemble the different pieces of this glycerophospholipid synthesis puzzle, which contains highly promising therapeutic targets.
Collapse
Affiliation(s)
- Sandrine Déchamps
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Centre National de la Recherche Scientifique (CNRS) - Universite Montpellier 2, cc 107, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
17
|
Déchamps S, Maynadier M, Wein S, Gannoun-Zaki L, Maréchal E, Vial HJ. Rodent and nonrodent malaria parasites differ in their phospholipid metabolic pathways. J Lipid Res 2010; 51:81-96. [PMID: 19561325 DOI: 10.1194/jlr.m900166-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria, a disease affecting humans and other animals, is caused by a protist of the genus Plasmodium. At the intraerythrocytic stage, the parasite synthesizes a high amount of phospholipids through a bewildering number of pathways. In the human Plasmodium falciparum species, a plant-like pathway that relies on serine decarboxylase and phosphoethanolamine N-methyltransferase activities diverts host serine to provide additional phosphatidylcholine and phosphatidylethanolamine to the parasite. This feature of parasitic dependence toward its host was investigated in other Plasmodium species. In silico analyses led to the identification of phosphoethanolamine N-methyltransferase gene orthologs in primate and bird parasite genomes. However, the gene was not detected in the rodent P. berghei, P. yoelii, and P. chabaudi species. Biochemical experiments with labeled choline, ethanolamine, and serine showed marked differences in biosynthetic pathways when comparing rodent P. berghei and P. vinckei, and human P. falciparum species. Notably, in both rodent parasites, ethanolamine and serine were not significantly incorporated into phosphatidylcholine, indicating the absence of phosphoethanolamine N-methyltransferase activity. To our knowledge, this is the first study to highlight a crucial difference in phospholipid metabolism between Plasmodium species. The findings should facilitate efforts to develop more rational approaches to identify and evaluate new targets for antimalarial therapy.
Collapse
Affiliation(s)
- Sandrine Déchamps
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Centre National de la Recherche Scientifique (CNRS) - Universite Montpellier II, cc 107, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | |
Collapse
|
18
|
Exploring metabolomic approaches to analyse phospholipid biosynthetic pathways in Plasmodium. Parasitology 2010; 137:1343-56. [PMID: 20109251 DOI: 10.1017/s0031182009991934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMMARYPlasmodium falciparum, the agent responsible for malaria, is an obligate intracellular protozoan parasite. For proliferation, differentiation and survival, it relies on its own protein-encoding genes, as well as its host cells for nutrient sources. Nutrients and subsequent metabolites are required by the parasites to support their high rate of growth and replication, particularly in the intra-erythrocytic stages of the parasite that are responsible for the clinical symptoms of the disease. Advances in mass spectrometry have improved the analysis of endogenous metabolites and enabled a global approach to identify the parasite's metabolites by the so-called metabolomic analyses. This level of analysis complements the genomic, transcriptomic and proteomic data already available and should allow the identification of novel metabolites, original pathways and networks of regulatory interactions within the parasite, and between the parasite and its hosts. The field of metabolomics is just in its infancy in P. falciparum, hence in this review, we concentrate on the available methodologies and their potential applications for deciphering important biochemical processes of the parasite, such as the astonishingly diverse phospholipid biosynthesis pathways. Elucidating the regulation of the biosynthesis of these crucial metabolites could help design of future anti-malarial drugs.
Collapse
|
19
|
Müller IB, Hyde JE, Wrenger C. Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends Parasitol 2009; 26:35-43. [PMID: 19939733 DOI: 10.1016/j.pt.2009.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/25/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
The malaria parasite Plasmodium falciparum depends primarily on nutrient sources from its human host. Most compounds, such as glucose, purines, amino acids, as well as cofactors and vitamins, are abundantly available in the host cell, and can be readily salvaged by the parasite. However, in some cases the parasite can also synthesize cofactors de novo in reactions that appear to be essential. Importantly, the three biosynthetic pathways that produce vitamins B(1), B(6) and B(9) are absent from the host, but are well established in P. falciparum. This review summarizes and updates the current knowledge of vitamin B de novo synthesis and salvage in P. falciparum and focuses on their potential as targets for drug intervention.
Collapse
Affiliation(s)
- Ingrid B Müller
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | |
Collapse
|
20
|
Schuiki I, Daum G. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life 2009; 61:151-62. [PMID: 19165886 DOI: 10.1002/iub.159] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phosphatidylserine decarboxylases (PSDs) (E.C. 4.1.1.65) are enzymes which catalyze the formation of phosphatidylethanolamine (PtdEtn) by decarboxylation of phosphatidylserine (PtdSer). This enzymatic activity has been identified in both prokaryotic and eukaryotic organisms. PSDs occur as two types of proteins depending on their localization and the sequence of a conserved motif. Type I PSDs include enzymes of eukaryotic mitochondria and bacterial origin which contain the amino acid sequence LGST as a characteristic motif. Type II PSDs are found in the endomembrane system of eukaryotes and contain a typical GGST motif. These characteristic motifs are considered as autocatalytic cleavage sites where proenzymes are split into alpha- and beta-subunits. The S-residue set free by this cleavage serves as an attachment site of a pyruvoyl group which is required for the activity of the enzymes. Moreover, PSDs harbor characteristic binding sites for the substrate PtdSer. Substrate supply to eukaryotic PSDs requires lipid transport because PtdSer synthesis and decarboxylation are spatially separated. Targeting of PSDs to their proper locations requires additional intramolecular domains. Mitochondrially localized type I PSDs are directed to the inner mitochondrial membrane by N-terminal targeting sequences. Type II PSDs also contain sequences in their N-terminal extensions which might be required for subcellular targeting. Lack of PSDs causes various defects in different cell types. The physiological relevance of these findings and the central role of PSDs in lipid metabolism will be discussed in this review.
Collapse
Affiliation(s)
- Irmgard Schuiki
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
21
|
Sinorhizobium meliloti mutants deficient in phosphatidylserine decarboxylase accumulate phosphatidylserine and are strongly affected during symbiosis with alfalfa. J Bacteriol 2008; 190:6846-56. [PMID: 18708506 DOI: 10.1128/jb.00610-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti contains phosphatidylglycerol, cardiolipin, phosphatidylcholine, and phosphatidylethanolamine (PE) as major membrane lipids. PE is formed in two steps. In the first step, phosphatidylserine synthase (Pss) condenses serine with CDP-diglyceride to form phosphatidylserine (PS), and in the second step, PS is decarboxylated by phosphatidylserine decarboxylase (Psd) to form PE. In this study we identified the sinorhizobial psd gene coding for Psd. A sinorhizobial mutant deficient in psd is unable to form PE but accumulates the anionic phospholipid PS. Properties of PE-deficient mutants lacking either Pss or Psd were compared with those of the S. meliloti wild type. Whereas both PE-deficient mutants grew in a wild-type-like manner on many complex media, they were unable to grow on minimal medium containing high phosphate concentrations. Surprisingly, the psd-deficient mutant could grow on minimal medium containing low concentrations of inorganic phosphate, while the pss-deficient mutant could not. Addition of choline to the minimal medium rescued growth of the pss-deficient mutant, CS111, to some extent but inhibited growth of the psd-deficient mutant, MAV01. When the two distinct PE-deficient mutants were analyzed for their ability to form a nitrogen-fixing root nodule symbiosis with their alfalfa host plant, they behaved strikingly differently. The Pss-deficient mutant, CS111, initiated nodule formation at about the same time point as the wild type but did form about 30% fewer nodules than the wild type. In contrast, the PS-accumulating mutant, MAV01, initiated nodule formation much later than the wild type and formed 90% fewer nodules than the wild type. The few nodules formed by MAV01 seemed to be almost devoid of bacteria and were unable to fix nitrogen. Leaves of alfalfa plants inoculated with the mutant MAV01 were yellowish, indicating that the plants were starved for nitrogen. Therefore, changes in lipid composition, including the accumulation of bacterial PS, prevent the establishment of a nitrogen-fixing root nodule symbiosis.
Collapse
|
22
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Abstract
Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.
Collapse
Affiliation(s)
- Athanasios Lykidis
- Genome Biology Program, DOE-Joint Genome Institute, Walnut Creek, CA 94598, USA.
| |
Collapse
|
24
|
Wengelnik K, Vial HJ. Characterisation of the phosphatidylinositol synthase gene of Plasmodium species. Res Microbiol 2006; 158:51-9. [PMID: 17223316 DOI: 10.1016/j.resmic.2006.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol (PI) is a versatile lipid that not only serves as a structural component of cellular membranes, but also plays important roles in membrane anchorage of proteins and in signal transduction through distinct phosphorylated derivatives of the inositol head group. PI is synthesised by PI synthase from CDP-diacylglycerol and myo-inositol. The enzymatic activity in Plasmodium falciparum and P. knowlesi has previously been characterised at the biochemical level. Here we characterise the PI synthase gene of P. falciparum and P. knowlesi. The cDNA sequence identified a highly spliced gene consisting of nine exons and encoding a protein of 209 and 207 amino acids, respectively. High sequence conservation enabled the prediction of the PI synthase genes of P. berghei, P. chabaudi and P. vivax. All Plasmodium PI synthase proteins appear to be highly hydrophobic, although no consensus for the number and location of distinct transmembrane domains could be detected. The P. falciparum PI synthase (PfPIS) gene successfully complemented a Saccharomyces cerevisiae PIS1 deletion mutant, demonstrating its enzymatic function. Complementation efficiency was dramatically improved when hybrid constructs between N-terminal S. cerevisiae and C-terminal P. falciparum sequences were used. Determination of in vitro PIS activities of complemented yeast strains confirmed the enzymatic function of the Plasmodium protein.
Collapse
Affiliation(s)
- Kai Wengelnik
- UMR5539, CNRS-Université Montpellier II, Place Eugène Bataillon, cc 107, 34095 Montpellier Cedex 05, France.
| | | |
Collapse
|
25
|
van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol 2005; 57:405-19. [PMID: 15978074 DOI: 10.1111/j.1365-2958.2005.04699.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plasmodium parasites are unicellular eukaryotes that undergo a series of remarkable morphological transformations during the course of a multistage life cycle spanning two hosts (mosquito and human). Relatively little is known about the dynamics of cellular organelles throughout the course of these transformations. Here we describe the morphology of three organelles (endoplasmic reticulum, apicoplast and mitochondrion) through the human blood stages of the parasite life cycle using fluorescent reporter proteins fused to organelle targeting sequences. The endoplasmic reticulum begins as a simple crescent-shaped organelle that develops into a perinuclear ring with two small protrusions, followed by transformation into an extensive reticulated network as the parasite enlarges. Similarly, the apicoplast and the mitochondrion grow from single, small, discrete organelles into highly branched structures in later-stage parasites. These branched structures undergo an ordered fission - apicoplast followed by mitochondrion - to create multiple daughter organelles that are apparently linked as pairs for packaging into daughter cells. This is the first in-depth examination of intracellular organelles in live parasites during the asexual life cycle of this important human pathogen.
Collapse
Affiliation(s)
- Giel G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Roggero R, Zufferey R, Minca M, Richier E, Calas M, Vial H, Ben Mamoun C. Unraveling the mode of action of the antimalarial choline analog G25 in Plasmodium falciparum and Saccharomyces cerevisiae. Antimicrob Agents Chemother 2004; 48:2816-24. [PMID: 15273086 PMCID: PMC478495 DOI: 10.1128/aac.48.8.2816-2824.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/01/2004] [Accepted: 04/16/2004] [Indexed: 11/20/2022] Open
Abstract
Pharmacological studies have indicated that the choline analog G25 is a potent inhibitor of Plasmodium falciparum growth in vitro and in vivo. Although choline transport has been suggested to be the target of G25, the exact mode of action of this compound is not known. Here we show that, similar to its effects on P. falciparum, G25 prevents choline entry into Saccharomyces cerevisiae cells and inhibits S. cerevisiae growth. However, we show that the uptake of this compound is not mediated by the choline carrier Hnm1. An hnm1Delta yeast mutant, which lacks the only choline transporter gene HNM1, was not altered in the transport of a labeled analog of this compound. Eleven yeast mutants lacking genes involved in different steps of phospholipid biosynthesis were analyzed for their sensitivity to G25. Four mutants affected in the de novo cytidyldiphosphate-choline-dependent phosphatidylcholine biosynthetic pathway and, surprisingly, a mutant strain lacking the phosphatidylserine decarboxylase-encoding gene PSD1 (but not PSD2) were found to be highly resistant to this compound. Based on these data for S. cerevisiae, labeling studies in P. falciparum were performed to examine the effect of G25 on the biosynthetic pathways of the major phospholipids phosphatidylcholine and phosphatidylethanolamine. Labeling studies in P. falciparum and in vitro studies with recombinant P. falciparum phosphatidylserine decarboxylase further supported the inhibition of both the de novo phosphatidylcholine metabolic pathway and the synthesis of phosphatidylethanolamine from phosphatidylserine. Together, our data indicate that G25 specifically targets the pathways for synthesis of the two major phospholipids, phosphatidylcholine and phosphatidylethanolamine, to exert its antimalarial activity.
Collapse
Affiliation(s)
- Rodolphe Roggero
- Dynamique Moleculaire des Interactions Membranaires, CNRS UMR 5539, Universite Montpellier II, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Pessi G, Kociubinski G, Mamoun CB. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc Natl Acad Sci U S A 2004; 101:6206-11. [PMID: 15073329 PMCID: PMC395947 DOI: 10.1073/pnas.0307742101] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum is the causative agent of the most severe form of human malaria. The rapid multiplication of the parasite within human erythrocytes requires an active production of new membranes. Phosphatidylcholine is the most abundant phospholipid in Plasmodium membranes, and the pathways leading to its synthesis are attractive targets for chemotherapy. In addition to its synthesis from choline, phosphatidylcholine is synthesized from serine via an unknown pathway. Serine, which is actively transported by Plasmodium from human serum and readily available in the parasite, is subsequently converted into phosphoethanolamine. Here, we describe in P. falciparum a plant-like S-adenosyl-l-methionine-dependent three-step methylation reaction that converts phosphoethanolamine into phosphocholine, a precursor for the synthesis of phosphatidylcholine. We have identified the gene, PfPMT, encoding this activity and shown that its product is an unusual phosphoethanolamine methyltransferase with no human homologs. P. falciparum phosphoethanolamine methyltransferase (Pfpmt) is a monopartite enzyme with a single catalytic domain that is responsible for the three-step methylation reaction. Interestingly, Pfpmt activity is inhibited by its product phosphocholine and by the phosphocholine analog, miltefosine. We show that miltefosine can also inhibit parasite proliferation within human erythrocytes. The importance of this enzyme in P. falciparum membrane biogenesis makes it a potential target for malaria chemotherapy.
Collapse
Affiliation(s)
- Gabriella Pessi
- Center for Microbial Pathogenesis and Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3710, USA
| | | | | |
Collapse
|