1
|
Huang HL, Grandinetti G, Heissler SM, Chinthalapudi K. Cryo-EM structures of the membrane repair protein dysferlin. Nat Commun 2024; 15:9650. [PMID: 39511170 PMCID: PMC11544258 DOI: 10.1038/s41467-024-53773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Plasma membrane repair in response to damage is essential for cell viability. The ferlin family protein dysferlin plays a key role in Ca2+-dependent membrane repair in striated muscles. Mutations in dysferlin lead to a spectrum of diseases known as dysferlinopathies. The lack of a structure of dysferlin and other ferlin family members has impeded a mechanistic understanding of membrane repair mechanisms and the development of therapies. Here, we present the cryo-EM structures of the full-length human dysferlin monomer and homodimer at 2.96 Å and 4.65 Å resolution. These structures define the architecture of dysferlin, ferlin family-specific domains, and homodimerization mechanisms essential to function. Furthermore, biophysical and cell biology studies revealed how missense mutations in dysferlin contribute to disease mechanisms. In summary, our study provides a framework for the molecular mechanisms of dysferlin and the broader ferlin family, offering a foundation for the development of therapeutic strategies aimed at treating dysferlinopathies.
Collapse
Affiliation(s)
- Hsiang-Ling Huang
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA
| | - Giovanna Grandinetti
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA.
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA.
| |
Collapse
|
2
|
Tripathi G, Dourson A, Wayland J, Khanna S, Hoffmann M, Govindarajan T, Morales FM, Queme L, Millay D, Jankowski MP. Synaptic-like coupling of macrophages to myofibers regulates muscle repair. RESEARCH SQUARE 2024:rs.3.rs-5290399. [PMID: 39574892 PMCID: PMC11581056 DOI: 10.21203/rs.3.rs-5290399/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Peripheral injury responses essential for muscle repair and nociception require complex interactions of target tissues, immune cells and primary sensory neurons. Nociceptors and myofibers both react robustly to signals generated from circulating immune cells, which promote repair, growth, and regeneration of muscle while simultaneously modulating peripheral sensitization. Here, we found that macrophages form a synaptic-like contact with myofibers to hasten repair after acute incision injury and to facilitate regeneration after major muscle damage. Transient chemogenetic activation of macrophages enhanced calcium dependent membrane repair, induced muscle calcium waves in vivo , elicited low level electrical activity in the muscles and enhanced myonuclear accretion. Under severe injury, macrophage activation could also modulate pain-like behaviors. This study identifies a novel mechanism by which synaptic-like functions of macrophages impacts muscle repair after tissue damage.
Collapse
|
3
|
Poudel BH, Fletcher S, Wilton SD, Aung-Htut M. Limb Girdle Muscular Dystrophy Type 2B (LGMD2B): Diagnosis and Therapeutic Possibilities. Int J Mol Sci 2024; 25:5572. [PMID: 38891760 PMCID: PMC11171558 DOI: 10.3390/ijms25115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Dysferlin is a large transmembrane protein involved in critical cellular processes including membrane repair and vesicle fusion. Mutations in the dysferlin gene (DYSF) can result in rare forms of muscular dystrophy; Miyoshi myopathy; limb girdle muscular dystrophy type 2B (LGMD2B); and distal myopathy. These conditions are collectively known as dysferlinopathies and are caused by more than 600 mutations that have been identified across the DYSF gene to date. In this review, we discuss the key molecular and clinical features of LGMD2B, the causative gene DYSF, and the associated dysferlin protein structure. We also provide an update on current approaches to LGMD2B diagnosis and advances in drug development, including splice switching antisense oligonucleotides. We give a brief update on clinical trials involving adeno-associated viral gene therapy and the current progress on CRISPR/Cas9 mediated therapy for LGMD2B, and then conclude by discussing the prospects of antisense oligomer-based intervention to treat selected mutations causing dysferlinopathies.
Collapse
Affiliation(s)
- Bal Hari Poudel
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| | - May Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Bardakov SN, Titova AA, Nikitin SS, Nikitins V, Sokolova MO, Tsargush VA, Yuhno EA, Vetrovoj OV, Carlier PG, Sofronova YV, Isaev АА, Deev RV. Miyoshi myopathy associated with spine rigidity and multiple contractures: a case report. BMC Musculoskelet Disord 2024; 25:146. [PMID: 38365661 PMCID: PMC10870593 DOI: 10.1186/s12891-024-07270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Dysferlinopathy is a phenotypically heterogeneous group of hereditary diseases caused by mutations in the DYSF gene. Early contractures are considered rare, and rigid spine syndrome in dysferlinopathy has been previously reported only once. CASE PRESENTATION We describe a 23-year-old patient with Miyoshi myopathy with a rigid spine and multiple contractures, a rare phenotypic variant. The disease first manifested when the patient was 13 years old, with fatigue of the gastrocnemius muscles and the development of pronounced contractures of the Achilles tendons, flexors of the fingers, and extensors of the toes, followed by the involvement of large joints and the spine. Magnetic resonance imaging revealed signs of connective tissue and fatty replacement of the posterior muscles of the thighs and lower legs. Edema was noted in the anterior and medial muscle groups of the thighs, lower legs, and the multifidus muscle of the back. Whole genome sequencing revealed previously described mutations in the DYSF gene in exon 39 (c.4282 C > T) and intron 51 (c.5785-824 C > T). An immunohistochemical analysis and Western blot showed the complete absence of dysferlin protein expression in the muscle fibers. CONCLUSIONS This case expands the range of clinical and phenotypic correlations of dysferlinopathy and complements the diagnostic search for spine rigidity.
Collapse
Affiliation(s)
- Sergey N Bardakov
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia.
| | - Angelina A Titova
- Kazan (Volga Region) Federal University, 18 Kremlyevskaya str., Kazan, 420008, Russia
| | - Sergey S Nikitin
- Research Centre for Medical Genetics, 1 Moskvorechye str., Moscow, 115522, Russia
| | - Valentin Nikitins
- North-Western State Medical University named after I.I. Mechnikov, 47 Piskarevskij prospect, St. Petersburg, 191015, Russia
| | - Margarita O Sokolova
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia
| | - Vadim A Tsargush
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia
| | - Elena A Yuhno
- FSBI All-Russian Center for Emergency and Radiation Medicine named after A.M. Nikiforov EMERCOM of Russia, 4/2 Lebedev str., St. Petersburg, 194044, Russia
| | - Oleg V Vetrovoj
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb, St. Petersburg, 199034, Russia
| | - Pierre G Carlier
- Neuromuscular Disease Reference Center, University of Liege, and Department of Neurology, St Luc University Hospital, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | | | - Аrtur А Isaev
- Artgen Biotech PJSC, 3 Gubkina str., Moscow, 119333, Russia
| | - Roman V Deev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy str., Moscow, 117418, Russia
- Artgen Biotech PJSC, 3 Gubkina str., Moscow, 119333, Russia
| |
Collapse
|
5
|
Lin F, Yang K, Lin X, Jin M, Chen L, Zheng FZ, Qiu LL, Ye ZX, Chen HZ, Lin MT, Wang N, Wang ZQ. Clinical features, imaging findings and molecular data of limb-girdle muscular dystrophies in a cohort of Chinese patients. Orphanet J Rare Dis 2023; 18:356. [PMID: 37974208 PMCID: PMC10652577 DOI: 10.1186/s13023-023-02897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophies (LGMDs) are a group of heterogeneous inherited diseases predominantly characterized by limb-girdle muscle weakness and dystrophic changes on histological analysis. The frequency of LGMD subtypes varies among regions in China and ethnic populations worldwide. Here, we analyzed the prevalence of LGMD subtypes, their corresponding clinical manifestations, and molecular data in a cohort of LGMD patients in Southeast China. METHODS A total of 81 consecutive patients with clinically suspected LGMDs from 62 unrelated families across Southeast China were recruited for targeted next-generation sequencing and whole-exome sequencing from July 2017 to February 2020. RESULTS Among 50 patients (41 families) with LGMDs, the most common subtypes were LGMD-R2/LGMD2B (36.6%) and LGMD-R1/LGMD2A (29.3%). Dystroglycanopathies (including LGMD-R9/LGMD2I, LGMD-R11/LGMD2K, LGMD-R14/LGMD2N and LGMD-R20/LGMD2U) were the most common childhood-onset subtypes and were found in 12.2% of the families. A total of 14.6% of the families had the LGMD-R7/LGMD2G subtype, and the mutation c.26_33dupAGGTGTCG in TCAP was the most frequent (83.3%). The only patient with the rare subtype LGMD-R18/LGMD2S had TRAPPC11 mutations; had a later onset than those previously reported, and presented with proximal‒distal muscle weakness, walking aid dependency, fatty liver disease and diabetes at 33 years of age. A total of 22.0% of the patients had cardiac abnormalities, and one patient with LMNA-related muscular dystrophy/LGMD1B experienced sudden cardiac death at 37 years of age. A total of 15.4% of the patients had restrictive respiratory insufficiency. Muscle imaging in patients with LGMD-R1/LGMD2A and LGMD-R2/LGMD2B showed subtle differences, including more severe fatty infiltration of the posterior thigh muscles in those with LGMD-R1/LGMD2A and edema in the lower leg muscles in those with LGMD-R2/LGMD2B. CONCLUSION We determined the prevalence of different LGMD subtypes in Southeast China, described the detailed clinical manifestations and distinct muscle MRI patterns of these LGMD subtypes and reported the frequent mutations and the cardiorespiratory involvement frequency in our cohort, all of which might facilitate the differential diagnosis of LGMDs, allowing more timely treatment and guiding future clinical trials.
Collapse
Affiliation(s)
- Feng Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Kang Yang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Xin Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Ming Jin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Long Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Liang-Liang Qiu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Zhi-Xian Ye
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China.
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China.
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China.
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China.
| |
Collapse
|
6
|
Belhassen I, Laroussi S, Sakka S, Rekik S, Lahkim L, Dammak M, Authier FJ, Mhiri C. Dysferlinopathy in Tunisia: clinical spectrum, genetic background and prognostic profile. Neuromuscul Disord 2023; 33:718-727. [PMID: 37716854 DOI: 10.1016/j.nmd.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/18/2023]
Abstract
Dysferlinopathy is a rare group of hereditary muscular dystrophy with an autosomal recessive mode of inheritance caused by a mutation in the DYSF gene. It encodes for the dysferlin protein, which has a crucial role in multiple cellular processes, including muscle fiber membrane repair. This deficit has heterogeneous clinical presentations. In this study, we collected 20 Tunisian patients with a sex ratio of 1 and a median age of 50.5 years old (Interquartile range (IQR) = [36,5-54,75]). They were followed for periods ranging from 5 to 48 years. The median age at onset was 17 years old (IQR = [16,8-28,4]). Five major phenotypes were identified: Limb-girdle muscular dystrophy (LGMDR2) (35%), a proximodistal phenotype (35%), Miyoshi myopathy (10%), Distal myopathy with anterior tibial onset (DMAT) (10%), and asymptomatic HyperCKemia (10%). At the last evaluation, more than half of patients (55%) were on wheelchair. Loss of ambulation occurred generally during the fourth decade. After 20 years of disease progression, two patients with a proximodistal phenotype (10%) developed dilated cardiomyopathy and mitral valve regurgitation. Restrictive respiratory syndrome was observed in three patients (DMAT: 1 patient, proximodistal phenotype: 1 patient, LGMDR2: 1 patient). Genetic study disclosed five mutations. We observed clinical heterogeneity between families and even within the same family. Disease progression was mainly slow to intermediate regardless of the phenotype.
Collapse
Affiliation(s)
- Ikhlass Belhassen
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Sirine Laroussi
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia.
| | - Salma Sakka
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| | - Sabrine Rekik
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Laila Lahkim
- Pathology Laboratory, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Mariem Dammak
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| | | | - Chokri Mhiri
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Ballouhey O, Chapoton M, Alary B, Courrier S, Da Silva N, Krahn M, Lévy N, Weisleder N, Bartoli M. A Dysferlin Exon 32 Nonsense Mutant Mouse Model Shows Pathological Signs of Dysferlinopathy. Biomedicines 2023; 11:biomedicines11051438. [PMID: 37239109 DOI: 10.3390/biomedicines11051438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dysferlinopathies are a group of autosomal recessive muscular dystrophies caused by pathogenic variants in the DYSF gene. While several animal models of dysferlinopathy have been developed, most of them involve major disruptions of the Dysf gene locus that are not optimal for studying human dysferlinopathy, which is often caused by single nucleotide substitutions. In this study, the authors describe a new murine model of dysferlinopathy that carries a nonsense mutation in Dysf exon 32, which has been identified in several patients with dysferlinopathy. This mouse model, called Dysf p.Y1159X/p.Y1159X, displays several molecular, histological, and functional defects observed in dysferlinopathy patients and other published mouse models. This mutant mouse model is expected to be useful for testing various therapeutic approaches such as termination codon readthrough, pharmacological approaches, and exon skipping. Therefore, the data presented in this study strongly support the use of this animal model for the development of preclinical strategies for the treatment of dysferlinopathies.
Collapse
Affiliation(s)
- Océane Ballouhey
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| | - Marie Chapoton
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| | - Benedicte Alary
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| | | | - Nathalie Da Silva
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| | - Martin Krahn
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
- Département de Génétique Médicale et de Biologie Cellulaire, AP-HM, Hôpital d'Enfants de la Timone, 13005 Marseille, France
| | - Nicolas Lévy
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
- Département de Génétique Médicale et de Biologie Cellulaire, AP-HM, Hôpital d'Enfants de la Timone, 13005 Marseille, France
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Marc Bartoli
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| |
Collapse
|
9
|
Marty B, Baudin PY, Araujo ECDA, Fromes Y, Wahbi K, Reyngoudt H. Assessment of Extracellular Volume Fraction in Becker Muscular Dystrophy by Using MR Fingerprinting. Radiology 2023; 307:e221115. [PMID: 36880945 DOI: 10.1148/radiol.221115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Background Quantitative MRI is increasingly proposed in clinical trials related to dystrophinopathies, including Becker muscular dystrophy (BMD). Purpose To establish the sensitivity of extracellular volume fraction (ECV) quantification using an MR fingerprinting sequence with water and fat separation as a quantitative imaging biomarker of skeletal muscle tissue alterations in BMD compared with fat fraction (FF) and water relaxation time quantification. Materials and Methods In this prospective study, study participants with BMD and healthy volunteers were included from April 2018 until October 2022 (ClinicalTrials.gov identifier NCT02020954). The MRI examination comprised FF mapping with the three-point Dixon method, water T2 mapping, and water T1 mapping before and after an intravenous injection of a gadolinium-based contrast agent by using MR fingerprinting, from which ECV was calculated. Functional status was measured with use of the Walton and Gardner-Medwin scale. This clinical evaluation tool stratifies disease severity from grade 0 (preclinical; elevated creatine phosphokinase; all activities normal) to grade 9 (unable to eat, drink, or sit without assistance). Mann-Whitney U tests, Kruskal-Wallis tests, and Spearman rank correlation tests were performed. Results Twenty-eight participants with BMD (median age, 42 years [IQR, 34-52 years]; 28 male) and 19 healthy volunteers (median age, 39 years [IQR, 33-55 years]; 19 male) were evaluated. ECV was higher in participants with dystrophy than in controls (median, 0.21 [IQR, 0.16-0.28] vs 0.07 [IQR, 0.07-0.08]; P < .001). In muscles of participants with BMD with normal FF, ECV was also higher than in muscles of healthy controls (median, 0.11 [IQR, 0.10-0.15] vs 0.07 [IQR, 0.07-0.08]; P = .02). ECV was correlated with FF (ρ = 0.56, P = .003), Walton and Gardner-Medwin scale score (ρ = 0.52, P = .006), and serum cardiac troponin T level (ρ = 0.60, P < .001). Conclusion Quantitative MR relaxometry with water and fat separation indicates a significant increase of skeletal muscle extracellular volume fraction in study participants with Becker muscular dystrophy. Clinical trial registration no. NCT02020954 Published under a CC BY 4.0 license. Supplemental material is available for this article.
Collapse
Affiliation(s)
- Benjamin Marty
- From the Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, 75651 Paris Cedex 13, France (B.M., P.Y.B., E.C.d.A.A., Y.F., H.R.); and Institute of Myology, Reference Center for Muscle Diseases Paris-Est, Paris, France (K.W.)
| | - Pierre-Yves Baudin
- From the Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, 75651 Paris Cedex 13, France (B.M., P.Y.B., E.C.d.A.A., Y.F., H.R.); and Institute of Myology, Reference Center for Muscle Diseases Paris-Est, Paris, France (K.W.)
| | - Ericky Caldas de Almeida Araujo
- From the Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, 75651 Paris Cedex 13, France (B.M., P.Y.B., E.C.d.A.A., Y.F., H.R.); and Institute of Myology, Reference Center for Muscle Diseases Paris-Est, Paris, France (K.W.)
| | - Yves Fromes
- From the Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, 75651 Paris Cedex 13, France (B.M., P.Y.B., E.C.d.A.A., Y.F., H.R.); and Institute of Myology, Reference Center for Muscle Diseases Paris-Est, Paris, France (K.W.)
| | - Karim Wahbi
- From the Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, 75651 Paris Cedex 13, France (B.M., P.Y.B., E.C.d.A.A., Y.F., H.R.); and Institute of Myology, Reference Center for Muscle Diseases Paris-Est, Paris, France (K.W.)
| | - Harmen Reyngoudt
- From the Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard Vincent Auriol, 75651 Paris Cedex 13, France (B.M., P.Y.B., E.C.d.A.A., Y.F., H.R.); and Institute of Myology, Reference Center for Muscle Diseases Paris-Est, Paris, France (K.W.)
| |
Collapse
|
10
|
Park J, Moon YJ, Kim DS. Miyoshi Muscular Dystrophy Type 1 with Mutated DYSF Gene Misdiagnosed as Becker Muscular Dystrophy: A Case Report and Literature Review. Genes (Basel) 2023; 14:200. [PMID: 36672942 PMCID: PMC9859596 DOI: 10.3390/genes14010200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Dysferlinopathy covers a spectrum of muscle disorder categorized by two major phenotypes, namely Miyoshi muscular dystrophy type 1 (MMD1, OMIM #254130) and limb-girdle muscular dystrophy autosomal recessive 2 (LGMDR2, OMIM #253601), and two minor symptoms, including asymptomatic hyperCKemia and distal myopathy with anterior tibial onset (DMAT, OMIM #606768). We report the first Korean MMD1 misdiagnosed as Becker muscular dystrophy (BMD), which was caused by a combination of compound heterozygous c.663 + 1G > C and p.Trp992Arg of the DYSF gene. A 70-year-old male previously diagnosed with BMD was admitted for genetic counseling. Since he was clinically suspected to have dysferlinopathy but not BMD, targeted panel sequencing was performed to discover the potential hereditary cause of the suspected muscular dystrophy in the proband. Consequently, two pathogenic single nucleotide variants of the DYSF gene, c.663 + 1G > C (rs398123800) and p.Trp992Arg (rs750028300), associated with dysferlinopathy were identified. These variants were previously reported with variant allele frequencies of 0.000455 (c.663 + 1G > C) and 0.000455 (c.2974T > C; p.Trp992Arg) in the Korean population. This report emphasizes the need for common variant screening in the diagnostic algorithms of certain muscle disorders or gene panels with potential pathogenic effects and high rates of recurrent variants.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Young Jae Moon
- Department of Orthopedic Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Dal Sik Kim
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
11
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
13
|
Moore U, Caldas de Almeida Araújo E, Reyngoudt H, Gordish‐Dressman H, Smith FE, Wilson I, James M, Mayhew A, Rufibach L, Day JW, Jones KJ, Bharucha‐Goebel DX, Salort‐Campana E, Pestronk A, Walter MC, Paradas C, Stojkovic T, Mori‐Yoshimura M, Bravver E, Pegoraro E, Mendell JR, Bushby K, Blamire AM, Straub V, Carlier PG, Diaz‐Manera J. Water T2 could predict functional decline in patients with dysferlinopathy. J Cachexia Sarcopenia Muscle 2022; 13:2888-2897. [PMID: 36058852 PMCID: PMC9745487 DOI: 10.1002/jcsm.13063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Water T2 (T2H2O ) mapping is increasingly being used in muscular dystrophies to assess active muscle damage. It has been suggested as a surrogate outcome measure for clinical trials. Here, we investigated the prognostic utility of T2H2O to identify changes in muscle function over time in limb girdle muscular dystrophies. METHODS Patients with genetically confirmed dysferlinopathy were assessed as part of the Jain Foundation Clinical Outcomes Study in dysferlinopathy. The cohort included 18 patients from two sites, both equipped with 3-tesla magnetic resonance imaging (MRI) systems from the same vendor. T2H2O value was defined as higher or lower than the median in each muscle bilaterally. The degree of deterioration on four functional tests over 3 years was assessed in a linear model against covariates of high or low T2H2O at baseline, age, disease duration, and baseline function. RESULTS A higher T2H2O at baseline significantly correlated with a greater decline on functional tests in 21 out of 35 muscles and was never associated with slower decline. Higher baseline T2H2O in adductor magnus, vastus intermedius, vastus lateralis, and vastus medialis were the most sensitive, being associated bilaterally with greater decline in multiple timed tests. Patients with a higher than median baseline T2H2O (>40.6 ms) in the right vastus medialis deteriorated 11 points more on the North Star Ambulatory Assessment for Dysferlinopathy and lost an additional 86 m on the 6-min walk than those with a lower T2H2O (<40.6 ms). Optimum sensitivity and specificity thresholds for predicting decline were 39.0 ms in adductor magnus and vastus intermedius, 40.0 ms in vastus medialis, and 40.5 ms in vastus lateralis from different sites equipped with different MRI systems. CONCLUSIONS In dysferlinopathy, T2H2O did not correlate with current functional ability. However, T2H2O at baseline was higher in patients who worsened more rapidly on functional tests. This suggests that inter-patient differences in functional decline over time may be, in part, explained by different severities of the active muscle damage, assessed by T2H2O measure at baseline. Significant challenges remain in standardizing T2H2O values across sites to allow determining globally applicable thresholds. The results from the present work are encouraging and suggest that T2H2O could be used to improve prognostication, patient selection, and disease modelling for clinical trials.
Collapse
Affiliation(s)
- Ursula Moore
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Ericky Caldas de Almeida Araújo
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR LaboratoryCEA/DRF/IBFJ/MIRCenParisFrance
| | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR LaboratoryCEA/DRF/IBFJ/MIRCenParisFrance
| | - Heather Gordish‐Dressman
- Center for Translational Science, Division of Biostatistics and Study MethodologyChildren's National Health SystemWashingtonDCUSA
- Pediatrics, Epidemiology and BiostatisticsGeorge Washington UniversityWashingtonDCUSA
| | - Fiona E. Smith
- Magnetic Resonance Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Ian Wilson
- Magnetic Resonance Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Meredith James
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Anna Mayhew
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - John W. Day
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCAUSA
| | - Kristi J. Jones
- The Children's Hospital at Westmead and The University of SydneySydneyNSWAustralia
| | - Diana X. Bharucha‐Goebel
- Department of NeurologyChildren's National Health SystemWashingtonDCUSA
- National Institutes of Health (NINDS)BethesdaMDUSA
| | | | - Alan Pestronk
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
| | - Maggie C. Walter
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Carmen Paradas
- Neuromuscular Unit, Department of NeurologyHospital U. Virgen del Rocío/Instituto de Biomedicina de SevillaSevillaSpain
| | - Tanya Stojkovic
- Centre de référence des maladies neuromusculairesInstitut de Myologie, AP‐HP, Sorbonne Université, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Madoka Mori‐Yoshimura
- Department of NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Elena Bravver
- Neuroscience InstituteCarolinas Neuromuscular/ALS‐MDA Center, Carolinas HealthCare SystemCharlotteNCUSA
| | - Elena Pegoraro
- Department of NeuroscienceUniversity of PadovaPaduaItaly
| | - Jerry R. Mendell
- The Abigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
| | | | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Andrew M. Blamire
- Magnetic Resonance Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Pierre G. Carlier
- Université Paris‐Saclay, CEA, DRF, Service Hospitalier Frederic JoliotOrsayFrance
| | - Jordi Diaz‐Manera
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)MadridSpain
| |
Collapse
|
14
|
Is it really myositis? Mimics and pitfalls. Best Pract Res Clin Rheumatol 2022; 36:101764. [PMID: 35752578 DOI: 10.1016/j.berh.2022.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Idiopathic inflammatory myopathies are a heterogeneous set of systemic inflammatory disorders primarily affecting muscle. Signs and symptoms vary greatly between and within subtypes, requiring supportive laboratory and pathologic evidence to confirm the diagnosis. Several studies are typical assessments for patients with suspected inflammatory myopathy, including muscle enzymes, autoimmune markers, imaging, and muscle biopsy. Misdiagnoses of myositis are not only related to the overlap of clinical phenotype with non-inflammatory myopathies, but also due to the limitations of diagnostic tests employed. Since many of the investigative tests are non-specific, they share features with other disorders, including muscular dystrophies, endocrine, toxic, and metabolic myopathies, and other neuromuscular or rheumatologic conditions. Recognizing the limitations of tests and understanding the shared features between inflammatory and non-inflammatory myopathies can help prevent misdiagnosing myositis with one of its several mimics.
Collapse
|
15
|
Contreras-Cubas C, Barajas-Olmos F, Frayre-Martínez MI, Siordia-Reyes G, Guízar-Sánchez CC, García-Ortiz H, Orozco L, Baca V. Dysferlinopathy misdiagnosed with juvenile polymyositis in the pre-symptomatic stage of hyperCKemia: a case report and literature review. BMC Med Genomics 2022; 15:139. [PMID: 35725460 PMCID: PMC9208210 DOI: 10.1186/s12920-022-01284-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
Background Dysferlinopathy encompasses a group of rare muscular dystrophies caused by recessive mutations in the DYSF gene. The phenotype ranges from asymptomatic elevated serum creatine kinase (hyperCKemia) to selective and progressive involvement of the proximal and/or distal muscles of the limbs. Bohan and Peter criteria are the most widely used for the diagnosis of polymyositis, but they have limitations and can misclassify muscular dystrophies with inflammation as polymyositis. Most dysferlinopathy patients have muscle biopsies with inflammation and thus are vulnerable to misdiagnosis with polymyositis and inappropriate treatment with steroids and immunosuppressors.
Case presentation We describe a 14 years-old male patient who was referred for assessment of asymptomatic hyperCKemia (26,372 IU/L). An X-linked dystrophinopathy initially was ruled out by direct genetic testing. Juvenile polymyositis was considered based on muscle biopsy, creatine kinase levels, and electromyography changes. Corticosteroid treatment triggered proximal lower limb muscular weakness, and no full muscular strength recovery was observed after corticosteroid withdrawal. Based on these observations, a limb-girdle muscular dystrophy (LGMD) was suspected, and LGMDR2 was confirmed by whole exome sequencing. Conclusion We report a dysferlinopathy patient who was misdiagnosed with juvenile polymyositis and explore in a literature review how common such misdiagnoses are. With diagnosis based only on routine clinicopathological examinations, distinguishing an inflammatory myopathy from dysferlinopathy is quite difficult. We suggest that before establishing a diagnosis of “definite” or “probable” juvenile polymyositis, according to Bohan and Peter or current ACR/EULAR criteria, a muscular dystrophy must first be ruled out.
Collapse
Affiliation(s)
- Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | | | | | - Claudia C Guízar-Sánchez
- Department of Physical Medicine and Rehabilitation, Hospital de Pediatría, CMN Siglo XXI IMSS, Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | - Vicente Baca
- Department of Rheumatology, Hospital de Pediatría, CMN Siglo XXI IMSS, Mexico City, Mexico.
| |
Collapse
|
16
|
Paleo BJ, McElhanon KE, Bulgart HR, Banford KK, Beck EX, Sattler KM, Goines BN, Ratcliff SL, Crowe KE, Weisleder N. Reduced Sarcolemmal Membrane Repair Exacerbates Striated Muscle Pathology in a Mouse Model of Duchenne Muscular Dystrophy. Cells 2022; 11:1417. [PMID: 35563723 PMCID: PMC9100510 DOI: 10.3390/cells11091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked degenerative muscle disorder that involves mutations in the DMD gene that frequently reduce the expression of the dystrophin protein, compromising the structural integrity of the sarcolemmal membrane and leaving it vulnerable to injury during cycles of muscle contraction and relaxation. This results in an increased frequency of sarcolemma disruptions that can compromise the barrier function of the membrane and lead to death of the myocyte. Sarcolemmal membrane repair processes can potentially compensate for increased membrane disruptions in DMD myocytes. Previous studies demonstrated that TRIM72, a muscle-enriched tripartite motif (TRIM) family protein also known as mitsugumin 53 (MG53), is a component of the cell membrane repair machinery in striated muscle. To test the importance of membrane repair in striated muscle in compensating for the membrane fragility in DMD, we crossed TRIM72/MG53 knockout mice into the mdx mouse model of DMD. These double knockout (DKO) mice showed compromised sarcolemmal membrane integrity compared to mdx mice, as measured by immunoglobulin G staining and ex vivo muscle laser microscopy wounding assays. We also found a significant decrease in muscle ex vivo contractile function as compared to mdx mice at both 6 weeks and 1.5 years of age. As the DKO mice aged, they developed more extensive fibrosis in skeletal muscles compared to mdx. Our findings indicate that TRIM72/MG53-mediated membrane repair can partially compensate for the sarcolemmal fragility associated with DMD and that the loss of membrane repair results in increased pathology in the DKO mice.
Collapse
Affiliation(s)
- Brian J. Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kevin E. McElhanon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Hannah R. Bulgart
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kassidy K. Banford
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Eric X Beck
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kristina M. Sattler
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Briana N. Goines
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Shelby L. Ratcliff
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Kelly E. Crowe
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| |
Collapse
|
17
|
Santos VBD, Saute JAM, Jacinto-Scudeiro LA, Ayres A, Rech RS, Oliveira AAD, Olchik MR. Speech and swallowing characteristics in patients with facioscapulohumeral muscular dystrophy. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:368-374. [PMID: 35195226 DOI: 10.1590/0004-282x-anp-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although facial muscle weakness is common in patients with Facioscapulohumeral Muscular Dystrophy (FSHD), the literature is scarce on the speech and swallowing aspects. OBJECTIVE To investigate speech and swallowing patterns in FSHD and assess the correlation with clinical data. METHODS A cross-sectional study was conducted. Patients with clinical confirmation of FSHD and aged above 18 years were included and paired with healthy control individuals by age and gender. Individuals who had neurological conditions that could interfere with test results were excluded. The following assessments were applied: speech tests (acoustic and auditory-perceptual analysis); swallowing tests with the Northwestern Dysphagia Patient Check Sheet (NDPCS), the Eat Assessment Tool (EAT-10), the Speech Therapy Protocol for Dysphagia Risk (PARD), and the Functional Oral Intake Scale (FOIS); disease staging using the modified Gardner-Medwin-Walton scale (GMWS); and quality of life with the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36). The correlation between test results and clinical data was verified by non-parametric statistics. RESULTS Thirteen individuals with FSHD and 10 healthy controls were evaluated. The groups presented significant differences in the motor bases of phonation and breathing. Regarding swallowing, two (15%) individuals presented mild dysphagia and seven (53.8%) showed reduced facial muscles strength. These results were not correlated with duration of the disease, age at symptoms onset, and quality of life. Dysphagia was related to worsening disease severity. CONCLUSIONS FSHD patients presented mild dysarthria and dysphagia. Frequent monitoring of these symptoms could be an important way to provide early rehabilitation and better quality of life.
Collapse
Affiliation(s)
- Vanessa Brzoskowski Dos Santos
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Ciências da Reabilitação, Porto Alegre RS, Brazil
| | - Jonas Alex Morales Saute
- Universidade Federal do Rio Grande do Sul, Departamento de Medicina Interna, Porto Alegre RS, Brazil
| | | | - Annelise Ayres
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil
| | - Rafaela Soares Rech
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil
| | - Alcyr Alves de Oliveira
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Ciências da Reabilitação, Porto Alegre RS, Brazil
| | - Maira Rozenfeld Olchik
- Universidade Federal do Rio Grande do Sul, Departamento de Cirurgia e Ortopedia, Porto Alegre RS, Brazil
| |
Collapse
|
18
|
Becker N, Moore SA, Jones KA. The inflammatory pathology of dysferlinopathy is distinct from calpainopathy, Becker muscular dystrophy, and inflammatory myopathies. Acta Neuropathol Commun 2022; 10:17. [PMID: 35135626 PMCID: PMC8822795 DOI: 10.1186/s40478-022-01320-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022] Open
Abstract
The descriptions of muscle pathology in dysferlinopathy patients have classically included an inflammatory infiltrate that can mimic inflammatory myopathies. Based on over 20 years of institutional experience in evaluating dystrophic and inflammatory myopathy muscle biopsies at the University of Iowa, we hypothesized the inflammatory histopathology of dysferlinopathy is more similar to limb-girdle pattern muscular dystrophies such as calpainopathy and Becker muscular dystrophy, and distinct from true inflammatory myopathies. Muscle biopsies from 32 dysferlinopathy, 30 calpainopathy, 30 Becker muscular dystrophy, and 30 inflammatory myopathies (15 each of dermatomyositis and inclusion body myositis) were analyzed through digital quantitation of CD3, CD4, CD8, CD20, and PU.1 immunostaining. The expression of MHC class I and deposition of complement C5b-9 was also evaluated. Dysferlinopathy, calpainopathy, and Becker muscular dystrophy muscle biopsies had similar numbers of inflammatory cell infiltrates and significantly fewer CD3+ T-lymphocytes than dermatomyositis (p = 0.05) and inclusion body myositis (p < 0.0001) biopsies. There was no statistically significant difference in the number of PU.1+ macrophages identified in any diagnostic group. MHC class I expression was significantly lower in the limb-girdle pattern muscular dystrophies compared to the inflammatory myopathies (p < 0.0001). In contrast, complement C5b-9 deposition was similar among dysferlinopathy, dermatomyositis, and inclusion body myositis biopsies but significantly greater than calpainopathy and Becker muscular dystrophy biopsies (p = 0.05). Compared to calpainopathy, Becker muscular dystrophy, and inflammatory myopathies, the unique profile of minimal inflammatory cell infiltrates, absent to focal MHC class I, and diffuse myofiber complement C5b-9 deposition is the pathologic signature of dysferlinopathy muscle biopsies.
Collapse
|
19
|
Santos VBD, Saute JAM, Jacinto-Scudeiro LA, Ayres A, Rech RS, Oliveira AAD, Olchik MR. Cognitive profile of patients with facioscapulohumeral muscular dystrophy. Dement Neuropsychol 2021; 15:541-547. [PMID: 35509802 PMCID: PMC9018092 DOI: 10.1590/1980-57642021dn15-040015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/13/2021] [Indexed: 08/30/2023] Open
Abstract
Although it is predominantly a muscular disease, impairments in the central nervous system in patients with facioscapulohumeral muscular dystrophy (FSHD) have been described in the literature.
Collapse
Affiliation(s)
| | - Jonas Alex Morales Saute
- Department of Internal Medicine, Brazil; Postgraduate Program in Medicine: Medical Sciences, Brazil
| | | | | | | | | | - Maira Rozenfeld Olchik
- Postgraduate Program in Medicine: Medical Sciences, Brazil; Department of Surgery and Orthopedics, Brazil
| |
Collapse
|
20
|
Merlonghi G, Antonini G, Garibaldi M. Immune-mediated necrotizing myopathy (IMNM): A myopathological challenge. Autoimmun Rev 2021; 21:102993. [PMID: 34798316 DOI: 10.1016/j.autrev.2021.102993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023]
Abstract
This review is focused on the myopathological spectrum of immune mediated necrotizing myopathies (IMNMs) and its differentiation with other, potentially mimicking, inflammatory and non-inflammatory myopathies. IMNMs are a subgroup of idiopathic inflammatory myopathies (IIMs) characterized by severe clinical presentation with rapidly progressive muscular weakness and creatine kinase elevation, often requiring early aggressive immunotherapy, associated to the presence of muscle specific autoantibodies (MSA) against signal recognition particle (SRP) or 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). Muscle biopsy usually shows unspecific features consisting in prominent necrosis and regeneration of muscle fibres with mild or absent inflammatory infiltrates, inconstant and faint expression of major histocompatibility complex (MHC) class I and variable deposition of C5b-9 on sarcolemma. Several conditions could present similar histopathological findings leading to possible misdiagnosis of IMNM with other IIMs or non-inflammatory myopathies (nIMs) and viceversa. This review analyses the muscle biopsy data in IMNMs through a systematic revision of the literature from the last five decades. Several histopathological variables have been considered in both SRP- and HMGCR-IMNM, and compared to other IIMs - as dermatomyositis (DM) and anti-synthethase syndrome (ASS) - or other nIMs -as toxic myopathies (TM), critical illness myopathy (CIM) and muscular dystrophy (MD) - to elucidate similarities and differences among these potentially mimicking conditions. The major histopathological findings of IMNMs were: very frequent necrosis and regeneration of muscle fibres (93%), mild inflammatory component mainly constituted by scattered isolated (65%) CD68-prevalent (68%) cells, without CD8 invading/surrounding non-necrotic fibres, variable expression of MHC-I in non-necrotic fibres (56%) and constant expression of sarcoplasmic p62, confirming those that are widely considered the major histological characteristics of IMNMs. Conversely, only 42% of biopsies showed a sarcolemmal deposition of C5b-9 component. Few differences between SRP and HMGCR IMNMs consisted in more severe necrosis and regeneration in SRP than in HMGCR (p = 0.01); more frequent inflammatory infiltrates (p = 0.007) with perivascular localization (p = 0.01) and clustered expression of MHC-I (p = 0.007) in HMGCR; very low expression of sarcolemmal C5b-9 in SRP (18%) compared to HMGCR (56%) (p = 0.0001). Milder necrosis and regeneration, detection of perifascicular pathology, presence of lymphocytic inflammatory infiltrates and myofibre expression of MxA help to distinguish DM or ASS from IMNM. nIMs can present signs of inflammation at muscle biopsy. Low fibre size variability with overexpression of both MHC-I and II, associated with C5b-9 deposition, could could be observed in CIM, while increased connective tissue should lead to consider MD, or TM in absence of C5b-9 deposition. Nevertheless, these features are not constantly detected and muscle biopsy could not be diriment. For this reason, muscle biopsy should always be critically considered in light of the clinical context before concluding for a definite diagnosis of IMNM, only based on histopathological findings. More rigorous collection and analysis of muscle biopsy is warranted to obtain a higher quality and more homogeneous histopathological data in inflammatory myopathies.
Collapse
Affiliation(s)
- Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy.
| |
Collapse
|
21
|
Reactive Changes in Elements of Stromal-Vascular Differons of Dysferlin-Deficient Skeletal Muscles after Procaine Injection. Bull Exp Biol Med 2021; 170:677-681. [PMID: 33788118 DOI: 10.1007/s10517-021-05131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 10/21/2022]
Abstract
The study assessed reactivity of stromal-vascular skeletal muscle differons to acute chemical injury. Dysferlin-deficient Bla/J mice and the wild-type С57BL/6 mice were intramuscularly injected with 100 μl of 0.5% procaine solution. The middle segment of gastrocnemius muscle was taken on postsurgery days 2, 4, 10, and 14 for routine histological examination. To evaluate proliferation and vascularization, the paraffin sections were stained immunohistochemically with antibodies to α-smooth muscle actin and Ki-67. The connective tissue was stained according to Mallory. The study revealed diminished proliferative activity of stromal-vascular differons and decreased vascular density in muscles of Bla/J mice. Thus, mutations in the DYSF gene coding dysferlin down-regulate the reparation processes in all differons of skeletal muscle.
Collapse
|
22
|
Dexamethasone accelerates muscle regeneration by modulating kinesin-1-mediated focal adhesion signals. Cell Death Discov 2021; 7:35. [PMID: 33597503 PMCID: PMC7889929 DOI: 10.1038/s41420-021-00412-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023] Open
Abstract
During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength. Here, in mice with muscle injury, we found that Dex significantly promotes muscle regeneration via promoting kinesin-1 motor activity. Nevertheless, how Dex promotes myogenesis through kinesin-1 motors remains unclear. We found that Dex directly increases kinesin-1 motor activity, which is required for the expression of a myogenic marker (muscle myosin heavy chain 1/2), and also for the process of myoblast fusion and the formation of polarized myotubes. Upon differentiation, kinesin-1 mediates the recruitment of integrin β1 onto microtubules allowing delivery of the protein into focal adhesions. Integrin β1-mediated focal adhesion signaling then guides myoblast fusion towards a polarized morphology. By imposing geometric constrains via micropatterns, we have proved that cell adhesion is able to rescue the defects caused by kinesin-1 inhibition during the process of myogenesis. These discoveries reveal a mechanism by which Dex is able to promote myogenesis, and lead us towards approaches that are more efficient in improving skeletal muscle regeneration.
Collapse
|
23
|
Park HJ, Hong YB, Hong JM, Yun U, Kim SW, Shin HY, Kim SM, Choi YC. Null variants in DYSF result in earlier symptom onset. Clin Genet 2021; 99:396-406. [PMID: 33215690 DOI: 10.1111/cge.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/11/2023]
Abstract
We investigated the clinical, laboratory, and genetic spectra in Korean patients with dysferlinopathy to clarify its genotype-phenotype correlation. We retrospectively reviewed 101 patients from 96 unrelated families with pathogenic variants of DYSF. The most common initial phenotype was Miyoshi myopathy in 50 patients. Median ages at examination and symptom onset were 23 [interquartile range (IQR): 18-30] and 36 years [IQR: 27-48], respectively. We observed 38 variants, including nine novel variants. Four variants (c.2494C > T, c.1284 + 2 T > C, c.663 + 1G > C, and c.2997G > T) in DYSF accounted for 62% of total allele frequencies of pathogenic variants. To analyze the genotype-phenotype correlation, we compared the clinical phenotype between patients with null/null (N/N; n = 55) and null/missense variants (N/M; n = 35). The N/N group had an earlier symptom onset age (median: 20 years [IQR: 17-25]) than the N/M group (median: 29 years [IQR: 23-35], p < .001). Total manual muscle testing scores in lower extremities were lower in the N/N group (median: 80 [IQR: 56-92]) than in the N/M group (median: 89 [IQR: 78-98], p = .013). Our study is the first to report that null variants in DYSF result in an earlier symptom onset than missense variants.
Collapse
Affiliation(s)
- Hyung Jun Park
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, South Korea
| | - Ji-Man Hong
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - UnKyu Yun
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Woo Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ha Young Shin
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Min Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Chul Choi
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Gupta L, Ganguly S, Chatterjee R, Zanwar A. Myositis mimics. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_250_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Angelini C. LGMD. Identification, description and classification. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:207-217. [PMID: 33458576 PMCID: PMC7783424 DOI: 10.36185/2532-1900-024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/05/2022]
Abstract
The term ‘limb girdle muscular dystrophy’ (LGMD) was first used in the seminal paper by Walton and Nattrass in 1954, were they identified LGMD as a separate clinical entity In LGMD description it is pointed out that the category of LGMD most likely comprises a heterogeneous group of disorders. After that the clinical entity was discussed but the LMGD nosography reached a permanent classification during two ENMC workshops held in 1995 and 2017, in the last one an operating definition of LGMD was agreed. This last classification included dystrophies with proximal or distal-proximal presentation with evidence at biopsy of fibre degeneration and splitting, high CK, MRI imaging consistent with degenerative changes, fibro-fatty infiltration present in individuals that reached independent walking ability. To be considered in this group at least two unrelated families should be identified. A review is done of the first genetic characterisation of a number of LGMDs during the late twentieth century and a historical summary is given regarding how these conditions were clinically described and identified, the progresses done from identification of genetic loci, to protein and gene discoveries are reported. The LGMD described on which such historical progresses were done are the recessive calpainopathy (LGMD 2A/R1), dysferlinopathy (LGMD 2B/R2), sarcoglycanopathy (LGMD 2C-2F/R3-R6) types and the dominant type due to TPNO3 variants named transportinopathy (LGMD 1F/D2). Because of new diagnostic techniques such as exome and genome sequencing, it is likely that many other subtypes of LGMD might be identified in the future, however the lesson from the past discoveries can be useful for scientists and clinicians.
Collapse
|
26
|
Kim DH, Jang DH, Jang JH. Incidental Severe Fatty Degeneration of the Erector Spinae in a Patient with L5-S1 Disc Extrusion Diagnosed with Limb-Girdle Muscular Dystrophy R2 Dysferin-Related. Diagnostics (Basel) 2020; 10:diagnostics10080530. [PMID: 32751317 PMCID: PMC7459781 DOI: 10.3390/diagnostics10080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
Limb-girdle muscular dystrophy type R2 dysferin-related (LGMD R2 dysferin-related), a phenotype of dysferlinopathy, usually begins with pelvic girdle weakness. A 35-year-old male presented with right leg pain for 2 weeks without a previous history of limb weakness. Magnetic resonance imaging of the lumbar spine showed disc extrusion at L5-S1 and incidental severe fatty degeneration of the lumbar erector spinae. Physical examination demonstrated no definite limb weakness. Serum creatine kinase levels were elevated. Genetic testing using a targeted gene-sequencing panel identified compound heterozygous variants NM_003494.3(DYSF) c.[1284+2T>C]; [5303G>A]. Computed tomography revealed fatty degeneration of lower-limb muscles, which was mild in the adductor muscles and severe in the gluteus minimus. Immunohistochemistry staining of the vastus lateralis showed under-expression of dysferlin. This patient was diagnosed with LGMD R2 dysferin-related. Thus, unusual fatty degeneration of the lumbar paraspinalis can be a manifestation of dysferlinopathy.
Collapse
Affiliation(s)
- Du Hwan Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Green Cross Genome, Yongin 16924, Korea
| |
Collapse
|
27
|
Nicolau S, Liewluck T, Milone M. Myopathies with finger flexor weakness: Not only inclusion-body myositis. Muscle Nerve 2020; 62:445-454. [PMID: 32478919 DOI: 10.1002/mus.26914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022]
Abstract
Muscle disorders are characterized by differential involvement of various muscle groups. Among these, weakness predominantly affecting finger flexors is an uncommon pattern, most frequently found in sporadic inclusion-body myositis. This finding is particularly significant when the full range of histopathological findings of inclusion-body myositis is not found on muscle biopsy. Prominent finger flexor weakness, however, is also observed in other myopathies. It occurs commonly in myotonic dystrophy types 1 and 2. In addition, individual reports and small case series have documented finger flexor weakness in sarcoid and amyloid myopathy, and in inherited myopathies caused by ACTA1, CRYAB, DMD, DYSF, FLNC, GAA, GNE, HNRNPDL, LAMA2, MYH7, and VCP mutations. Therefore, the finding of finger flexor weakness requires consideration of clinical, myopathological, genetic, electrodiagnostic, and sometimes muscle imaging findings to establish a diagnosis.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| |
Collapse
|
28
|
Barzilai-Tutsch H, Genin O, Pines M, Halevy O. Early pathological signs in young dysf -/- mice are improved by halofuginone. Neuromuscul Disord 2020; 30:472-482. [PMID: 32451154 DOI: 10.1016/j.nmd.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf-/- mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf-/- mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf-/- mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Olga Genin
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Mark Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
29
|
Dysferlin-deficiency has greater impact on function of slow muscles, compared with fast, in aged BLAJ mice. PLoS One 2019; 14:e0214908. [PMID: 30970035 PMCID: PMC6457631 DOI: 10.1371/journal.pone.0214908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/24/2019] [Indexed: 12/26/2022] Open
Abstract
Dysferlinopathies are a form of muscular dystrophy caused by gene mutations resulting in deficiency of the protein dysferlin. Symptoms manifest later in life in a muscle specific manner, although the pathomechanism is not well understood. This study compared the impact of dysferlin-deficiency on in vivo and ex vivo muscle function, and myofibre type composition in slow (soleus) and fast type (extensor digitorum longus; EDL) muscles using male dysferlin-deficient (dysf-/-) BLAJ mice aged 10 months, compared with wild type (WT) C57Bl/6J mice. There was a striking increase in muscle mass of BLAJ soleus (+25%) (p<0.001), with no strain differences in EDL mass, compared with WT. In vivo measures of forelimb grip strength and wheel running capacity showed no strain differences. Ex vivo measures showed the BLAJ soleus had faster twitch contraction (-21%) and relaxation (-20%) times, and delayed post fatigue recovery (ps<0.05); whereas the BLAJ EDL had a slower relaxation time (+11%) and higher maximum rate of force production (+25%) (ps<0.05). Similar proportions of MHC isoforms were evident in the soleus muscles of both strains (ps>0.05); however, for the BLAJ EDL, there was an increased proportion of type IIx MHC isoform (+5.5%) and decreased type IIb isoform (-5.5%) (ps<0.01). This identification of novel differences in the impact of dysferlin-deficiency on slow and fast twitch muscles emphasises the importance of evaluating myofibre type specific effects to provide crucial insight into the mechanisms responsible for loss of function in dysferlinopathies; this is critical for the development of targeted future clinical therapies.
Collapse
|
30
|
Sreetama SC, Chandra G, Van der Meulen JH, Ahmad MM, Suzuki P, Bhuvanendran S, Nagaraju K, Hoffman EP, Jaiswal JK. Membrane Stabilization by Modified Steroid Offers a Potential Therapy for Muscular Dystrophy Due to Dysferlin Deficit. Mol Ther 2018; 26:2231-2242. [PMID: 30166241 PMCID: PMC6127637 DOI: 10.1016/j.ymthe.2018.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/15/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022] Open
Abstract
Mutations of the DYSF gene leading to reduced dysferlin protein level causes limb girdle muscular dystrophy type 2B (LGMD2B). Dysferlin facilitates sarcolemmal membrane repair in healthy myofibers, thus its deficit compromises myofiber repair and leads to chronic muscle inflammation. An experimental therapeutic approach for LGMD2B is to protect damage or improve repair of myofiber sarcolemma. Here, we compared the effects of prednisolone and vamorolone (a dissociative steroid; VBP15) on dysferlin-deficient myofiber repair. Vamorolone, but not prednisolone, stabilized dysferlin-deficient muscle cell membrane and improved repair of dysferlin-deficient mouse (B6A/J) myofibers injured by focal sarcolemmal damage, eccentric contraction-induced injury or injury due to spontaneous in vivo activity. Vamorolone decreased sarcolemmal lipid mobility, increased muscle strength, and decreased late-stage myofiber loss due to adipogenic infiltration. In contrast, the conventional glucocorticoid prednisolone failed to stabilize dysferlin deficient muscle cell membrane or improve repair of dysferlinopathic patient myoblasts and mouse myofibers. Instead, prednisolone treatment increased muscle weakness and myofiber atrophy in B6A/J mice—findings that correlate with reports of prednisolone worsening symptoms of LGMD2B patients. Our findings showing improved cellular and pre-clinical efficacy of vamorolone compared to prednisolone and better safety profile of vamorolone indicates the suitability of vamorolone for clinical trials in LGMD2B.
Collapse
Affiliation(s)
- Sen Chandra Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Goutam Chandra
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jack H Van der Meulen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Mohammad Mahad Ahmad
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Peter Suzuki
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Shivaprasad Bhuvanendran
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
31
|
Angelini C, Giaretta L, Marozzo R. An update on diagnostic options and considerations in limb-girdle dystrophies. Expert Rev Neurother 2018; 18:693-703. [PMID: 30084281 DOI: 10.1080/14737175.2018.1508997] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Limb-girdle muscular dystrophies (LGMDs) encompass a clinically heterogeneous group of rare, genetic progressive muscle disorders presenting with weakness and atrophy of predominant pelvic and shoulder muscles. The spectrum of disease severity ranges from severe childhood-onset muscular dystrophy to adult-onset dystrophy. Areas covered: The review presents an update of the clinical phenotypes and diagnostic options for LGMD including both dominant and recessive LGMD and consider their differential clinical and histopathological features. An overview of most common phenotypes and of possible complications is given. The management of the main clinical respiratory, cardiac, and central nervous system complications are covered. The instrumental, muscle imaging, and laboratory exams to assess and reach diagnosis are described. The use of recent genetic techniques such as next generation sequencing (NGS), whole-exome sequencing compared to other techniques (e.g. DNA sequencing, protein analysis) is covered. Currently available drugs or gene therapy and rehabilitation management are focused on. Expert commentary: Many LGMD cases, which for a long time previously remained without a molecular diagnosis, can now be investigated by NGS. Gene mutation analysis is always required to obtain a certain molecular diagnosis, fundamental to select homogeneous group of patients for future pharmaceutical and gene trials.
Collapse
Affiliation(s)
- Corrado Angelini
- a Neuromuscular Center , San Camillo Hospital IRCCS , Venice , Italy
| | - Laura Giaretta
- a Neuromuscular Center , San Camillo Hospital IRCCS , Venice , Italy
| | - Roberta Marozzo
- a Neuromuscular Center , San Camillo Hospital IRCCS , Venice , Italy
| |
Collapse
|
32
|
Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, Peterson EL, Lehtimäki KK, Windish HP, Mittal PJ, Albrecht DE, Mendell JR, Rodino-Klapac LR. Systemic Delivery of Dysferlin Overlap Vectors Provides Long-Term Gene Expression and Functional Improvement for Dysferlinopathy. Hum Gene Ther 2018; 29:749-762. [PMID: 28707952 PMCID: PMC6066196 DOI: 10.1089/hum.2017.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Dysferlinopathies comprise a family of disorders caused by mutations in the dysferlin (DYSF) gene, leading to a progressive dystrophy characterized by chronic muscle fiber loss, fat replacement, and fibrosis. To correct the underlying histopathology and function, expression of full-length DYSF is required. Dual adeno-associated virus vectors have been developed, defined by a region of homology, to serve as a substrate for reconstitution of the full 6.5 kb dysferlin cDNA. Previous work studied the efficacy of this treatment through intramuscular and regional delivery routes. To maximize clinical efficacy, dysferlin-deficient mice were treated systemically to target all muscles through the vasculature for efficacy and safety studies. Mice were evaluated at multiple time points between 4 and 13 months post treatment for dysferlin expression and functional improvement using magnetic resonance imaging and magnetic resonance spectroscopy and membrane repair. A systemic dose of 6 × 1012 vector genomes resulted in widespread gene expression in the muscles. Treated muscles showed a significant decrease in central nucleation, collagen deposition, and improvement of membrane repair to wild-type levels. Treated gluteus muscles were significantly improved compared to placebo-treated muscles and were equivalent to wild type in volume, intra- and extramyocellular lipid accumulation, and fat percentage using magnetic resonance imaging and magnetic resonance spectroscopy. Dual-vector treatment allows for production of full-length functional dysferlin with no toxicity. This confirms previous safety data and validates translation of systemic gene delivery for dysferlinopathy patients.
Collapse
Affiliation(s)
- Rachael A. Potter
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Patricia C. Sondergaard
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan W. Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Eric R. Pozsgai
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Kristin N. Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ellyn L. Peterson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | | | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics and Neurology, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio; The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Barthélémy F, Defour A, Lévy N, Krahn M, Bartoli M. Muscle Cells Fix Breaches by Orchestrating a Membrane Repair Ballet. J Neuromuscul Dis 2018; 5:21-28. [PMID: 29480214 PMCID: PMC5836414 DOI: 10.3233/jnd-170251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Skeletal muscle undergoes many micro-membrane lesions at physiological state. Based on their sizes and magnitude these lesions are repaired via different complexes on a specific spatio-temporal manner. One of the major repair complex is a dysferlin-dependent mechanism. Accordingly, mutations in the DYSF gene encoding dysferlin results in the development of several muscle pathologies called dysferlinopathies, where abnormalities of the membrane repair process have been characterized in patients and animal models. Recent efforts have been deployed to decipher the function of dysferlin, they shed light on its direct implication in sarcolemma resealing after injuries. These discoveries served as a strong ground to design therapeutic approaches for dysferlin-deficient patients. This review detailed the different partners and function of dysferlin and positions the sarcolemma repair in normal and pathological conditions.
Collapse
Affiliation(s)
- Florian Barthélémy
- Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
| | - Aurélia Defour
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Nicolas Lévy
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Martin Krahn
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Marc Bartoli
- Aix Marseille University, MMG, INSERM, Marseille, France
| |
Collapse
|
34
|
Tang J, Song X, Ji G, Wu H, Sun S, Lu S, Li Y, Zhang C, Zhang H. A novel mutation in the DYSF gene in a patient with a presumed inflammatory myopathy. Neuropathology 2018; 38:433-437. [PMID: 29799141 DOI: 10.1111/neup.12474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/30/2023]
Abstract
Dysferlinopathy, a progressive muscular dystrophy, results from mutations in the Dysferlin gene (DYSF, MIM*603009). Traditional diagnosis relies on the reduction or absence of dysferlin. However, altered dysferlin has been observed in other myopathies, leading to a precise diagnosis through molecular genetics. In this study, we report a patient who was previously misdiagnosed as inflammatory myopathy based on routine clinicopathological examinations alone. However, muscle biopsy specimens were analyzed further by immunohistochemistry of muscular dystrophy-related proteins, and gene-targeted next generation sequencing (NGS) was used to correctly identify muscular dystrophy. DNA was sequenced with NGS and the detected mutation was verified by Sanger sequencing. Our targeted NGS found a novel missense mutation (c.5392G > A) in the DYSF gene, allowing correct diagnosis of LGMD2B in our patient. We discovered of a novel missense mutation in the DYSF gene and have broadened the DYSF mutation spectrum, which may be correlated in patients with presumed dysferlinopathy, especially when lymphocytic infiltration is observed.
Collapse
Affiliation(s)
- Jin Tang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Shuyan Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Shan Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Yuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Chi Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Huiqing Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW To discuss the spectrum of nonautoimmune myopathies that may be misdiagnosed as autoimmune myopathy. RECENT FINDINGS Inherited myopathies, such as dysferlinopathy, calpainopathy, and facioscapulohumeral dystrophy may be misdiagnosed as autoimmune myopathy, especially when they have inflammatory muscle biopsies. Inclusion body myositis is frequently misdiagnosed as polymyositis when rimmed vacuoles are absent on muscle biopsy, and a careful neuromuscular evaluation is not performed. Hypothyroid myopathy can be misdiagnosed as immune-mediated necrotizing myopathy if thyroid function tests, including a T4 level, are not obtained. Self-limited statin myopathy can be distinguished from statin-associated autoimmune myopathy because patients with the former do not have autoantibodies recognizing 3-hydroxy-3-methylglutaryl-coenzyme A reductase. SUMMARY Autoimmune myopathies can usually be distinguished from nonautoimmune myopathies based on a combination of the patient history, neuromuscular exam, laboratory findings, and/or muscle biopsy features.
Collapse
Affiliation(s)
- Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Expression, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Liewluck T, Milone M. Characterization of isolated amyloid myopathy. Eur J Neurol 2017; 24:1437-1445. [PMID: 28888072 DOI: 10.1111/ene.13448] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Amyloid myopathy frequently occurs in the setting of systemic amyloidosis and less commonly in isolation (isolated amyloid myopathy). Anoctaminopathy-5 and dysferlinopathy were recently recognized as causes of isolated amyloid myopathy. The present study aimed to characterize the isolated amyloid myopathy and to compare it with amyloid myopathy associated with systemic amyloidosis. METHODS We searched the Muscle Laboratory database to identify patients with pathologically confirmed amyloid myopathy seen in neurology clinics between January 1998 and September 2016. Patients with monoclonal gammopathy, peripheral neuropathy, organomegaly or symptoms or pathologic evidence of amyloid deposition outside skeletal muscle were classified as having systemic amyloidosis-associated myopathy. RESULTS Fifty-two patients were identified, including 14 with isolated amyloid myopathy (eight anoctaminopathy-5, two dysferlinopathy and four genetically unknown) and 38 with systemic amyloidosis (32 immunoglobulin light-chain amyloidosis, four familial amyloid polyneuropathy and two senile systemic amyloidosis). Compared with patients with systemic amyloidosis, patients with isolated amyloid myopathy had a younger age of onset (median, 41.5 vs. 65 years), no dysphagia (0% vs. 26%) or weight loss (0% vs. 26%), but more frequent calf atrophy (57% vs. 0%), small collections of inflammatory cells on muscle biopsy (43% vs. 0%) and asymptomatic hyperCKemia at onset (21% vs. 0%). All patients with isolated amyloid myopathy had creatine kinase (CK) values >2.5 times the upper limit of normal. CONCLUSIONS Isolated amyloid myopathy accounts for 27% of patients with amyloid myopathy, mostly due to anoctaminopathy-5. There are various clinical and laboratory parameters that can help to differentiate isolated amyloid myopathy from systemic amyloidosis.
Collapse
Affiliation(s)
- T Liewluck
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - M Milone
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Angelini C, Fanin M. Limb girdle muscular dystrophies: clinical-genetical diagnostic update and prospects for therapy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1367283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Corrado Angelini
- Department of Neurodegenerative Disorders, Neuromuscular Center, San Camillo Hospital IRCCS, Venice, Italy
| | - Marina Fanin
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Milone M. Diagnosis and Management of Immune-Mediated Myopathies. Mayo Clin Proc 2017; 92:826-837. [PMID: 28473041 DOI: 10.1016/j.mayocp.2016.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/17/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023]
Abstract
Immune-mediated myopathies (IMMs) are a heterogeneous group of acquired muscle disorders characterized by muscle weakness, elevated creatine kinase levels, and myopathic electromyographic findings. Most IMMs feature the presence of inflammatory infiltrates in muscle. However, the inflammatory exudate may be absent. Indeed, necrotizing autoimmune myopathy (NAM), also called immune-mediated necrotizing myopathy, is characterized by a necrotizing pathologic process with no or minimal inflammation in muscle. The recent discovery of antibodies associated with specific subtypes of autoimmune myopathies has played a major role in characterizing these diseases. Although diagnostic criteria and classification of IMMs currently are under revision, on the basis of the clinical and muscle histopathologic findings, IMMs can be differentiated as NAM, inclusion body myositis (IBM), dermatomyositis, polymyositis, and nonspecific myositis. Because of recent developments in the field of NAM and IBM and the controversies around polymyositis, this review will focus on NAM, IBM, and dermatomyositis.
Collapse
Affiliation(s)
- Margherita Milone
- Neuromuscular Medicine Division, Department of Neurology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
39
|
Jin SQ, Yu M, Zhang W, Lyu H, Yuan Y, Wang ZX. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy. Chin Med J (Engl) 2017; 129:2287-93. [PMID: 27647186 PMCID: PMC5040013 DOI: 10.4103/0366-6999.190671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Dysferlinopathy is caused by mutations in the dysferlin (DYSF) gene. Here, we described the genetic features of a large cohort of Chinese patients with this disease. METHODS Eighty-nine index patients were included in the study. DYSF gene analysis was performed by Sanger sequencing in 41 patients and targeted next generation sequencing (NGS) in 48 patients. Multiplex ligation-dependent probe amplification (MLPA) was performed to detect exon duplication/deletion in patients with only one pathogenic mutation. RESULTS Among the 89 index patients, 79 patients were demonstrated to carry two disease-causing (73 cases) or possibly disease-causing mutations (6 cases), including 26 patients with homozygous mutations. We identified 105 different mutations, including 59 novel ones. Notably, in 13 patients in whom only one pathogenic mutation was initially found by Sanger sequencing or NGS, 3 were further identified to carry exon deletions by MLPA. The mutations identified in this study appeared to cluster in the N-terminal region. Mutation types included missense mutations (30.06%), nonsense mutations (17.18%), frameshift mutations (30.67%), in-frame deletions (2.45%), intronic mutations (17.79%), and exonic rearrangement (1.84%). No genotype-phenotype correlation was identified. CONCLUSIONS DYSF mutations in Chinese patients clustered in the N-terminal region of the gene. Exonic rearrangements were found in 23% of patients with only one pathogenic mutation identified by Sanger sequencing or NGS. The novel mutations found in this study greatly expanded the mutational spectrum of dysferlinopathy.
Collapse
Affiliation(s)
- Su-Qin Jin
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - He Lyu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhao-Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
40
|
Discordant manifestation in brothers with Miyoshi myopathy. J Neurol Sci 2017; 373:86-87. [PMID: 28131235 DOI: 10.1016/j.jns.2016.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
|
41
|
Distal myopathy with ADSSL1 mutations in Korean patients. Neuromuscul Disord 2017; 27:465-472. [PMID: 28268051 DOI: 10.1016/j.nmd.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 11/22/2022]
Abstract
To understand the characteristics of ADSSL1 myopathy, we investigated the clinical manifestation in Korean patients with ADSSL1 mutations. We developed a targeted panel of 16 distal-myopathy genes and recruited a total of 12 patients with genetically undetermined distal myopathy. We found four (33%) with ADSSL1 mutations and one (8%) with GNE mutations. ADSSL1 mutations consisted of c.910G>A, c.1048delA and c.1220T>C mutations. Patients with ADSSL1 mutations demonstrated distal muscle weakness in adolescence, followed by quadriceps muscle weakness in the early 30s. All patients had mild facial weakness and two patients complained of easy fatigue while eating and chewing. Vastus lateralis muscle biopsies revealed non-specific chronic myopathic features with a few nemaline rods. Whole body muscle MR imaging showed more fatty replacement in the distal limb and tongue muscles than in the proximal limb and axial muscles. This study showed that ADSSL1 myopathy was not rare among distal myopathy patients of Korean origin, and expanded the clinical and genetic spectrum. Therefore, we suggest that the screening test of ADSSL1 gene should be considered for the diagnosis of distal myopathy.
Collapse
|
42
|
Fanin M, Angelini C. Progress and challenges in diagnosis of dysferlinopathy. Muscle Nerve 2016; 54:821-835. [DOI: 10.1002/mus.25367] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Fanin
- Department of Neurosciences; University of Padova; Biomedical Campus “Pietro d'Abano”, via Giuseppe Orus 2B 35129 Padova Italy
| | | |
Collapse
|
43
|
Jin S, Du J, Wang Z, Zhang W, Lv H, Meng L, Xiao J, Yuan Y. Heterogeneous characteristics of MRI changes of thigh muscles in patients with dysferlinopathy. Muscle Nerve 2016; 54:1072-1079. [PMID: 27251469 DOI: 10.1002/mus.25207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the pattern of thigh muscle MRI changes in a large cohort of patients with dysferlinopathy. METHODS MRI of the thigh was performed in 60 patients. We correlated the scale of muscle involvement on MRI with the modified Gardner-Medwin and Walton (GM-W) scale and disease duration. We also analyzed the relationship between muscle changes and genetic mutations. RESULTS Fatty infiltration and edema were observed in 95.50% and 86.67% of patients, respectively. The hamstring muscles had the highest frequency and mean score of fatty infiltration, although a posterior-dominant pattern was found in only 56%. Edema most commonly and severely affected the quadriceps and adductor magnus muscles. Fatty infiltration score correlated positively with disease duration and GM-W scale. CONCLUSIONS The pattern of fatty infiltration was heterogeneous in dysferlinopathy patients. Muscle edema was common. Fatty infiltration can be used to assess disease progression. Muscle Nerve 54: 1072-1079, 2016.
Collapse
Affiliation(s)
- Suqin Jin
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Jing Du
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - He Lv
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| |
Collapse
|
44
|
Abstract
AbstractObjectives: Differentiating genetic myopathies from inflammatory myopathies can be challenging because of multiple overlapping clinical features. Examples are presented to highlight important clinical features that assist in the differentiation between the two. Methods: Clinical features including age at onset, history, pattern of weakness, serum creatine kinase activity, electromyography findings, and muscle biopsies are reported in six patients initially thought to have an inflammatory myopathy in whom the final diagnosis was a genetic myopathy. Results: All six patients met Bohan and Peter criteria for at least probable idiopathic polymyositis and were subsequently found to have a genetic myopathy (4 DYSF, RYR1, and GNE). The key distinguishing clinical were minimal to no response to immunosuppression and atypical involvement of distal muscles in the majority of cases. Conclusions: Patients diagnosed with inflammatory myopathies should be reevaluated for the possibility of a genetic myopathy if they fail to respond to a course of disease-modifying agents and/or there is atypical distal muscle involvement.
Collapse
|
45
|
Petersen JA, Kuntzer T, Fischer D, von der Hagen M, Huebner A, Kana V, Lobrinus JA, Kress W, Rushing EJ, Sinnreich M, Jung HH. Dysferlinopathy in Switzerland: clinical phenotypes and potential founder effects. BMC Neurol 2015; 15:182. [PMID: 26444858 PMCID: PMC4596355 DOI: 10.1186/s12883-015-0449-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background Dysferlin is reduced in patients with limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment myopathy, and in certain Ethnic clusters. Methods We evaluated clinical and genetic patient data from three different Swiss Neuromuscular Centers. Results Thirteen patients from 6 non-related families were included. Age of onset was 18.8 ± 4.3 years. In all patients, diallelic disease-causing mutations were identified in the DYSF gene. Nine patients from 3 non-related families from Central Switzerland carried the identical homozygous mutation, c.3031 + 2T>C. A possible founder effect was confirmed by haplotype analysis. Three patients from two different families carried the heterozygous mutation, c.1064_1065delAA. Two novel mutations were identified (c.2869C>T (p.Gln957Stop), c.5928G>A (p.Trp1976Stop)). Conclusions Our study confirms the phenotypic heterogeneity associated with DYSF mutations. Two mutations (c.3031 + 2T>C, c.1064_1065delAA) appear common in Switzerland. Haplotype analysis performed on one case (c. 3031 + 2T>C) suggested a possible founder effect.
Collapse
Affiliation(s)
- Jens A Petersen
- Department of Neurology, University Hospital Zürich, Frauenklinikstrasse 26, 8091, Zürich, Switzerland.
| | - Thierry Kuntzer
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Dirk Fischer
- Department of Neurology, University Hospital Basel, Basel, Switzerland.
| | | | - Angela Huebner
- Klinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Veronika Kana
- Institute of Neuropathology, University Hospital Zürich, Zürich, Switzerland.
| | | | - Wolfram Kress
- Institure of Human Genetics, University of Würzburg, Würzburg, Germany.
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Hospital Zürich, Zürich, Switzerland.
| | - Michael Sinnreich
- Department of Neurology, University Hospital Basel, Basel, Switzerland.
| | - Hans H Jung
- Department of Neurology, University Hospital Zürich, Frauenklinikstrasse 26, 8091, Zürich, Switzerland.
| |
Collapse
|
46
|
|
47
|
Cohen TV, Many GM, Fleming BD, Gnocchi VF, Ghimbovschi S, Mosser DM, Hoffman EP, Partridge TA. Upregulated IL-1β in dysferlin-deficient muscle attenuates regeneration by blunting the response to pro-inflammatory macrophages. Skelet Muscle 2015; 5:24. [PMID: 26251696 PMCID: PMC4527226 DOI: 10.1186/s13395-015-0048-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Loss-of-function mutations in the dysferlin gene (DYSF) result in a family of muscle disorders known collectively as the dysferlinopathies. Dysferlin-deficient muscle is characterized by inflammatory foci and macrophage infiltration with subsequent decline in muscle function. Whereas macrophages function to remove necrotic tissue in acute injury, their prevalence in chronic myopathy is thought to inhibit resolution of muscle regeneration. Two major classes of macrophages, classical (M1) and alternative (M2a), play distinct roles during the acute injury process. However, their individual roles in chronic myopathy remain unclear and were explored in this study. METHODS To test the roles of the two macrophage phenotypes on regeneration in dysferlin-deficient muscle, we developed an in vitro co-culture model of macrophages and muscle cells. We assayed the co-cultures using ELISA and cytokine arrays to identify secreted factors and performed transcriptome analysis of molecular networks induced in the myoblasts. RESULTS Dysferlin-deficient muscle contained an excess of M1 macrophage markers, compared with WT, and regenerated poorly in response to toxin injury. Co-culturing macrophages with muscle cells showed that M1 macrophages inhibit muscle regeneration whereas M2a macrophages promote it, especially in dysferlin-deficient muscle cells. Examination of soluble factors released in the co-cultures and transcriptome analysis implicated two soluble factors in mediating the effects: IL-1β and IL-4, which during acute injury are secreted from M1 and M2a macrophages, respectively. To test the roles of these two factors in dysferlin-deficient muscle, myoblasts were treated with IL-4, which improved muscle differentiation, or IL-1β, which inhibited it. Importantly, blockade of IL-1β signaling significantly improved differentiation of dysferlin-deficient cells. CONCLUSIONS We propose that the inhibitory effects of M1 macrophages on myogenesis are mediated by IL-1β signals and suppression of the M1-mediated immune response may improve muscle regeneration in dysferlin deficiency. Our studies identify a potential therapeutic approach to promote muscle regeneration in dystrophic muscle.
Collapse
Affiliation(s)
- Tatiana V. Cohen
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
- />Center for Genetic Muscle Disorders, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD 21205 USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Gina M. Many
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - Bryan D. Fleming
- />Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Viola F. Gnocchi
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - Svetlana Ghimbovschi
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - David M. Mosser
- />Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Eric P. Hoffman
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - Terence A. Partridge
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| |
Collapse
|
48
|
Gerevini S, Scarlato M, Maggi L, Cava M, Caliendo G, Pasanisi B, Falini A, Previtali SC, Morandi L. Muscle MRI findings in facioscapulohumeral muscular dystrophy. Eur Radiol 2015; 26:693-705. [DOI: 10.1007/s00330-015-3890-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
|
49
|
Graça CR, Kouyoumdjian JA. Expressão de antígenos MHC classe I e de células CD4 e CD8 na polimiosite e dermatomiosite. REVISTA BRASILEIRA DE REUMATOLOGIA 2015; 55:203-8. [DOI: 10.1016/j.rbr.2014.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/21/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022] Open
|
50
|
Shin HY, Jang H, Han JH, Park HJ, Lee JH, Kim SW, Kim SM, Park YE, Kim DS, Bang D, Lee MG, Lee JH, Choi YC. Targeted next-generation sequencing for the genetic diagnosis of dysferlinopathy. Neuromuscul Disord 2015; 25:502-10. [PMID: 25868377 DOI: 10.1016/j.nmd.2015.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
Dysferlinopathy comprises a group of autosomal recessive muscular dystrophies caused by mutations in the DYSF gene. Due to the large size of the gene and its lack of mutational hot spots, analysis of the DYSF gene is time-consuming and laborious using conventional sequencing methods. By next-generation sequencing (NGS), DYSF gene analysis has previously been validated through its incorporation in multi-gene panels or exome analyses. However, individual validation of NGS approaches for DYSF gene has not been performed. Here, we established and validated a hybridization capture-based target-enrichment followed by next-generation sequencing to detect mutations in patients with dysferlinopathy. With this approach, mean depth of coverage was approximately 450 fold and almost all (99.3%) of the targeted region had sequence coverage greater than 20 fold. When this approach was tested on samples from patients with known DYSF mutations, all known mutations were correctly retrieved. Using this method on 32 consecutive patient samples with dysferlinopathy, at least two pathogenic variants were detected in 28 (87.5%) samples and at least one pathogenic variant was identified in all samples. Our results suggested that the NGS-based screening method could facilitate efficient and accurate genetic diagnosis of dysferlinopathy.
Collapse
Affiliation(s)
- Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon Jang
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Joo Hyung Han
- Department of Pharmacology, Pharmacogenomic Research Center for Membrane Transporters, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Won Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Department of Clinical Pharmacology, Inje University, Busan Paik Hospital, Busan, Republic of Korea
| | - Seung Min Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Eun Park
- Department of Neurology, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Pharmacogenomic Research Center for Membrane Transporters, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| | - Young-Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|