1
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
2
|
Sin MK, Dowling NM, Roseman JM, Ahmed A, Zamrini E. Late-Life Blood Pressure and Cerebral Amyloid Angiopathy: Findings from the U.S. National Alzheimer's Coordinating Center Uniform Dataset. Neurol Int 2024; 16:821-832. [PMID: 39195563 DOI: 10.3390/neurolint16040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
High blood pressure (BP) and cerebral amyloid angiopathy (CAA) are two common risk factors for intracranial hemorrhage, potentially leading to cognitive impairment. Less is known about the relationship between BP and CAA, the examination of which was the objective of this study. We analyzed data from 2510 participants in the National Alzheimer's Coordinating Center (NACC) who had information on longitudinal BP measurements before death and on CAA from autopsy. Using the average of four systolic BPs (SBPs) prior to death, SBP was categorized into three groups: <120 mmHg (n = 435), 120-139 mmHg (n = 1335), and ≥140 mmHg (n = 740). CAA was diagnosed using immunohistochemistry in 1580 participants and categorized as mild (n = 759), moderate (n = 529), or severe (n = 292). When adjusted for age at death, sex, APOE genotype, Braak, CERAD, antihypertensive medication use, and microinfarcts, the odds ratios (95% CIs) for CAA associated with SBPs of 120-139 and ≥140 mmHg were 0.91 (0.74-1.12) and 1.00 (0.80-1.26), respectively. Findings from predictor effect plots show no variation in the probability of CAA between the three SBP categories. Microbleeds had no association with CAA, but among those with SBP ≥ 130 mmHg, the proportion of those with microbleeds was numerically greater in those with more severe CAA (p for trend, 0.084). In conclusion, we found no evidence of an association between SBP and CAA. Future studies need to develop non-invasive laboratory tests to diagnose CAA and prospectively examine this association and its implication on the pathophysiology and outcome of Alzheimer's disease.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | - N Maritza Dowling
- Department of Acute & Chronic Care, School of Nursing, George Washington University, Washington, DC 20147, USA
- Department of Epidemiology & Biostatistics, Milken School of Public Health, George Washington University, Washington, DC 20147, USA
| | - Jeffrey M Roseman
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ali Ahmed
- Center for Data Science and Outcomes Research, Veterans Affairs Medical Center, Washington, DC 20242, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
- Department of Medicine, School of Medicine, Georgetown University, Washington, DC 20057, USA
| | - Edward Zamrini
- Center for Data Science and Outcomes Research, Veterans Affairs Medical Center, Washington, DC 20242, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
3
|
Grenon MB, Papavergi MT, Bathini P, Sadowski M, Lemere CA. Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:5754. [PMID: 38891941 PMCID: PMC11172317 DOI: 10.3390/ijms25115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein ε4 allele carriers (APOE4) compared to non-carriers. To reflect patients most at risk for vascular complications of anti-Aβ immunotherapy, we selected an APPswe/PS1dE9 transgenic mouse model bearing the human APOE4 gene (APPPS1:E4) and compared it with the same APP/PS1 mouse model bearing the human APOE3 gene (APOE ε3 allele; APPPS1:E3). Using histological and biochemical analyses, we characterized mice at three ages: 8, 12, and 16 months. Female and male mice were assayed for general cerebral fibrillar and pyroglutamate (pGlu-3) Aβ deposition, cerebral amyloid angiopathy (CAA), microhemorrhages, apoE and cholesterol composition, astrocytes, microglia, inflammation, lysosomal dysfunction, and neuritic dystrophy. Amyloidosis, lipid deposition, and astrogliosis increased with age in APPPS1:E4 mice, while inflammation did not reveal significant changes with age. In general, APOE4 carriers showed elevated Aβ, apoE, reactive astrocytes, pro-inflammatory cytokines, microglial response, and neuritic dystrophy compared to APOE3 carriers at different ages. These results highlight the potential of the APPPS1:E4 mouse model as a valuable tool in investigating the vascular side effects associated with anti-amyloid immunotherapy.
Collapse
Affiliation(s)
- Martine B. Grenon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Section Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Praveen Bathini
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| | - Martin Sadowski
- Departments of Neurology, Psychiatry, and Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| |
Collapse
|
4
|
Tolar M, Hey JA, Power A, Abushakra S. The Single Toxin Origin of Alzheimer's Disease and Other Neurodegenerative Disorders Enables Targeted Approach to Treatment and Prevention. Int J Mol Sci 2024; 25:2727. [PMID: 38473975 PMCID: PMC10932387 DOI: 10.3390/ijms25052727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
New data suggest that the aggregation of misfolded native proteins initiates and drives the pathogenic cascade that leads to Alzheimer's disease (AD) and other age-related neurodegenerative disorders. We propose a unifying single toxin theory of brain neurodegeneration that identifies new targets and approaches to the development of disease-modifying treatments. An extensive body of genetic evidence suggests soluble aggregates of beta-amyloid (Aβ) as the primary neurotoxin in the pathogenesis of AD. New insights from fluid biomarkers, imaging, and clinical studies provide further evidence for the decisive impact of toxic Aβ species in the initiation and progression of AD. Understanding the distinct roles of soluble and insoluble amyloid aggregates on AD pathogenesis has been the key missing piece of the Alzheimer's puzzle. Data from clinical trials with anti-amyloid agents and recent advances in the diagnosis of AD demonstrate that the driving insult in biologically defined AD is the neurotoxicity of soluble Aβ aggregates, called oligomers and protofibrils, rather than the relatively inert insoluble mature fibrils and amyloid plaques. Amyloid oligomers appear to be the primary factor causing the synaptic impairment, neuronal stress, spreading of tau pathology, and eventual cell death that lead to the clinical syndrome of AD dementia. All other biochemical effects and neurodegenerative changes in the brain that are observed in AD are a response to or a downstream effect of this initial toxic insult by oligomers. Other neurodegenerative disorders follow a similar pattern of pathogenesis, in which normal brain proteins with important biological functions become trapped in the aging brain due to impaired clearance and then misfold and aggregate into neurotoxic species that exhibit prion-like behavior. These aggregates then spread through the brain and cause disease-specific neurodegeneration. Targeting the inhibition of this initial step in neurodegeneration by blocking the misfolding and aggregation of healthy proteins has the potential to slow or arrest disease progression, and if treatment is administered early in the course of AD and other neurodegenerative disorders, it may delay or prevent the onset of clinical symptoms.
Collapse
|
5
|
Sin MK, Zamrini E, Ahmed A, Nho K, Hajjar I. Anti-Amyloid Therapy, AD, and ARIA: Untangling the Role of CAA. J Clin Med 2023; 12:6792. [PMID: 37959255 PMCID: PMC10647766 DOI: 10.3390/jcm12216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Anti-amyloid therapies (AATs), such as anti-amyloid monoclonal antibodies, are emerging treatments for people with early Alzheimer's disease (AD). AATs target amyloid β plaques in the brain. Amyloid-related imaging abnormalities (ARIA), abnormal signals seen on magnetic resonance imaging (MRI) of the brain in patients with AD, may occur spontaneously but occur more frequently as side effects of AATs. Cerebral amyloid angiopathy (CAA) is a major risk factor for ARIA. Amyloid β plays a key role in the pathogenesis of AD and of CAA. Amyloid β accumulation in the brain parenchyma as plaques is a pathological hallmark of AD, whereas amyloid β accumulation in cerebral vessels leads to CAA. A better understanding of the pathophysiology of ARIA is necessary for early detection of those at highest risk. This could lead to improved risk stratification and the ultimate reduction of symptomatic ARIA. Histopathological confirmation of CAA by brain biopsy or autopsy is the gold standard but is not clinically feasible. MRI is an available in vivo tool for detecting CAA. Cerebrospinal fluid amyloid β level testing and amyloid PET imaging are available but do not offer specificity for CAA vs amyloid plaques in AD. Thus, developing and testing biomarkers as reliable and sensitive screening tools for the presence and severity of CAA is a priority to minimize ARIA complications.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | | | - Ali Ahmed
- VA Medical Center, Washington, DC 20242, USA;
| | - Kwangsik Nho
- School of Medicine, Indianna University, Indianapolis, IN 46202, USA;
| | - Ihab Hajjar
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| |
Collapse
|
6
|
Wang H, Zhang Z, Sittirattanayeunyong S, Hongpaisan J. Association of Apolipoprotein E4-related Microvascular Disease in the Alzheimer's Disease Hippocampal CA1 Stratum Radiatum. Neuroscience 2023; 526:204-222. [PMID: 37385335 PMCID: PMC10528415 DOI: 10.1016/j.neuroscience.2023.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Current data suggest a hypothesis of vascular pathogenesis for the development and progression of Alzheimer's disease (AD). To investigate this, we studied the association of apolipoprotein E4 (APOE4) gene on microvessels in human autopsy-confirmed AD with and without APOE4, compared with age/sex-matched control (AC) hippocampal CA1 stratum radiatum. AD arterioles (without APOE4 gene) had mild oxidative stress and loss of vascular endothelial growth factor (VEGF) and endothelial cell density, reflecting aging progression. In AD + APOE4, an increase in strong oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), VEGF, and endothelial cell density were associated with increased diameter of arterioles and perivascular space dilation. In cultured human brain microvascular cells (HBMECs), treatment of ApoE4 protein plus amyloid-β (Aβ) oligomers increased superoxide production and the apoptotic marker cleaved caspase 3, sustained hypoxia inducible factor-1α (HIF-1α) stability that was associated with an increase in MnSOD, VEGF, and cell density. This cell over-proliferation was inhibited with the antioxidants N-acetyl cysteine and MnTMPyP, the HIF-1α inhibitor echinomycin, the VEGFR-2 receptor blocker SU1498, the protein kinase C (PKC) ε knock-down (KD) and the extracellular signal-regulated kinase 1/2 (ERK) inhibitor FR180204. The PKCε KD and echinomycin decreased VEGF and/or ERK. In conclusion, AD capillaries and arterioles in hippocampal CA1 stratum radiatum of non-APOE4 carriers are related with aging, while those in APOE4 carriers with AD are related with pathogenesis of cerebrovascular disease.
Collapse
Affiliation(s)
- Huaixing Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zongxiu Zhang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sorawit Sittirattanayeunyong
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Al Olaimat M, Martinez J, Saeed F, Bozdag S. PPAD: a deep learning architecture to predict progression of Alzheimer's disease. Bioinformatics 2023; 39:i149-i157. [PMID: 37387135 PMCID: PMC10311312 DOI: 10.1093/bioinformatics/btad249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Mild cognitive impairment (MCI) is an intermediary stage between cognitively normal state and AD. Not all people who have MCI convert to AD. The diagnosis of AD is made after significant symptoms of dementia such as short-term memory loss are already present. Since AD is currently an irreversible disease, diagnosis at the onset of the disease brings a huge burden on patients, their caregivers, and the healthcare sector. Thus, there is a crucial need to develop methods for the early prediction AD for patients who have MCI. Recurrent neural networks (RNN) have been successfully used to handle electronic health records (EHR) for predicting conversion from MCI to AD. However, RNN ignores irregular time intervals between successive events which occurs common in electronic health record data. In this study, we propose two deep learning architectures based on RNN, namely Predicting Progression of Alzheimer's Disease (PPAD) and PPAD-Autoencoder. PPAD and PPAD-Autoencoder are designed for early predicting conversion from MCI to AD at the next visit and multiple visits ahead for patients, respectively. To minimize the effect of the irregular time intervals between visits, we propose using age in each visit as an indicator of time change between successive visits. RESULTS Our experimental results conducted on Alzheimer's Disease Neuroimaging Initiative and National Alzheimer's Coordinating Center datasets showed that our proposed models outperformed all baseline models for most prediction scenarios in terms of F2 and sensitivity. We also observed that the age feature was one of top features and was able to address irregular time interval problem. AVAILABILITY AND IMPLEMENTATION https://github.com/bozdaglab/PPAD.
Collapse
Affiliation(s)
- Mohammad Al Olaimat
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States
| | - Jared Martinez
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States
| | - Fahad Saeed
- School of Computing and Information Sciences, Florida International University, Miami, FL, United States
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States
- Department of Mathematics, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | | |
Collapse
|
8
|
Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS. Vascular contributions to Alzheimer's disease. Transl Res 2023; 254:41-53. [PMID: 36529160 PMCID: PMC10481451 DOI: 10.1016/j.trsl.2022.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony Peret
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bolanle M Famakin
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jeremy H Bockholt
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
9
|
Al Olaimat M, Martinez J, Saeed F, Bozdag S. PPAD: A deep learning architecture to predict progression of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526045. [PMID: 36778453 PMCID: PMC9915480 DOI: 10.1101/2023.01.28.526045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Mild cognitive impairment (MCI) is an intermediary stage between cognitively normal (CN) state and AD. Not all people who have MCI convert to AD. The diagnosis of AD is made after significant symptoms of dementia such as short-term memory loss are already present. Since AD is currently an irreversible disease, diagnosis at the onset of disease brings a huge burden on patients, their caregivers, and the healthcare sector. Thus, there is a crucial need to develop methods for the early prediction AD for patients who have MCI. Recurrent Neural Networks (RNN) have been successfully used to handle Electronic Health Records (EHR) for predicting conversion from MCI to AD. However, RNN ignores irregular time intervals between successive events which occurs common in EHR data. In this study, we propose two deep learning architectures based on RNN, namely Predicting Progression of Alzheimer's Disease (PPAD) and PPAD-Autoencoder (PPAD-AE). PPAD and PPAD-AE are designed for early predicting conversion from MCI to AD at the next visit and multiple visits ahead for patients, respectively. To minimize the effect of the irregular time intervals between visits, we propose using age in each visit as an indicator of time change between successive visits. Our experimental results conducted on Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's Coordinating Center (NACC) datasets showed that our proposed models outperformed all baseline models for most prediction scenarios in terms of F2 and sensitivity. We also observed that the age feature was one of top features and was able to address irregular time interval problem.
Collapse
Affiliation(s)
- Mohammad Al Olaimat
- Dept. of Computer Science and Engineering, University of North Texas, Denton, USA
| | - Jared Martinez
- Dept. of Computer Science and Engineering, University of North Texas, Denton, USA
| | - Fahad Saeed
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Serdar Bozdag
- Dept. of Computer Science and Engineering, University of North Texas, Denton, USA.,Dept. of Math-ematics, University of North Texas, Denton, USA,BioDiscovery Institute, University of North Texas, Denton, USA
| | | |
Collapse
|
10
|
Blackman J, Love S, Sinclair L, Cain R, Coulthard E. APOE ε4, Alzheimer's disease neuropathology and sleep disturbance, in individuals with and without dementia. Alzheimers Res Ther 2022; 14:47. [PMID: 35354468 PMCID: PMC8969347 DOI: 10.1186/s13195-022-00992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/20/2022] [Indexed: 12/20/2022]
Abstract
Background Apolipoprotein E epsilon 4 (APOE-ε4) carrier status is an established risk factor for Alzheimer’s disease (AD) dementia. It has also been linked with sleep disturbance in healthy older adults and increased insomnia risk. This association may be driven by the effect of APOE-ε4 on AD pathological change, itself associated with sleep abnormalities. To assess this relationship, we have evaluated post-mortem neuropathological findings in patients with and without cognitive impairment and AD pathology, who had extensive clinical assessment within 12 months of death. Methods This retrospective cohort study used UK Brain Banks Network data. Eligible subjects were aged over 50, with pre-mortem neuropsychiatry inventory scores of sleep disturbance (NPI-K), neurocognitive testing and functional cognitive status assessment (Clinical Dementia Rating scale). Neuropathological data included Thal phase, Braak stage and CERAD scores (measures of Aβ plaque distribution, tangle distribution and neuritic plaque density, respectively) combined to form the National Institute on Aging Alzheimer’s Association (NIA-AA) ABC score reflecting AD neuropathology. Participants with other significant intracerebral pathology or pathological features of non-AD dementia were excluded. Multivariate linear regression was performed with NPIK Global Score (NPIK frequency score multiplied by severity score) as the dependent variable and APOE-ε4 heterozygosity or homozygosity as independent variables. Covariates included age, gender, APOE-ε2 status and ABC NPI measures reflecting depression and anxiety. Further models stratified by ABC score and functional cognitive status were also produced. Results Seven hundred twenty-eight records were identified. Two hundred two participants were included in the final analysis: mean (SD) age 84.0 (9.2) and MMSE 14.0 (11.8). Mean sleep disturbance scores were highest in ε4 homozygosity (n=11), 4.55 (5.4); intermediate in ε4 heterozygosity (n=95), 2.03 (4.0); and lowest in non-ε4 carriers (n=96), 1.36 (3.3). Within the full sample, controlling for pathological status, age, gender, depression, anxiety and CDR-SOB status, APOE-ε4 homozygosity was associated with sleep disturbance (β 2.53, p=0.034). APOE-ε4 heterozygosity was similarly associated in individuals without dementia (β 1.21, p=0.048). Conclusion These findings lend weight to the hypothesis that APOE-ε4 affects sleep by mechanisms independent of AD pathological change. Evaluation of those mechanisms would enhance understanding of sleep disturbance pathways and potentially provide treatment targets. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00992-y.
Collapse
Affiliation(s)
| | - Seth Love
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Lindsey Sinclair
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Richard Cain
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Elizabeth Coulthard
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK.
| |
Collapse
|
11
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
12
|
Walker JM, Richardson TE, Farrell K, White, III CL, Crary JF. The Frequency of Cerebral Amyloid Angiopathy in Primary Age-Related Tauopathy. J Neuropathol Exp Neurol 2022; 81:246-248. [PMID: 34981120 PMCID: PMC9020475 DOI: 10.1093/jnen/nlab131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jamie M Walker
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles L White, III
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Apátiga-Pérez R, Soto-Rojas LO, Campa-Córdoba BB, Luna-Viramontes NI, Cuevas E, Villanueva-Fierro I, Ontiveros-Torres MA, Bravo-Muñoz M, Flores-Rodríguez P, Garcés-Ramirez L, de la Cruz F, Montiel-Sosa JF, Pacheco-Herrero M, Luna-Muñoz J. Neurovascular dysfunction and vascular amyloid accumulation as early events in Alzheimer's disease. Metab Brain Dis 2022; 37:39-50. [PMID: 34406560 DOI: 10.1007/s11011-021-00814-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is clinically characterized by a progressive loss of cognitive functions and short-term memory. AD patients present two distinctive neuropathological lesions: neuritic plaques and neurofibrillary tangles (NFTs), constituted of beta-amyloid peptide (Aβ) and phosphorylated and truncated tau proteins. Aβ deposits around cerebral blood vessels (cerebral amyloid angiopathy, CAA) is a major contributor to vascular dysfunction in AD. Vascular amyloid deposits could be early events in AD due to dysfunction in the neurovascular unit (NVU) and the blood-brain barrier (BBB), deterioration of the gliovascular unit, and/or decrease of cerebral blood flow (CBF). These pathological events can lead to decreased Aβ clearance, facilitate a neuroinflammatory environment as well as synaptic dysfunction and, finally, lead to neurodegeneration. Here, we review the histopathological AD hallmarks and discuss the two-hit vascular hypothesis of AD, emphasizing the role of neurovascular dysfunction as an early factor that favors vascular Aβ aggregation and neurodegeneration. Addtionally, we emphasize that pericyte degeneration is a key and early element in AD that can trigger amyloid vascular accumulation and NVU/BBB dysfunction. Further research is required to better understand the early pathophysiological mechanisms associated with NVU alteration and CAA to generate early biomarkers and timely treatments for AD.
Collapse
Affiliation(s)
- Ricardo Apátiga-Pérez
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Luis O Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - B Berenice Campa-Córdoba
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Nabil Itzi Luna-Viramontes
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | | | | | - Linda Garcés-Ramirez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - José Francisco Montiel-Sosa
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic.
| | - José Luna-Muñoz
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México.
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, República Dominicana.
| |
Collapse
|
14
|
Tataryn NM, Singh V, Dyke JP, Berk-Rauch HE, Clausen DM, Aronowitz E, Norris EH, Strickland S, Ahn HJ. Vascular endothelial growth factor associated dissimilar cerebrovascular phenotypes in two different mouse models of Alzheimer's Disease. Neurobiol Aging 2021; 107:96-108. [PMID: 34416494 PMCID: PMC8595520 DOI: 10.1016/j.neurobiolaging.2021.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023]
Abstract
Vascular perturbations and cerebral hypometabolism are emerging as important components of Alzheimer's disease (AD). While various in vivo imaging modalities have been designed to detect changes of cerebral perfusion and metabolism in AD patients and animal models, study results were often heterogenous with respect to imaging techniques and animal models. We therefore evaluated cerebral perfusion and glucose metabolism of two popular transgenic AD mouse strains, TgCRND8 and 5xFAD, at 7 and 12 months-of-age under identical conditions and analyzed possible molecular mechanisms underlying heterogeneous cerebrovascular phenotypes. Results revealed disparate findings in these two strains, displaying important aspects of AD progression. TgCRND8 mice showed significantly decreased cerebral blood flow and glucose metabolism with unchanged cerebral blood volume (CBV) at 12 months-of-age whereas 5xFAD mice showed unaltered glucose metabolism with significant increase in CBV at 12 months-of-age and a biphasic pattern of early hypoperfusion followed by a rebound to normal cerebral blood flow in late disease. Finally, immunoblotting assays suggested that VEGF dependent vascular tone change may restore normoperfusion and increase CBV in 5xFAD.
Collapse
Affiliation(s)
- Nicholas M Tataryn
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, USA and Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University, New York, NY, USA; Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vishal Singh
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Jonathan P Dyke
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Hanna E Berk-Rauch
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University, New York, NY, USA
| | - Dana M Clausen
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Eric Aronowitz
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University, New York, NY, USA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University, New York, NY, USA
| | - Hyung Jin Ahn
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
15
|
McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ. The informed road map to prevention of Alzheimer Disease: A call to arms. Mol Neurodegener 2021; 16:49. [PMID: 34289882 PMCID: PMC8293489 DOI: 10.1186/s13024-021-00467-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease (AD) prevention trials hold the promise to delay or prevent cognitive decline and dementia onset by intervening before significant neuronal damage occurs. In recent years, the first AD prevention trials have launched and are yielding important findings on the biology of targeting asymptomatic AD pathology. However, there are limitations that impact the design of these prevention trials, including the translation of animal models that recapitulate key stages and multiple pathological aspects of the human disease, missing target validation in asymptomatic disease, uncertain causality of the association of pathophysiologic changes with cognitive and clinical symptoms, and limited biomarker validation for novel targets. The field is accelerating advancements in key areas including the development of highly specific and quantitative biomarker measures for AD pathology, increasing our understanding of the course and relationship of amyloid and tau pathology in asymptomatic through symptomatic stages, and the development of powerful interventions that can slow or reverse AD amyloid pathology. We review the current status of prevention trials and propose key areas of needed research as a call to basic and translational scientists to accelerate AD prevention. Specifically, we review (1) sporadic and dominantly inherited primary and secondary AD prevention trials, (2) proposed targets, mechanisms, and drugs including the amyloid, tau, and inflammatory pathways and combination treatments, (3) the need for more appropriate prevention animal models and experiments, and (4) biomarkers and outcome measures needed to design human asymptomatic prevention trials. We conclude with actions needed to effectively move prevention targets and trials forward.
Collapse
Affiliation(s)
- Eric McDade
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Jorge J. Llibre-Guerra
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - John C. Morris
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Randall J. Bateman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| |
Collapse
|
16
|
Tayler H, Miners JS, Güzel Ö, MacLachlan R, Love S. Mediators of cerebral hypoperfusion and blood-brain barrier leakiness in Alzheimer's disease, vascular dementia and mixed dementia. Brain Pathol 2021; 31:e12935. [PMID: 33410232 PMCID: PMC8412075 DOI: 10.1111/bpa.12935] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
In vascular dementia (VaD) and Alzheimer’s disease (AD), cerebral hypoperfusion and blood‐brain barrier (BBB) leakiness contribute to brain damage. In this study, we have measured biochemical markers and mediators of cerebral hypoperfusion and BBB in the frontal (BA6) and parietal (BA7) cortex and underlying white matter, to investigate the pathophysiology of vascular dysfunction in AD, VaD and mixed dementia. The ratio of myelin‐associated glycoprotein to proteolipid protein‐1 (MAG:PLP1), a post‐mortem biochemical indicator of the adequacy of ante‐mortem cerebral perfusion; the concentration of fibrinogen adjusted for haemoglobin level, a marker of blood‐brain barrier (BBB) leakiness; the level of vascular endothelial growth factor‐A (VEGF), a marker of tissue hypoxia; and endothelin‐1 (EDN1), a potent vasoconstrictor, were measured by ELISA in the frontal and parietal cortex and underlying white matter in 94 AD, 20 VaD, 33 mixed dementia cases and 58 age‐matched controls. All cases were assessed neuropathologically for small vessel disease (SVD), cerebral amyloid angiopathy (CAA) severity, Aβ and phospho‐tau parenchymal load, and Braak tangle stage. Aβ40 and Aβ42 were measured by ELISA in guanidine‐HCl tissue extracts. We found biochemical evidence of cerebral hypoperfusion in AD, VaD and mixed dementia to be associated with SVD, Aβ level, plaque load, EDN1 level and Braak tangle stage, and to be most widespread in mixed dementia. There was evidence of BBB leakiness in AD—limited to the cerebral cortex and related to EDN1 level. In conclusion, abnormalities of cerebral perfusion and BBB function in common types of dementia can largely be explained by a combination of arteriolosclerosis, and Aβ‐, tau‐ and endothelin‐related vascular dysfunction. The relative contributions of these processes vary considerably both between and within the diseases.
Collapse
Affiliation(s)
- Hannah Tayler
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Özge Güzel
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rob MacLachlan
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Boche D, Nicoll JAR. Invited Review - Understanding cause and effect in Alzheimer's pathophysiology: Implications for clinical trials. Neuropathol Appl Neurobiol 2020; 46:623-640. [PMID: 32643143 DOI: 10.1111/nan.12642] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) pathology is multi-faceted, including extracellular accumulation of amyloid-β (Aβ), accumulation of tau within neurons, glial activation and loss of neurons and synapses. From a neuropathological perspective, usually at a single time-point and often at the end-stage of the disease, it is challenging to understand the cause and effect relationships between these components. There are at least four ways of trying to unravel these relationships. First, genetic studies demonstrate mutations that influence Aβ production, but not tau, can initiate AD; whereas genetic variants influencing AD risk are related to innate immunity and lipid metabolism. Second, studies at early time points show that pathology begins decades before the onset of dementia and indicate different anatomical locations for initiation of Aβ and tau accumulation. Third, cause and effect can be studied in experimental models, but most animal models do not fully replicate AD pathology. However, induced pluripotent stem cells (iPSCs) to study live human neurons has introduced a new perspective. Fourth, clinical trials may alter AD pathology giving insights into cause and effect relationships. Therefore, a sequence of (i) neocortical Aβ accumulation followed by (ii) a microglial inflammatory reaction to Aβ, causing neuritic dystrophy which promotes (iii) spread of tau from the limbic system to the neocortex with (iv) progressive tau accumulation and spread resulting in (v) neurodegeneration, explains the evidence. It is proposed that different therapeutic targets are required for different stages of the disease process: Aβ for primary prevention, microglia for secondary prevention, and tau for established disease.
Collapse
Affiliation(s)
- D Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
18
|
Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. Cerebral Amyloid Angiopathy and Neuritic Plaque Pathology Correlate with Cognitive Decline in Elderly Non-Demented Individuals. J Alzheimers Dis 2020; 67:411-422. [PMID: 30594928 DOI: 10.3233/jad-180765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a vascular neuropathology commonly reported in non-cognitively impaired (NCI), mild cognitive impairment, and Alzheimer's disease (AD) brains. However, it is unknown whether similar findings are present in non-demented elderly subjects. OBJECTIVE This study determined the association between CAA and cognition among elderly NCI subjects with varying levels of AD pathology. METHODS Data from 182 cases that received a diagnosis of NCI at their first clinical assessment were obtained from the Rush Religious Orders study (RROS). A cognitive composite score was used to measure cognitive decline. CAA was dichotomized as present or absent. Cases were also dichotomized according to CERAD neuropathological diagnosis and Braak staging. A mixed model-repeated measures analysis assessed decline on the cognitive composite score. RESULTS CAA, alone, was not associated with cognitive decline [-0.87 (95% CI: -3.33, 1.58), p = 0.49]. However, among those with CAA, the High CERAD group had significantly greater decline relative to the Low CERAD group [-4.08 (95% CI: -7.10, -1.06), p = 0.008]. The High and Low CERAD groups were not significantly different [-1.77 (95% CI: -6.14, 2.60), p = 0.43] in those without CAA. Composite score decline in the High and Low Braak groups with [-1.32 (95% CI: -4.40, 1.75), p = 0.40] or without [0.27 (95% CI: -4.01, 4.56), p = 0.90] CAA was not significantly different. CONCLUSION The current data shows that an interaction between CAA and plaque load is associated with greater decline on a cognitive composite score used to test non-cognitively impaired elderly participants in AD prevention trials.
Collapse
Affiliation(s)
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
19
|
Abstract
Although Alzheimer's disease (AD) was described over a century ago, there are no effective approaches to its prevention and treatment. Such a slow progress is explained, at least in part, by our incomplete understanding of the mechanisms underlying the pathogenesis of AD. Here, I champion a hypothesis whereby AD is initiated on a disruption of the blood-brain barrier (BBB) caused by either genetic or non-genetic risk factors. The BBB disruption leads to an autoimmune response against pyramidal neurons located in the allo- and neocortical structures involved in memory formation and storage. The response caused by the adaptive immune system is not strong enough to directly kill neurons but may be sufficient to make them selectively vulnerable to neurofibrillary pathology. This hypothesis is based on the recent data showing that memory formation is associated with epigenetic chromatin modifications and, therefore, may be accompanied by expression of memory-specific proteins recognized by the immune system as "non-self" antigens. The autoimmune hypothesis is testable, and I discuss potential ways for its experimental and clinical verification. If confirmed, this hypothesis can radically change therapeutic approaches to AD prevention and treatment.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Sinclair LI, Kumar A, Darreh-Shori T, Love S. Visual hallucinations in Alzheimer's disease do not seem to be associated with chronic hypoperfusion of to visual processing areas V2 and V3 but may be associated with reduced cholinergic input to these areas. ALZHEIMERS RESEARCH & THERAPY 2019; 11:80. [PMID: 31511061 PMCID: PMC6740037 DOI: 10.1186/s13195-019-0519-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Background Up to 20% of patients with AD experience hallucinations. The pathological substrate is not known. Visual hallucinations (VH) are more common in dementia with Lewy bodies (DLB). In autopsy studies, up to 60% of patients with AD have concomitant Lewy body pathology. Decreased perfusion of the occipital lobe has been implicated in DLB patients with VH, and post-mortem studies point to both decreased cholinergic activity and reduced oxygenation of the occipital cortex in DLB. Methods We used biochemical methods to assess microvessel density (level of von Willebrand factor, a marker of endothelial cell content), ante-mortem oxygenation (vascular endothelial growth factor, a marker of tissue hypoxia; myelin-associated glycoprotein to proteolipid protein-1 ratio, a measure of tissue oxygenation relative to metabolic demand), cholinergic innervation (acetylcholinesterase and choline acetyltransferase), butyrylcholinesterase and insoluble α-synuclein content in the BA18 and BA19 occipital cortex obtained post-mortem from 23 AD patients who had experienced visual hallucinations, 19 AD patients without hallucinations, 19 DLB patients, and 36 controls. The cohorts were matched for age, gender and post-mortem interval. Results There was no evidence of reduced microvessel density, hypoperfusion or reduction in ChAT activity in AD with visual hallucinations. Acetylcholinesterase activity was reduced in both BA18 and BA19, in all 3 dementia groups, and the concentration was also reduced in BA19 in the DLB and AD without visual hallucinations groups. Insoluble α-synuclein was raised in the DLB group in both areas but not in AD either with or without visual hallucinations. Conclusions Our results suggest that visual hallucinations in AD are associated with cholinergic denervation rather than chronic hypoperfusion or α-synuclein accumulation in visual processing areas of the occipital cortex. Electronic supplementary material The online version of this article (10.1186/s13195-019-0519-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsey Isla Sinclair
- Population Health Sciences, Oakfield House, University of Bristol, Clifton, Bristol, BS8 2BN, UK. .,Translational Health Sciences, Level 1 Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| | - Amit Kumar
- Division of Clinical Geriatrics, NEO Plan 7, Department of Neurobiology, Care Sciences and Society (NVS), H1, 141 52, Huddinge, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, NEO Plan 7, Department of Neurobiology, Care Sciences and Society (NVS), H1, 141 52, Huddinge, Sweden
| | - Seth Love
- Translational Health Sciences, Level 1 Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK
| |
Collapse
|
21
|
|
22
|
Karschnia P, Nishimura S, Louvi A. Cerebrovascular disorders associated with genetic lesions. Cell Mol Life Sci 2019; 76:283-300. [PMID: 30327838 PMCID: PMC6450555 DOI: 10.1007/s00018-018-2934-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023]
Abstract
Cerebrovascular disorders are underlain by perturbations in cerebral blood flow and abnormalities in blood vessel structure. Here, we provide an overview of the current knowledge of select cerebrovascular disorders that are associated with genetic lesions and connect genomic findings with analyses aiming to elucidate the cellular and molecular mechanisms of disease pathogenesis. We argue that a mechanistic understanding of genetic (familial) forms of cerebrovascular disease is a prerequisite for the development of rational therapeutic approaches, and has wider implications for treatment of sporadic (non-familial) forms, which are usually more common.
Collapse
Affiliation(s)
- Philipp Karschnia
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Sayoko Nishimura
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
23
|
Vélez JI, Lopera F, Creagh PK, Piñeros LB, Das D, Cervantes-Henríquez ML, Acosta-López JE, Isaza-Ruget MA, Espinosa LG, Easteal S, Quintero GA, Silva CT, Mastronardi CA, Arcos-Burgos M. Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer's Disease. Mol Neurobiol 2018; 56:3235-3243. [PMID: 30112632 PMCID: PMC6476862 DOI: 10.1007/s12035-018-1298-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/02/2018] [Indexed: 11/24/2022]
Abstract
The identification of novel genetic variants contributing to the widespread in the age of onset (AOO) of Alzheimer’s disease (AD) could aid in the prognosis and/or development of new therapeutic strategies focused on early interventions. We recruited 78 individuals with AD from the Paisa genetic isolate in Antioquia, Colombia. These individuals belong to the world largest multigenerational and extended pedigree segregating AD as a consequence of a dominant fully penetrant mutation in the PSEN1 gene and exhibit an AOO ranging from the early 1930s to the late 1970s. To shed light on the genetic underpinning that could explain the large spread of the age of onset (AOO) of AD, 64 single nucleotide polymorphisms (SNP) associated with neuroanatomical, cardiovascular, and cognitive measures in AD were genotyped. Standard quality control and filtering procedures were applied, and single- and multi-locus linear mixed-effects models were used to identify AOO-associated SNPs. A full two-locus interaction model was fitted to define how identified SNPs interact to modulate AOO. We identified two key epistatic interactions between the APOE*E2 allele and SNPs ASTN2-rs7852878 and SNTG1-rs16914781 that delay AOO by up to ~ 8 years (95% CI 3.2–12.7, P = 1.83 × 10−3) and ~ 7.6 years (95% CI 3.3–11.8, P = 8.69 × 10−4), respectively, and validated our previous finding indicating that APOE*E2 delays AOO of AD in PSEN1 E280 mutation carriers. This new evidence involving APOE*E2 as an AOO delayer could be used for developing precision medicine approaches and predictive genomics models to potentially determine AOO in individuals genetically predisposed to AD.
Collapse
Affiliation(s)
- Jorge I. Vélez
- Genomics and Predictive Medicine Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600 Australia
- Universidad del Norte, Barranquilla, Colombia
| | - Francisco Lopera
- Neuroscience Research Group, University of Antioquia, Medellín, Colombia
| | - Penelope K. Creagh
- Genomics and Predictive Medicine Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600 Australia
| | - Laura B. Piñeros
- GENIUROS, Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Debjani Das
- Genome Diversity and Health Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2600 Australia
| | - Martha L. Cervantes-Henríquez
- Universidad del Norte, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Johan E. Acosta-López
- Grupo de Neurociencias del Caribe, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Lady G. Espinosa
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Simon Easteal
- Genome Diversity and Health Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2600 Australia
| | - Gustavo A. Quintero
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Tamar Silva
- GENIUROS, Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudio A. Mastronardi
- Genomics and Predictive Medicine Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600 Australia
- Neuroscience Group (NeUROS), Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio Arcos-Burgos
- Genomics and Predictive Medicine Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600 Australia
- GENIUROS, Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
24
|
Dorey E, Bamji-Mirza M, Najem D, Li Y, Liu H, Callaghan D, Walker D, Lue LF, Stanimirovic D, Zhang W. Apolipoprotein E Isoforms Differentially Regulate Alzheimer's Disease and Amyloid-β-Induced Inflammatory Response in vivo and in vitro. J Alzheimers Dis 2018; 57:1265-1279. [PMID: 28372324 DOI: 10.3233/jad-160133] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation plays a critical role in neuronal dysfunction and death of Alzheimer's disease (AD). ApoE4 is a major risk factor of AD, while ApoE2 is neuroprotective. Little is known about the roles of ApoE isoforms in the neuroinflammation seen in AD. Their roles and mechanisms in Aβ-induced/neuroinflammation were investigated in this study using in vivo and in vitro models. Rat astrocytes were treated with lipid-poor recombinant hApoE and/or Aβ42. Mouse astrocyte lines-expressing lipidated hApoE were treated with Aβ42 and/or vitamin D receptor (VDR) agonist, 1α,25-dihydroxyvitamin D3. Cells and media were harvested for cytokine ELISA, RNA isolated for qRT-PCR, and nuclear protein for transcription factor (TF) arrays and EMSA. hApoE-transgenic and AD mice were mated to generate hApoE2/AD and hApoE4/AD mice. Mice were euthanized at 6 months of age. Brain tissues were collected for cytokine ELISA array, Aβ ELISA, immunoblotting, and immunohistochemistry. hApoE4/AD mice had significantly higher levels of inflammatory cytokines than hApoE2/AD mice. Lipidated hApoE4 significantly promoted inflammatory gene expression induced by Aβ42 but not recombinant hApoE4 in astrocytes as compared to controls. Lipidated hApoE3 provided a certain degree of protection against Aβ42-induced inflammatory response but not recombinant hApoE3 as compared to controls. Both lipidated and recombinant hApoE2 provided protection against Aβ42-induced inflammatory response compared to controls. TF array revealed that ApoE2 strongly activated VDR in Aβ42-treated astrocytes. Application of 1α,25-dihydroxyvitamin D3 completely inhibited Aβ-induced inflammatory gene expression in hApoE4-expressing astrocytes. The results suggest that ApoE4 promotes, but ApoE2 inhibits, AD/Aβ-induced neuroinflammation via VDR signaling. Targeting VDR signaling or active form of VD3 may relieve AD neuroinflammation or/and neurodegeneration.
Collapse
Affiliation(s)
- Evan Dorey
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Michelle Bamji-Mirza
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Dema Najem
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Yan Li
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Hong Liu
- Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Debbie Callaghan
- Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | | | - Lih-Fen Lue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Danica Stanimirovic
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | - Wandong Zhang
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| |
Collapse
|
25
|
Skrobot OA, McKnight AJ, Passmore PA, Seripa D, Mecocci P, Panza F, Kalaria R, Wilcock G, Munafò M, Erkinjuntti T, Karhunen P, Pessi T, Martiskainen M, Love S, Kehoe PG. A Validation Study of Vascular Cognitive Impairment Genetics Meta-Analysis Findings in an Independent Collaborative Cohort. J Alzheimers Dis 2018; 53:981-9. [PMID: 27314523 DOI: 10.3233/jad-150862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular cognitive impairment (VCI), including its severe form, vascular dementia (VaD), is the second most common form of dementia. The genetic etiology of sporadic VCI remains largely unknown. We previously conducted a systematic review and meta-analysis of all published genetic association studies of sporadic VCI prior to 6 July 2012, which demonstrated that APOE (ɛ4, ɛ2) and MTHFR (rs1801133) variants were associated with susceptibility for VCI. De novo genotyping was conducted in a new independent relatively large collaborative European cohort of VaD (nmax = 549) and elderly non-demented samples (nmax = 552). Where available, genotype data derived from Illumina's 610-quad array for 1210 GERAD1 control samples were also included in analyses of genes examined. Associations were tested using the Cochran-Armitage trend test: MTHFR rs1801133 (OR = 1.36, 95% CI 1.16-1.58, p = <0.0001), APOE rs7412 (OR = 0.62, 95% CI 0.42-0.90, p = 0.01), and APOE rs429358 (OR = 1.59, 95% CI 1.17-2.16, p = 0.003). Association was also observed with APOE epsilon alleles; ɛ4 (OR = 1.85, 95% CI 1.35-2.52, p = <0.0001) and ɛ2 (OR = 0.67, 95% CI 0.46-0.98, p = 0.03). Logistic regression and Bonferroni correction in a subgroup of the cohort adjusted for gender, age, and population maintained the association of APOE rs429358 and ɛ4 allele.
Collapse
Affiliation(s)
- Olivia Anna Skrobot
- Dementia Research Group, University of Bristol, Level 1, Learning & Research, Southmead Hospital, Bristol, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Belfast, UK
| | - Peter Anthony Passmore
- Institute of Clinical Sciences, Block B, Queens University Belfast, Royal Victoria Hospital, Belfast, UK
| | - Davide Seripa
- Geriatric Unit & Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, I.R.C.C.S. "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Ospedale S.M. della Misericordia, Perugia, Italy
| | - Francesco Panza
- Geriatric Unit & Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, I.R.C.C.S. "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy.,Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Policlinico, Bari, Italy
| | - Rajesh Kalaria
- Institute of Neuroscience, NIHR Biomedical Research Building, Campus for Ageing & Vitality Newcastle upon Tyne, UK
| | - Gordon Wilcock
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headington, Oxford, UK
| | - Marcus Munafò
- MRC Integrative Epidemiology Unit, UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, UK
| | - Timo Erkinjuntti
- Department of Neurology and Memory Research Unit, Helsinki University Central Hospital, HUS, Finland
| | - Pekka Karhunen
- School of Medicine, University of Tampere, Finland.,Fimlab Laboratories Ltd, Tampere University Hospital region, Finland
| | - Tanja Pessi
- School of Medicine, University of Tampere, Finland.,Fimlab Laboratories Ltd, Tampere University Hospital region, Finland
| | - Mika Martiskainen
- School of Medicine, University of Tampere, Finland.,Fimlab Laboratories Ltd, Tampere University Hospital region, Finland
| | - Seth Love
- Dementia Research Group, University of Bristol, Level 1, Learning & Research, Southmead Hospital, Bristol, UK
| | | | - Patrick Gavin Kehoe
- Dementia Research Group, University of Bristol, Level 1, Learning & Research, Southmead Hospital, Bristol, UK
| |
Collapse
|
26
|
Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J Cereb Blood Flow Metab 2018; 38:103-115. [PMID: 28151041 PMCID: PMC5757436 DOI: 10.1177/0271678x17690761] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies implicate loss of pericytes in hypoperfusion and blood-brain barrier (BBB) leakage in Alzheimer's disease (AD). In this study, we have measured levels of the pericyte marker, platelet-derived growth factor receptor-β (PDGFRB), and fibrinogen (to assess blood-brain barrier leakage), and analyzed their relationship to indicators of microvessel density (von Willebrand factor level), ante-mortem oxygenation (myelin-associated glycoprotein:proteolipid protein-1 ratio and vascular endothelial growth factor level), Aβ level and plaque load, in precuneus and underlying white matter from 49 AD to 37 control brains. There was reduction in PDGFRB and increased fibrinogen in the precuneus in AD. These changes correlated with reduction in oxygenation and with plaque load. In the underlying white matter, increased fibrinogen correlated with reduced oxygenation, but PDGFRB level was unchanged. The level of platelet-derived growth factor-ββ (PDGF-BB), important for pericyte maintenance, was increased in AD but mainly in the insoluble tissue fraction, correlating with insoluble Aβ level. Loss of the PDGFRB within the precuneus in AD is associated with fibrinogen leakage and reduced oxygenation, and related to fibrillar Aβ accumulation. In contrast, fibrinogen leakage and reduced oxygenation of underlying white matter occur independently of loss of PDGFRB, perhaps secondary to reduced transcortical perfusion.
Collapse
Affiliation(s)
| | | | - Seth Love
- Seth Love, School of Clinical Sciences,
University of Bristol, Learning & Research level 2, Southmead Hospital,
Bristol BS10 5NB, UK.
| |
Collapse
|
27
|
Abushouk AI, Elmaraezy A, Aglan A, Salama R, Fouda S, Fouda R, AlSafadi AM. Bapineuzumab for mild to moderate Alzheimer's disease: a meta-analysis of randomized controlled trials. BMC Neurol 2017; 17:66. [PMID: 28376794 PMCID: PMC5381133 DOI: 10.1186/s12883-017-0850-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a globally prevalent neurodegenerative condition, clinically characterized by progressive memory loss and gradual impairment of cognitive functions. Bapineuzumab is a fully humanized monoclonal antibody that binds to neurotoxic amyloid proteins in the brain, enhancing their clearance. We performed this systematic review and meta-analysis to evaluate the safety and efficacy of bapineuzumab in patients with mild to moderate Alzheimer’s disease. Methods We performed a web-based literature search of PubMed, Ovid, EBSCO, Scopus, Embase, Cochrane CENTRAL, and web of science using the relevant keywords. Data were extracted from eligible records and pooled as mean difference (MD) or risk ratio (RR) values with their 95% confidence interval (CI), using Review Manager software (version 5.3 for windows). Heterogeneity was measured by Chi-square and I-square tests. Result The pooled effect estimate from six randomized clinical trials (n = 2380) showed that bapineuzumab significantly reduced the cerebrospinal fluid concentration of phosphorylated tau proteins (Standardized MD = −5.53, 95% CI [−8.29, −2.76]). However, the bapineuzumab group was not superior to the placebo group in terms of change from baseline in Alzheimer’s disease assessment scale (ADAS)-Cog11 (MD = 0.14, 95% CI [−0.72, 0.99]), disability assessment for dementia (DAD) scale (MD = 1.35, 95% CI [−1.74, 4.43]), and mini-mental state examination (MMSE) scores (MD = 0.08, 95% CI [−0.31, 0.47]). Regarding safety, bapineuzumab increased the risk of serious treatment-emergent adverse events (RR = 1.18, 95% CI [1.02, 1.37]) and cerebral vasogenic edema (RR = 40.88, 95% CI [11.94, 135.95]). All bapineuzumab doses (0.15, 0.5, 1, and 2 mg/kg) were similar to placebo in terms of change from baseline in ADAS-cog11, DAD, and MMSE scores, except for the 0.15 mg/kg dose, which caused a significant worsening on the ADAS-cog11 scale (MD = 5.6, 95% CI [0.22, 10.98]). Conclusions Considering the lack of clinical efficacy, combined with the significant association with serious adverse events, bapineuzumab should not be used to treat patients with mild to moderate AD. Future studies should investigate the effect of combining bapineuzumab with other therapeutic strategies and reevaluate the efficacy of targeting amyloid β proteins in AD therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12883-017-0850-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ahmed Elmaraezy
- NovaMed Medical Research Association, Cairo, Egypt.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amro Aglan
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reham Salama
- Faculty of Medicine, Benha University, Qaluobia, Egypt
| | - Samar Fouda
- Faculty of Medicine, Zagazig University, Elsharkia, Egypt
| | - Rana Fouda
- Faculty of Medicine, Zagazig University, Elsharkia, Egypt
| | | |
Collapse
|
28
|
Condello C, Stöehr J. Aβ propagation and strains: Implications for the phenotypic diversity in Alzheimer's disease. Neurobiol Dis 2017; 109:191-200. [PMID: 28359847 DOI: 10.1016/j.nbd.2017.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/09/2017] [Accepted: 03/26/2017] [Indexed: 12/13/2022] Open
Abstract
The progressive nature of Alzheimer's disease (AD) is thought to occur, at least in part, by the self-replication and spreading of Aβ and Tau aggregates through a prion mechanism. Evidence now exists that structural variants of Aβ prions can propagate their distinct conformations through template-directed folding of naïve Aβ peptides. This notion implicates that the first self-propagating Aβ assembly to emerge in the brain dictates the conformation, anatomical spread and pace of subsequently formed deposits. It is hypothesized that a prion mechanism defines the molecular basis underlying the diverse clinicopathologic phenotypes observed across the spectrum of AD patients. Thus, distinct AD strains might require further sub-classification based on biochemical and structural characterization of aggregated Aβ. Here, we review the evidence for distinct, self-propagating Aβ strains, and discuss potential cellular mechanisms that might contribute to their manifestation. From this perspective, we also explore the implications of Aβ strains for current FDA-approved medical imaging probes and therapies for amyloid. Ultimately, the discovery of new molecular tools to differentiate Aβ strains and dissect the heterogeneity of AD may lead to the development of more informative diagnostics and strain-specific therapeutics.
Collapse
Affiliation(s)
- Carlo Condello
- Institute for Neurodegenerative Diseases, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Jan Stöehr
- Institute for Neurodegenerative Diseases, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States.
| |
Collapse
|
29
|
Pankiewicz JE, Baquero-Buitrago J, Sanchez S, Lopez-Contreras J, Kim J, Sullivan PM, Holtzman DM, Sadowski MJ. APOE Genotype Differentially Modulates Effects of Anti-Aβ, Passive Immunization in APP Transgenic Mice. Mol Neurodegener 2017; 12:12. [PMID: 28143566 PMCID: PMC5282859 DOI: 10.1186/s13024-017-0156-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/24/2017] [Indexed: 11/11/2022] Open
Abstract
Background APOE genotype is the foremost genetic factor modulating β-amyloid (Aβ) deposition and risk of sporadic Alzheimer’s disease (AD). Here we investigated how APOE genotype influences response to anti-Aβ immunotherapy. Methods APPSW/PS1dE9 (APP) transgenic mice with targeted replacement of the murine Apoe gene for human APOE alleles received 10D5 anti-Aβ or TY11-15 isotype control antibodies between the ages of 12 and 15 months. Results Anti-Aβ immunization decreased both the load of fibrillar plaques and the load of Aβ immunopositive plaques in mice of all APOE backgrounds. Although the relative reduction in parenchymal Aβ plaque load was comparable across all APOE genotypes, APP/ε4 mice showed the greatest reduction in the absolute Aβ plaque load values, given their highest baseline. The immunization stimulated phagocytic activation of microglia, which magnitude adjusted for the post-treatment plaque load was the greatest in APP/ε4 mice implying association between the ε4 allele and impaired Aβ phagocytosis. Perivascular hemosiderin deposits reflecting ensued microhemorrhages were associated with vascular Aβ (VAβ) and ubiquitously present in control mice of all APOE genotypes, although in APP/ε3 mice their incidence was the lowest. Anti-Aβ immunization significantly reduced VAβ burden but increased the number of hemosiderin deposits across all APOE genotypes with the strongest and the weakest effect in APP/ε2 and APP/ε3 mice, respectively. Conclusions Our studies indicate that APOE genotype differentially modulates microglia activation and Aβ plaque load reduction during anti-Aβ immunotherapy. The APOE ε3 allele shows strong protective effect against immunotherapy associated microhemorrhages; while, conversely, the APOE ε2 allele increases risk thereof. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0156-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna E Pankiewicz
- Department of Neurology, New York University School of Medicine, New York, NY, 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jairo Baquero-Buitrago
- Department of Neurology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sandrine Sanchez
- Department of Neurology, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Jungsu Kim
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Patrick M Sullivan
- Department of Medicine (Geriatrics), Duke University School of Medicine, Durham, NC, 27710, USA.,Durham VA Medical Center's Geriatric Research, Education, and Clinical Center, Durham, NC, 27710, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Martin J Sadowski
- Department of Neurology, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
30
|
Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-β and tau pathology. ALZHEIMERS RESEARCH & THERAPY 2016; 8:50. [PMID: 27884212 PMCID: PMC5123239 DOI: 10.1186/s13195-016-0217-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hyperactivity of the classical axis of the renin-angiotensin system (RAS), mediated by angiotensin II (Ang II) activation of the angiotensin II type 1 receptor (AT1R), is implicated in the pathogenesis of Alzheimer's disease (AD). Angiotensin-converting enzyme-2 (ACE-2) degrades Ang II to angiotensin 1-7 (Ang (1-7)) and counter-regulates the classical axis of RAS. We have investigated the expression and distribution of ACE-2 in post-mortem human brain tissue in relation to AD pathology and classical RAS axis activity. METHODS We measured ACE-2 activity by fluorogenic peptide substrate assay in mid-frontal cortex (Brodmann area 9) in a cohort of AD (n = 90) and age-matched non-demented controls (n = 59) for which we have previous data on ACE-1 activity, amyloid β (Aβ) level and tau pathology, as well as known ACE1 (rs1799752) indel polymorphism, apolipoprotein E (APOE) genotype, and cerebral amyloid angiopathy severity scores. RESULTS ACE-2 activity was significantly reduced in AD compared with age-matched controls (P < 0.0001) and correlated inversely with levels of Aβ (r = -0.267, P < 0.001) and phosphorylated tau (p-tau) pathology (r = -0.327, P < 0.01). ACE-2 was reduced in individuals possessing an APOE ε4 allele (P < 0.05) and was associated with ACE1 indel polymorphism (P < 0.05), with lower ACE-2 activity in individuals homozygous for the ACE1 insertion AD risk allele. ACE-2 activity correlated inversely with ACE-1 activity (r = -0.453, P < 0.0001), and the ratio of ACE-1 to ACE-2 was significantly elevated in AD (P < 0.0001). Finally, we show that the ratio of Ang II to Ang (1-7) (a proxy measure of ACE-2 activity indicating conversion of Ang II to Ang (1-7)) is reduced in AD. CONCLUSIONS Together, our findings indicate that ACE-2 activity is reduced in AD and is an important regulator of the central classical ACE-1/Ang II/AT1R axis of RAS, and also that dysregulation of this pathway likely plays a significant role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Steffenny Wong
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Noura Al Mulhim
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Laura Elyse Palmer
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
31
|
Skrobot OA, Attems J, Esiri M, Hortobágyi T, Ironside JW, Kalaria RN, King A, Lammie GA, Mann D, Neal J, Ben-Shlomo Y, Kehoe PG, Love S. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment. Brain 2016; 139:2957-2969. [DOI: 10.1093/brain/aww214] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/03/2016] [Indexed: 01/01/2023] Open
|
32
|
Love S, Miners J. Cerebral Hypoperfusion and the Energy Deficit in Alzheimer's Disease. Brain Pathol 2016; 26:607-17. [PMID: 27327656 PMCID: PMC8028913 DOI: 10.1111/bpa.12401] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/21/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
There is a perfusion deficit in Alzheimer's disease (AD), commencing in the precuneus and spreading to other parts of the cerebral cortex. The deficit anticipates the development of dementia, contributes to brain damage, and is caused by both functional and structural abnormalities of the cerebral vasculature. Most of the abnormalities are probably secondary to the accumulation of Aβ but the consequent hypoperfusion may, in turn, increase Aβ production. In the early stages of disease, abnormalities that cause vasoconstriction predominate. These include cholinergic vascular denervation, inhibition of endothelial nitric oxide synthase, increased production of endothelin-1 production and possibly also of angiotensin II. Patients with AD also have an increased prevalence of structural disease of cerebral microvessels, particularly CAA and capillary damage, and particularly in the later stages of disease these are likely to make an important contribution to the cerebral hypoperfusion. The metabolic abnormalities that cause early vascular dysfunction offer several targets for therapeutic intervention. However, for intervention to be effective it probably needs to be early. Prolonged cerebral hypoperfusion may induce compensatory circulatory changes that are themselves damaging, including hypertension and small vessel disease. This has implications for the use of antihypertensive drugs once there is accumulation of Aβ within the brain.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| | - J.Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| |
Collapse
|
33
|
Yamazaki Y, Painter MM, Bu G, Kanekiyo T. Apolipoprotein E as a Therapeutic Target in Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs 2016; 30:773-89. [PMID: 27328687 PMCID: PMC5526196 DOI: 10.1007/s40263-016-0361-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that causes progressive cognitive decline. The majority of AD cases are sporadic and late-onset (>65 years old) making it the leading cause of dementia in the elderly. While both genetic and environmental factors contribute to the development of late-onset AD (LOAD), APOE polymorphism is a major genetic risk determinant for LOAD. In humans, the APOE gene has three major allelic variants: ε2, ε3, and ε4, of which APOE ε4 is the strongest genetic risk factor for LOAD, whereas APOE ε2 is protective. Mounting evidence suggests that APOE ε4 contributes to AD pathogenesis through multiple pathways including facilitated amyloid-β deposition, increased tangle formation, synaptic dysfunction, exacerbated neuroinflammation, and cerebrovascular defects. Since APOE modulates multiple biological processes through its corresponding protein apolipoprotein E (apoE), APOE gene and apoE properties have been a promising target for therapy and drug development against AD. In this review, we summarize the current evidence regarding how the APOE ε4 allele contributes to the pathogenesis of AD and how relevant therapeutic approaches can be developed to target apoE-mediated pathways in AD.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Meghan M Painter
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
34
|
Miners JS, Clarke P, Love S. Clusterin levels are increased in Alzheimer's disease and influence the regional distribution of Aβ. Brain Pathol 2016; 27:305-313. [PMID: 27248362 DOI: 10.1111/bpa.12392] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Clusterin, also known as apoJ, is a lipoprotein abundantly expressed within the CNS. It regulates Aβ fibril formation and toxicity and facilitates amyloid-β (Aβ) transport across the blood-brain barrier. Genome-wide association studies have shown variations in the clusterin gene (CLU) to influence the risk of developing sporadic Alzheimer's disease (AD). To explore whether clusterin modulates the regional deposition of Aβ, we measured levels of soluble (NP40-extracted) and insoluble (guanidine-HCl-extracted) clusterin, Aβ40 and Aβ42 by sandwich ELISA in brain regions with a predilection for amyloid pathology-mid-frontal cortex (MF), cingulate cortex (CC), parahippocampal cortex (PH), and regions with little or no pathology-thalamus (TH) and white matter (WM). Clusterin level was highest in regions with plaque pathology (MF, CC, PH and PC), approximately mirroring the regional distribution of Aβ. It was significantly higher in AD than controls, and correlated positively with Aβ42 and insoluble Aβ40. Soluble clusterin level rose significantly with severity of cerebral amyloid angiopathy, and in MF and PC regions was highest in APOE ɛ4 homozygotes. In the TH and WM (areas with little amyloid pathology) clusterin was unaltered in AD and did not correlate with Aβ level. There was a significant positive correlation between the concentration of clusterin and the regional levels of insoluble Aβ42; however, the molar ratio of clusterin : Aβ42 declined with insoluble Aβ42 level in a region-dependent manner, being lowest in regions with predilection for Aβ plaque pathology. Under physiological conditions, clusterin reduces aggregation and promotes clearance of Aβ. Our findings indicate that in AD, clusterin increases, particularly in regions with most abundant Aβ, but because the increase does not match the rising level of Aβ42, the molar ratio of clusterin : Aβ42 in those regions falls, probably contributing to Aβ deposition within the tissue.
Collapse
Affiliation(s)
- J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Polly Clarke
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|
35
|
Tai LM, Thomas R, Marottoli FM, Koster KP, Kanekiyo T, Morris AWJ, Bu G. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol 2016; 131:709-23. [PMID: 26884068 DOI: 10.1007/s00401-016-1547-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/30/2022]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is associated with cognitive decline during aging, is the greatest genetic risk factor for Alzheimer's disease and has links to other neurodegenerative conditions that affect cognition. Increasing evidence indicates that APOE genotypes differentially modulate the function of the cerebrovasculature (CV), with apoE and its receptors expressed by different cell types at the CV interface (astrocytes, pericytes, smooth muscle cells, brain endothelial cells). However, research on the role of apoE in CV dysfunction has not advanced as quickly as other apoE-modulated pathways. This review will assess what aspects of the CV are modulated by APOE genotypes during aging and under disease states, discuss potential mechanisms, and summarize the therapeutic significance of the topic. We propose that APOE4 induces CV dysfunction through direct signaling at the CV, and indirectly via modulation of peripheral and central pathways. Further, that APOE4 predisposes the CV to damage by, and exacerbates the effects of, additional risk factors (such as sex, hypertension, and diabetes). ApoE4-induced detrimental CV changes include reduced cerebral blood flow (CBF), modified neuron-CBF coupling, increased blood-brain barrier leakiness, cerebral amyloid angiopathy, hemorrhages and disrupted transport of nutrients and toxins. The apoE4-induced detrimental changes may be linked to pericyte migration/activation, astrocyte activation, smooth muscle cell damage, basement membrane degradation and alterations in brain endothelial cells.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA.
| | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Alan W J Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
36
|
Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease. Acta Neuropathol 2016; 131:645-58. [PMID: 26711459 PMCID: PMC4835514 DOI: 10.1007/s00401-015-1522-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
Cerebrovascular disease (CVD) and Alzheimer’s disease (AD) have more in common than their association with ageing. They share risk factors and overlap neuropathologically. Most patients with AD have Aβ amyloid angiopathy and degenerative changes affecting capillaries, and many have ischaemic parenchymal abnormalities. Structural vascular disease contributes to the ischaemic abnormalities in some patients with AD. However, the stereotyped progression of hypoperfusion in this disease, affecting first the precuneus and cingulate gyrus, then the frontal and temporal cortex and lastly the occipital cortex, suggests that other factors are more important, particularly in early disease. Whilst demand for oxygen and glucose falls in late disease, functional MRI, near infrared spectroscopy to measure the saturation of haemoglobin by oxygen, and biochemical analysis of myelin proteins with differential susceptibility to reduced oxygenation have all shown that the reduction in blood flow in AD is primarily a problem of inadequate blood supply, not reduced metabolic demand. Increasing evidence points to non-structural vascular dysfunction rather than structural abnormalities of vessel walls as the main cause of cerebral hypoperfusion in AD. Several mediators are probably responsible. One that is emerging as a major contributor is the vasoconstrictor endothelin-1 (EDN1). Whilst there is clearly an additive component to the clinical and pathological effects of hypoperfusion and AD, experimental and clinical observations suggest that the disease processes also interact mechanistically at a cellular level in a manner that exacerbates both. The elucidation of some of the mechanisms responsible for hypoperfusion in AD and for the interactions between CVD and AD has led to the identification of several novel therapeutic approaches that have the potential to ameliorate ischaemic damage and slow the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Seth Love
- Institute of Clinical Neurosciences, School of Clinical Sciences, Learning and Research Level 2, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| | - J Scott Miners
- Institute of Clinical Neurosciences, School of Clinical Sciences, Learning and Research Level 2, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK
| |
Collapse
|
37
|
Carlson C, Siemers E, Hake A, Case M, Hayduk R, Suhy J, Oh J, Barakos J. Amyloid-related imaging abnormalities from trials of solanezumab for Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 2:75-85. [PMID: 27239538 PMCID: PMC4879647 DOI: 10.1016/j.dadm.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction Solanezumab, a humanized monoclonal antibody that binds soluble amyloid beta peptide, is being developed for treatment of Alzheimer's disease (AD). Methods Patients (n = 2042) with mild and moderate AD were randomized 1:1 to 400-mg solanezumab or placebo infusion every 4 weeks for 80 weeks and 1457 patients entered an open-label extension. Magnetic resonance imaging scans monitored for amyloid-related imaging abnormalities-edema/effusion (ARIA-E) and amyloid-related imaging abnormalities-hemorrhage/hemosiderin deposition. Results Sixteen patients (solanezumab, n = 11; placebo, n = 5) developed ARIA-E during the double-blind phase, and 7 patients developed ARIA-E during the open-label extension as of July 31, 2014. Unique cases are discussed including solanezumab patients who were given solanezumab, while ARIA-E was present and a patient who developed ARIA-E during placebo treatment and again during solanezumab treatment. Discussion Asymptomatic ARIA-E was detected in solanezumab-treated and placebo-treated AD patients. ARIA-E occurs infrequently during solanezumab and placebo treatments but may occur repeatedly in some patients.
Collapse
Affiliation(s)
- Christopher Carlson
- Lilly Bio-medicines, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Eric Siemers
- Lilly Bio-medicines, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Ann Hake
- Lilly Bio-medicines, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Michael Case
- Lilly Bio-medicines, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Roza Hayduk
- Neurology, CNS Medical Strategy & Science, Therapeutic Science & Strategy Unit, Quintiles, Durham, NC, USA
| | - Joyce Suhy
- Medical Imaging, Neuroscience, Bioclinica, Newark, CA, USA
| | - Joonmi Oh
- Medical Imaging, Neuroscience, Bioclinica, Newark, CA, USA
| | - Jerome Barakos
- Medical Imaging, Neuroscience, Bioclinica, Newark, CA, USA; Department of Radiology, California Pacific Medical Center, San Francisco, CA, USA
| |
Collapse
|
38
|
Ashby EL, Miners JS, Kehoe PG, Love S. Effects of Hypertension and Anti-Hypertensive Treatment on Amyloid-β (Aβ) Plaque Load and Aβ-Synthesizing and Aβ-Degrading Enzymes in Frontal Cortex. J Alzheimers Dis 2016; 50:1191-203. [DOI: 10.3233/jad-150831] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Ashby EL, Miners JS, Kumar S, Walter J, Love S, Kehoe PG. Investigation of Aβ phosphorylated at serine 8 (pAβ) in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Neuropathol Appl Neurobiol 2016; 41:428-44. [PMID: 25556395 DOI: 10.1111/nan.12212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
AIMS Deposition of amyloid beta (Aβ) in the brain is one of the defining abnormalities of Alzheimer's disease (AD). Phosphorylation of Aβ at serine 8 (pAβ) has been implicated in its aggregation in vitro and pAβ level has been shown to be significantly elevated in AD. We aimed to assess the specificity of pAβ for AD and have investigated associations of pAβ with parenchymal and cerebrovascular accumulation of Aβ, disease progression, angiotensin-converting enzyme activity and APOE genotype. METHODS The distribution of pAβ was studied by immunohistochemistry in sporadic and familial AD, pure dementia with Lewy bodies (DLB), pure vascular dementia (VaD) and age-matched controls. Soluble and insoluble (guanidine-extractable) pAβ level was measured by enzyme-linked immunosorbent assay (ELISA) in the midfrontal and parahippocampal cortex in sporadic AD (n = 20, 10 with Braak tangle stages of III-IV and 10 of stages V-VI), DLB (n = 10), VaD (n = 10) and age-matched controls (n = 20). RESULTS We found pAβ to be associated with only a subset of Aβ plaques and vascular deposits in sporadic and familial AD, with absent or minimal immunohistochemically detectable pAβ in control, DLB and VaD brains. In both brain regions, insoluble pAβ level was significantly elevated only in advanced AD (Braak tangle stage of V or VI) and in the parahippocampus soluble and insoluble pAβ level increased with the number of APOE ε4 alleles. CONCLUSIONS These results indicate that pAβ accumulation in the parenchyma and vasculature is largely restricted to late-stage AD (Braak tangle stage V-VI).
Collapse
Affiliation(s)
- Emma L Ashby
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Level 1 Learning and Research, Southmead Hospital, Bristol, UK
| | - James S Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Level 1 Learning and Research, Southmead Hospital, Bristol, UK
| | - Sathish Kumar
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Level 1 Learning and Research, Southmead Hospital, Bristol, UK
| | - Patrick G Kehoe
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Level 1 Learning and Research, Southmead Hospital, Bristol, UK
| |
Collapse
|
40
|
Jang DK, Huh PW, Lee KS. Association of apolipoprotein E gene polymorphism with small-vessel lesions and stroke type in moyamoya disease: a preliminary study. J Neurosurg 2015; 124:1738-45. [PMID: 26566210 DOI: 10.3171/2015.5.jns142973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The present study was conducted to investigate whether microbleeds or microinfarcts are associated with apolipoprotein E (APOE) gene polymorphisms in patients with moyamoya disease (MMD), and if so, whetherAPOE gene polymorphisms are also associated with stroke type in patients with MMD. METHODS This cross-sectional, multicenter study included 86 consecutive patients with MMD who underwent T2*-weighted gradient echo or susceptibility-weighted MR imaging and 83 healthy control volunteers. Baseline clinical and radiological characteristics were recorded at diagnosis, and inter- and intragroup differences in the APOE genotypes were assessed. Multivariate binary logistic regression models were used to determine the association factors for small-vessel lesions (SVLs) and hemorrhagic presentation in patients with MMD. RESULTS There was no difference in APOE gene polymorphism and the incidence of SVLs between patients with MMD and healthy controls (p > 0.05). In the MMD group, 7 (8.1%) patients had microbleeds and 32 (37.2%) patients had microinfarcts. Microbleeds were more frequently identified in patients with hemorrhagic-type than in nonhemorrhagictype MMD (p = 0.003). APOE genotypes differed according to the presence of microbleeds (p = 0.024). APOE ε2 or ε4 carriers also experienced microbleeds more frequently than APOE ε3/ε3 carriers (p = 0.013). In the multivariate regression analysis in patients with MMD, microbleeds were significantly related to APOE ε2 or ε4 carrier status (OR 7.86; 95% CI1.20-51.62; p = 0.032) and cerebral aneurysm (OR 17.31; 95% CI 2.09-143.57; p = 0.008). Microinfarcts were independently associated with hypertension (OR 3.01; 95% CI 1.05-7.86; p = 0.007). Hemorrhagic presentation was markedly associated with microbleeds (OR 10.63; 95% CI 1.11-102.0; p = 0.041). CONCLUSIONS These preliminary results did not show a difference in APOE gene polymorphisms between patients with MMD and healthy persons. However, they imply that APOE gene polymorphisms may play certain roles in the presence of microbleeds but not microinfarcts in patients with MMD. A further confirmatory study is necessary to elucidate the effect of APOE gene polymorphisms and SVLs on the future incidence of stroke in patients with MMD.
Collapse
Affiliation(s)
- Dong-Kyu Jang
- Departments of Neurosurgery, 1 Incheon St. Mary's Hospital
| | | | - Kwan-Sung Lee
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
41
|
Miners JS, Palmer JC, Love S. Pathophysiology of Hypoperfusion of the Precuneus in Early Alzheimer's Disease. Brain Pathol 2015; 26:533-41. [PMID: 26452729 PMCID: PMC4982069 DOI: 10.1111/bpa.12331] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
The earliest decline in cerebral perfusion in Alzheimer's disease (AD) is in the medial parietal cortex (precuneus). We have analyzed precuneus in post‐mortem tissue from 70 AD and 37 control brains to explore the pathophysiology of the hypoperfusion: the contribution of arteriolosclerotic small vessel disease (SVD) and cerebral amyloid angiopathy (CAA), and of the vasoconstrictors endothelin‐1 (EDN1) and angiotensin II (Ang II), and the association with Aβ. The myelin‐associated glycoprotein:proteolipid protein‐1 ratio (MAG:PLP1) was used as an indicator of oxygenation of the precuneus prior to death. MAG:PLP1 was reduced ∼50% in early AD (Braak stage III–IV). Although MAG:PLP1 remained low in advanced AD (stage V–VI), the reduction was less pronounced, possibly reflecting falling oxygen demand. Reduction in cortical MAG:PLP1 correlated with elevation in vascular endothelial growth factor (VEGF), another marker of hypoperfusion. Cortical MAG:PLP1 declined nonsignificantly with increasing SVD and CAA, but significantly with the concentration of EDN1, which was elevated approximately 75% in AD. In contrast, with reduction in cortical MAG:PLP1, Ang II level and angiotensin‐converting enzyme (ACE) activity declined, showing a normal physiological response to hypoperfusion. MAG:PLP1 was reduced in the parietal white matter (WM) in AD but here the decline correlated positively (ie, physiologically) with WM EDN1. However, the decline of MAG:PLP1 in the WM was associated with increasing cortical EDN1 and perhaps reflected vasoconstriction of perforating arterioles, which traverse the cortex to perfuse the WM. EDN1 in the cortex correlated highly significantly with both soluble and insoluble Aβ42, shown previously to upregulate neuronal endothelin‐converting enzyme‐2 (ECE2), but not with Aβ40. Our findings demonstrate reduced oxygenation of the precuneus in early AD and suggest that elevated EDN1, resulting from Aβ42‐mediated upregulation of ECE2, is a contributor.
Collapse
Affiliation(s)
- J Scott Miners
- Dementia Research Group, School of Clinical Sciences, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Jennifer C Palmer
- Dementia Research Group, School of Clinical Sciences, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Seth Love
- Dementia Research Group, School of Clinical Sciences, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| |
Collapse
|
42
|
Ryan NS, Biessels GJ, Kim L, Nicholas JM, Barber PA, Walsh P, Gami P, Morris HR, Bastos-Leite AJ, Schott JM, Beck J, Mead S, Chavez-Gutierrez L, de Strooper B, Rossor MN, Revesz T, Lashley T, Fox NC. Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer's disease. Neurobiol Aging 2015; 36:3140-3151. [PMID: 26410308 DOI: 10.1016/j.neurobiolaging.2015.08.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/28/2022]
Abstract
Familial Alzheimer's disease (FAD) treatment trials raise interest in the variable occurrence of cerebral amyloid angiopathy (CAA); an emerging important factor in amyloid-modifying therapy. Previous pathological studies reported particularly severe CAA with postcodon 200 PSEN1 mutations and amyloid beta coding domain APP mutations. As CAA may manifest as white matter hyperintensities (WMH) on magnetic resonance imaging, particularly posteriorly, we investigated WMH in 52 symptomatic FAD patients for associations with mutation position. WMH were visually rated in 39 PSEN1 (18 precodon 200); 13 APP mutation carriers and 25 healthy controls. Ten PSEN1 mutation carriers (5 precodon 200) had postmortem examination. Increased WMH were observed in the PSEN1 postcodon 200 group and in the single APP patient with an amyloid beta coding domain (p.Ala692Gly, Flemish) mutation. WMH burden on MRI correlated with severity of CAA and cotton wool plaques in several areas. The precodon 200 group had younger ages at onset, decreased axonal density and/or integrity, and a greater T-lymphocytic response in occipital deep white matter. Mutation site contributes to the phenotypic and pathological heterogeneity witnessed in FAD.
Collapse
Affiliation(s)
- Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK.
| | - Geert-Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre, Utrecht, The Netherlands
| | - Lois Kim
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Jennifer M Nicholas
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Philip A Barber
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Phoebe Walsh
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Priya Gami
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - António J Bastos-Leite
- Department of Medical Imaging, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Jon Beck
- MRC Prion Unit, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Lucia Chavez-Gutierrez
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, University of Leuven, Leuven, Belgium
| | - Bart de Strooper
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, University of Leuven, Leuven, Belgium
| | - Martin N Rossor
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Tamas Revesz
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| |
Collapse
|
43
|
Serrano-Pozo A, Qian J, Monsell SE, Betensky RA, Hyman BT. APOEε2 is associated with milder clinical and pathological Alzheimer disease. Ann Neurol 2015; 77:917-29. [PMID: 25623662 DOI: 10.1002/ana.24369] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 06/06/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The Alzheimer disease (AD) APOEε4 risk allele associates with an earlier age at onset and increased amyloid-β deposition, whereas the protective APOEε2 allele delays the onset and appears to prevent amyloid-β deposition. Yet the clinical and pathological effects of APOEε2 remain uncertain because of its relative rarity. We investigated the effects of APOEε2 and ε4 alleles on AD pathology and cognition in a large US data set of well-characterized AD patients. METHODS We studied individuals from the National Alzheimer's Coordinating Center autopsy cohort across the entire clinicopathological continuum of AD. Multivariate models were built to examine the associations between APOE alleles and AD neuropathological changes, using the APOEε3/ε3 group as comparator. Mediation analysis was used to estimate the direct and indirect effects of APOE alleles on AD pathology and cognition (Clinical Dementia Rating Sum of Boxes and Mini-Mental State Examination). RESULTS Compared to APOEε3/ε3, APOEε2 is independently associated with lower Braak neurofibrillary tangle (NFT) stages and possibly fewer neuritic plaques, but has no direct effect on cerebral amyloid angiopathy (CAA) severity, whereas APOEε4 is associated with more neuritic plaques and CAA, but has no independent effect on Braak NFT stage. Unadjusted analyses showed marked differences among APOE genotypes with respect to cognitive performance (ε2 > ε3 > ε4). Mediation analysis suggests that this is largely explained through effects on pathology. INTERPRETATION Even when adjusted for age at onset, symptom duration, and other demographic variables, APOEε2 is associated with milder AD pathology and less severe antemortem cognitive impairment compared to APOEε3 and ε4 alleles, suggesting a relative neuroprotective effect of APOEε2 in AD.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Massachusetts Alzheimer Disease Research Center, Charlestown, MA.,Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Jing Qian
- Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA
| | - Sarah E Monsell
- National Alzheimer's Coordinating Center and Department of Epidemiology, University of Washington, Seattle, WA
| | - Rebecca A Betensky
- Massachusetts Alzheimer Disease Research Center, Charlestown, MA.,Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Massachusetts Alzheimer Disease Research Center, Charlestown, MA
| |
Collapse
|
44
|
Hawkes CA, Jayakody N, Johnston DA, Bechmann I, Carare RO. Failure of perivascular drainage of β-amyloid in cerebral amyloid angiopathy. Brain Pathol 2015; 24:396-403. [PMID: 24946077 DOI: 10.1111/bpa.12159] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 01/18/2023] Open
Abstract
In Alzheimer's disease, amyloid-β (Aβ) accumulates as insoluble plaques in the brain and deposits in blood vessel walls as cerebral amyloid angiopathy (CAA). The severity of CAA correlates with the degree of cognitive decline in dementia. The distribution of Aβ in the walls of capillaries and arteries in CAA suggests that Aβ is deposited in the perivascular pathways by which interstitial fluid drains from the brain. Soluble Aβ from the extracellular spaces of gray matter enters the basement membranes of capillaries and drains along the arterial basement membranes that surround smooth muscle cells toward the leptomeningeal arteries. The motive force for perivascular drainage is derived from arterial pulsations combined with the valve effect of proteins present in the arterial basement membranes. Physical and biochemical changes associated with arteriosclerosis, aging and possession of apolipoprotein E4 genotype lead to a failure of perivascular drainage of soluble proteins, including Aβ. Perivascular cells associated with arteries and the lymphocytes recruited in the perivenous spaces contribute to the clearance of Aβ. The failure of perivascular clearance of Aβ may be a major factor in the accumulation of Aβ in CAA and may have significant implications for the design of therapeutics for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Cheryl A Hawkes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | | | | | |
Collapse
|
45
|
Thomas T, Miners S, Love S. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer's disease and vascular dementia. ACTA ACUST UNITED AC 2015; 138:1059-69. [PMID: 25688080 DOI: 10.1093/brain/awv025] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perfusion is reduced in the cerebral neocortex in Alzheimer's disease. We have explored some of the mechanisms, by measurement of perfusion-sensitive and disease-related proteins in post-mortem tissue from Alzheimer's disease, vascular dementia and age-matched control brains. To distinguish physiological from pathological reduction in perfusion (i.e. reduction exceeding the decline in metabolic demand), we measured the concentration of vascular endothelial growth factor (VEGF), a protein induced under conditions of tissue hypoxia through the actions of hypoxia-inducible factors, and the myelin associated glycoprotein to proteolipid protein 1 (MAG:PLP1) ratio, which declines in chronically hypoperfused brain tissue. To evaluate possible mechanisms of hypoperfusion, we also measured the levels of amyloid-β40, amyloid-β42, von Willebrand factor (VWF; a measure of microvascular density) and the potent vasoconstrictor endothelin 1 (EDN1); we assayed the activity of angiotensin I converting enzyme (ACE), which catalyses the production of another potent vasoconstrictor, angiotensin II; and we scored the severity of arteriolosclerotic small vessel disease and cerebral amyloid angiopathy, and determined the Braak tangle stage. VEGF was markedly increased in frontal and parahippocampal cortex in Alzheimer's disease but only slightly and not significantly in vascular dementia. In frontal cortex the MAG:PLP1 ratio was significantly reduced in Alzheimer's disease and even more so in vascular dementia. VEGF but not MAG:PLP1 increased with Alzheimer's disease severity, as measured by Braak tangle stage, and correlated with amyloid-β42 and amyloid-β42: amyloid-β40 but not amyloid-β40. Although MAG:PLP1 tended to be lowest in cortex from patients with severe small vessel disease or cerebral amyloid angiopathy, neither VEGF nor MAG:PLP1 correlated significantly with the severity of structural vascular pathology (small vessel disease, cerebral amyloid angiopathy or VWF). However, MAG:PLP1 showed a significant negative correlation with the level of EDN1, which we previously showed to be elevated in the cerebral cortex Alzheimer's disease. These finding are in contrast with the previously demonstrated reduction in EDN1, and positive correlation with MAG:PLP1, in the hypoperfused white matter in Alzheimer's disease. The decline in MAG:PLP1 strongly suggests pathological hypoperfusion of the frontal cortex in Alzheimer's disease. Although severe small vessel disease or cerebral amyloid angiopathy may contribute in some cases, abnormal vascular contractility mediated by EDN1 is likely to be a more important overall contributor. Both amyloid-β accumulation and hypoperfusion are likely to cause the upregulation of VEGF.
Collapse
Affiliation(s)
- Taya Thomas
- Dementia Research Group, University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol BS10 5NB, UK
| | - Scott Miners
- Dementia Research Group, University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol BS10 5NB, UK
| | - Seth Love
- Dementia Research Group, University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
46
|
Esiri M, Chance S, Joachim C, Warden D, Smallwood A, Sloan C, Christie S, Wilcock G, Smith AD. Cerebral amyloid angiopathy, subcortical white matter disease and dementia: literature review and study in OPTIMA. Brain Pathol 2015; 25:51-62. [PMID: 25521177 PMCID: PMC8028928 DOI: 10.1111/bpa.12221] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is of increasing clinical and research interest as the ability to detect it and its consequences by neuroimaging in living subjects has advanced. There is also increasing interest in understanding its possible role in the development of intracerebral hemorrhage, Alzheimer's disease (AD) and vascular dementia. In this article, the literature on this subject is reviewed and novel findings relating CAA to subcortical white matter damage in 224 subjects in the Oxford project to Investigate Memory and Ageing (OPTIMA) are reported. The relationship between CAA and subcortical tissue damage in the OPTIMA subjects was found to be critically dependent on ApoE genotype, there being a positive relationship between measures of CAA and subcortical small vessel disease in ApoEε4 carriers and a significant negative relationship in ApoEε2 carriers. These findings draw attention, as have many other studies, to the importance of ApoE genotype as a major risk factor not only for dementia but also for damage to blood vessels in the aging brain.
Collapse
Affiliation(s)
- Margaret Esiri
- Neuropathology DepartmentNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Steven Chance
- Neuropathology DepartmentNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Catharine Joachim
- Neuropathology DepartmentNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Donald Warden
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - Carolyn Sloan
- Neuropathology DepartmentNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Sharon Christie
- Nuffield Department of Clinical NeurosciencesOPTIMAUniversity of OxfordOxfordUK
| | - Gordon Wilcock
- Nuffield Department of Clinical NeurosciencesOPTIMAUniversity of OxfordOxfordUK
| | | |
Collapse
|
47
|
Miners JS, Renfrew R, Swirski M, Love S. Accumulation of α-synuclein in dementia with Lewy bodies is associated with decline in the α-synuclein-degrading enzymes kallikrein-6 and calpain-1. Acta Neuropathol Commun 2014; 2:164. [PMID: 25476568 PMCID: PMC4271448 DOI: 10.1186/s40478-014-0164-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022] Open
Abstract
Kallikrein-6 and calpain-1 are amongst a small group of proteases that degrade α-synuclein. We have explored the possibility that reduction in the level or activity of these enzymes contributes to the accumulation of α-synuclein in Lewy body diseases. We measured calpain-1 activity by fluorogenic activity assay, kallikrein-6 level by sandwich ELISA, and levels of α-synuclein and α-synuclein phosphorylated at serine 129 (α-synuclein-P129), in post-mortem brain tissue in pure dementia with Lewy bodies (DLB, n = 12), Alzheimer’s disease (AD, n = 20) and age-matched controls (n = 19). Calpain-1 activity was significantly reduced in DLB within the cingulate and parahippocampal cortex, regions with highest α-synuclein and α-synuclein-P129 load, and correlated inversely with the levels of α-synuclein and α-synuclein-P129. Calpain-1 was unaltered in the thalamus and frontal cortex, regions with less α-synuclein pathology. Kallikrein-6 level was reduced in the cingulate cortex in the DLB cohort, and correlated inversely with α-synuclein and α-synuclein-P129. Kallikrein-6 was also reduced in DLB in the thalamus but not in relation to α-synuclein or α-synuclein-P129 load and was unaltered in the frontal and parahippocampal cortex. In SH-SY5Y cells overexpressing wild-type α-synuclein there was partial co-localisation of kallikrein-6 and calpain-1 with α-synuclein, and siRNA-mediated knock-down of kallikrein-6 and calpain-1 increased the amount of α-synuclein in cell lysates. Our results indicate that reductions in kallikrein-6 and calpain-1 may contribute to the accumulation of α-synuclein in DLB.
Collapse
|
48
|
Aβ immunotherapy for Alzheimer's disease: effects on apoE and cerebral vasculopathy. Acta Neuropathol 2014; 128:777-89. [PMID: 25195061 DOI: 10.1007/s00401-014-1340-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/30/2022]
Abstract
Aβ immunotherapy for Alzheimer's disease (AD) results in the removal of Aβ plaques and increased cerebral amyloid angiopathy (CAA). In current clinical trials, amyloid-related imaging abnormalities (ARIAs), putatively due to exacerbation of CAA, are concerning side effects. We aimed to assess the role of the Aβ transporter apolipoprotein E (apoE) in the exacerbation of CAA and development of CAA-associated vasculopathy after Aβ immunotherapy. 12 Aβ42-immunized AD (iAD; AN1792, Elan Pharmaceuticals) cases were compared with 28 unimmunized AD (cAD) cases. Immunohistochemistry was quantified for Aβ42, apoE, apoE E4 and smooth muscle actin, and CAA-associated vasculopathy was analyzed. Aβ immunotherapy was associated with redistribution of apoE from cortical plaques to cerebral vessel walls, mirroring the altered distribution of Aβ42. Concentric vessel wall splitting was increased threefold in leptomeningeal vessels after immunotherapy (cAD 6.3 vs iAD 20.6 %, P < 0.001), but smooth muscle cell abnormalities did not differ. The findings suggest that apoE is involved in the removal of plaques and transport of Aβ to the cerebral vasculature induced by Aβ immunotherapy. Immunotherapy was not associated with CAA-related vascular smooth muscle damage, but was accompanied by increased splitting of the vessel wall, perhaps reflecting enhanced deposition and subsequent removal of Aβ. ARIA occurring in some current trials of Aβ immunotherapy may reflect an extreme form of these vascular changes.
Collapse
|
49
|
Swirski M, Miners JS, de Silva R, Lashley T, Ling H, Holton J, Revesz T, Love S. Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson's disease. ALZHEIMERS RESEARCH & THERAPY 2014; 6:77. [PMID: 25452767 PMCID: PMC4248436 DOI: 10.1186/s13195-014-0077-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 10/14/2014] [Indexed: 01/12/2023]
Abstract
Introduction Lewy body and Alzheimer-type pathologies often co-exist.
Several studies suggest a synergistic relationship between amyloid-β (Aβ)
and α-synuclein (α-syn) accumulation. We have explored the relationship
between Aβ accumulation and the phosphorylation of α-syn at serine-129
(pSer129 α-syn), in post-mortem human brain tissue and in SH-SY5Y
neuroblastoma cells transfected to overexpress human α-syn. Methods We measured levels of Aβ40, Aβ42, α-syn and pSer129 α-syn by
sandwich enzyme-linked immunosorbent assay, in soluble and insoluble
fractions of midfrontal, cingulate and parahippocampal cortex and
thalamus, from cases of Parkinson’s disease (PD) with (PDD; n = 12) and
without dementia (PDND; n = 23), dementia with Lewy bodies (DLB; n = 10)
and age-matched controls (n = 17). We also examined the relationship of
these measurements to cognitive decline, as measured by time-to-dementia
and the mini-mental state examination (MMSE) score in the PD patients,
and to Braak tangle stage. Results In most brain regions, the concentration of insoluble
pSer129 α-syn correlated positively, and soluble pSer129 α-syn
negatively, with the levels of soluble and insoluble Aβ. Insoluble
pSer129 α-syn also correlated positively with Braak stage. In most
regions, the levels of insoluble and soluble Aβ and the proportion of
insoluble α-syn that was phosphorylated at Ser129 were significantly
higher in the PD and DLB groups than the controls, and higher in the PDD
and DLB groups than the PDND brains. In PD, the MMSE score correlated
negatively with the level of insoluble pSer129 α-syn. Exposure of SH-SY5Y
cells to aggregated Aβ42 significantly increased the proportion of α-syn
that was phosphorylated at Ser129 (aggregated Aβ40 exposure had a
smaller, non-significant effect). Conclusions Together, these data show that the concentration of pSer129
α-syn in brain tissue homogenates is directly related to the level of Aβ
and Braak tangle stage, and predicts cognitive status in Lewy body
diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13195-014-0077-y) contains supplementary material, which is available to
authorized users.
Collapse
Affiliation(s)
- Marta Swirski
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Rohan de Silva
- Department of Molecular Neuroscience, Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Department of Molecular Neuroscience, Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College London, London, UK
| | - Helen Ling
- Department of Molecular Neuroscience, Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College London, London, UK
| | - Janice Holton
- Department of Molecular Neuroscience, Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College London, London, UK
| | - Tamas Revesz
- Department of Molecular Neuroscience, Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College London, London, UK
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
50
|
Bridges LR, Andoh J, Lawrence AJ, Khoong CHL, Poon W, Esiri MM, Markus HS, Hainsworth AH. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people. J Neuropathol Exp Neurol 2014; 73:1026-1033. [PMID: 25289893 PMCID: PMC4209852 DOI: 10.1097/nen.0000000000000124] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.
Collapse
Affiliation(s)
- Leslie R Bridges
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
- Cellular Pathology, St. George's Healthcare NHS Trust, London, UK
| | - Joycelyn Andoh
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
| | - Andrew J Lawrence
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
- Department of Neurology, University of Cambridge, UK
| | - Cheryl H L Khoong
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California
| | - Margaret M Esiri
- Neuropathology, Oxford-Radcliffe NHS Trust, Oxford, UK
- Clinical Neurology, Oxford University, John Radcliffe Hospital, Oxford, UK
| | - Hugh S Markus
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
- Department of Neurology, University of Cambridge, UK
| | - Atticus H Hainsworth
- Stroke and Dementia Research Centre, St. George's, University of London, London, UK
| |
Collapse
|