1
|
Zaffer S, Kiran Reddy VS, Shikari AB, Ray A. Rice with a healthier glycaemic profile: Unveiling the molecular mechanisms and breeding strategies for the future. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109543. [PMID: 39952157 DOI: 10.1016/j.plaphy.2025.109543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Rice is a staple food crop consumed by billions globally. However, rice consumption is associated with a high glycaemic response, which has negative health implications. Identifying rice varieties with intrinsically lower glycaemic responses would benefit public health. Recent research has uncovered genomic loci in rice associated with glycaemic response in rice. However, diagnostic assays are needed to efficiently characterize these loci in rice germplasm and breeding populations. This review summarizes current knowledge on low glycaemic rice genetics and proposes strategies for diagnostic assay development. Specific loci implicated in modulating starch digestion and glycaemic response are highlighted. Developing robust, high-throughput molecular marker platform for low glycaemic rice loci will accelerate varietal improvement and enhance the nutritional qualities and health benefits of this essential crop. The review also explores the role of other grain components, such as lipids and proteins, and their interactions with starch in influencing the glycaemic index (GI).
Collapse
Affiliation(s)
- Shafia Zaffer
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - V Shasi Kiran Reddy
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, J&K, 193 201, India
| | - Asif Bashir Shikari
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, J&K, 193 201, India.
| | - Anuprita Ray
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
2
|
Hori K, Shenton M, Mochizuki K, Suzuki K, Iijima K, Kuya N, Shu K, Ono K, Kinoshita Y, Sugimoto K, Umemoto T, Yonemaru JI, Yamasaki M, Takeuchi Y, Ebana K, Tsujii Y. QTN detection and candidate gene identification for improved eating and cooking quality in rice using GWAS and PLS regression analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:58. [PMID: 40009082 PMCID: PMC11865119 DOI: 10.1007/s00122-025-04850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
KEY MESSAGE We performed GWAS for starch properties and eating, cooking and appearance quality characteristics traits in rice and then used PLS regression to show importance of different loci for different food applications. We performed a genome-wide association study for appearance, eating and cooking quality traits in grain of japonica rice cultivars and identified candidate genes for adhesiveness of cooked rice grains, amylopectin composition and β-glucanase activity in rice endosperm among a total of 525 quantitative trait nucleotide (QTN) loci. The study used 1,054,635 single-nucleotide polymorphisms (SNPs) based on genome sequence data of 150 rice cultivars and 89 grain appearance, eating and cooking quality traits. These included grain shape, protein content, amylose content, amylopectin chain length, starch viscosity properties, starch degradation enzyme activities, and physicochemical characteristics of cooked rice grains analyzed in three years. Cluster regions of genetic loci on rice chromosomes 1, 4, 5, 6, 8, 9, 10 and 11 were detected, with several regions co-located with starch biosynthesis and degradation genes. Partial least squares (PLS) regression analysis revealed that the QTN genotypes were unevenly distributed in subpopulations of rice cultivars classified by their primary application. We could therefore select and accumulate these QTNs to improve grain quality in further breeding programs by developing novel rice cultivars with appropriate phenotypes for each food usage: as high eating quality cooked rice, staple food rice, sushi rice, sake brewing rice, and high-yielding rice cultivars.
Collapse
Affiliation(s)
- Kiyosumi Hori
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Matthew Shenton
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kenta Mochizuki
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Keitaro Suzuki
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Ken Iijima
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Noriyuki Kuya
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Koka Shu
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kosuke Ono
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuji Kinoshita
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Kazuhiko Sugimoto
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takayuki Umemoto
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Jun-Ichi Yonemaru
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Kobe University, Kasai, Hyogo, Japan
- Faculty of Agriculture, Niigata University, Niigata, Niigata, Japan
| | - Yoshinobu Takeuchi
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kaworu Ebana
- National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshimasa Tsujii
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan.
| |
Collapse
|
3
|
Zhao P, Liu Y, Deng Z, Liu L, Yu T, Ge G, Chen B, Wang T. Creating of novel Wx allelic variations significantly altering Wx expression and rice eating and cooking quality. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154384. [PMID: 39591698 DOI: 10.1016/j.jplph.2024.154384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Granule-bound starch synthase I (GBSSI) encoding gene Waxy (Wx), which largely regulates the amylose content of rice grains, is a master module determining rice eating and cooking quality (ECQ). Fine-tuning amylose level of grains is an ideal strategy to improve rice quality. Through fine editing of Wxa promoter and 5'UTR by CRISPR/Cas9 system, we created 14 types of novel Wx allelic variations, of which MT7 and MT13 were able to alter Wx expression and amylose content of grains. MT7 showed fragment deletion and base insertions in CAAT-boxes, hardly detectable expression levels of GBSSI mRNA and protein, and generated 5.87% amylose in grains. MT13 had fragment deletions in the A-box and the TATA-box, low expression levels of GBSSI mRNA and protein, and generated 9.61% amylose in grains. Besides of the amylose content, MT7 and MT13 significantly reduced protein content and increased lipid content of grains compared with Wxa. A comparison of MT7, MT13 and other allelic lines demonstrated the importance of base insertion around the second CAAT-box and 31bp-deletion following the second TATA-box in modulating Wx expression. Thus, our study generated two novel Wx allelic variations which significantly alter Wx expression and amylose content of rice grains, providing not only new germplasms for soft rice breeding, but also insights into candidate cis elements of Wx.
Collapse
Affiliation(s)
- Pei Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Yuxia Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuyun Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Tengwei Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Gege Ge
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Bingtang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China.
| |
Collapse
|
4
|
Zhu S, Tang G, Yang Z, Han R, Deng W, Shen X, Huang R. Fine mapping of a major QTL, qECQ8, for rice taste quality. BMC PLANT BIOLOGY 2024; 24:1034. [PMID: 39478453 PMCID: PMC11526670 DOI: 10.1186/s12870-024-05744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Rice ECQ (eating and cooking quality) is an important determinant of rice consumption and market expansion. Therefore, improvement of ECQ is one of the primary goals in rice breeding. However, ECQ-related quantitative trait loci (QTL) have not yet been fully revealed. The present study aimed to identify a major effect QTL for rice taste, an important component of ECQ via genotyping-by-sequencing, to reveal the associated molecular mechanisms, and to predict key candidate genes. RESULTS A population of F9 recombinant inbred lines resulting from a cross between R668 (national standard of high-quality third class) and R838 (common edible rice) was used to construct a high-density genetic map (2,295.062 cM). The map comprises 639,504 markers distributed on 12 linkage elements with an average genetic distance of 0.004 cM. We detected a major taste-related QTL, qECQ8, which explained 41.4% of phenotypic variance and had LOD values of 4.42-7.73. Using a five-generation NIL population from the backcross of "Ganxiangzhan No. 1" carrying qECQ8 with the recurrent parent R838 (without qECQ8), we narrowed qECQ8 to a 187.5 kb interval between markers M33 and M37 on Chr8. Comparative transcriptomic analysis revealed that photosynthesis, glyoxylate and dicarboxylate metabolism, carbon fixation in photosynthetic organisms, and alpha-linolenic acid metabolism were induced in developing seeds of lines containing qECQ8. Furthermore, we identified two candidate genes in the qECQ8 region, including LOC_Os08g30550 (zinc knuckle family protein), a major candidate for genetic-assisted breeding of high-quality rice. CONCLUSION Our findings provide important genetic resources for targeted improvement of rice taste quality and may facilitate the genetic breeding of rice ECQ.
Collapse
Affiliation(s)
- Shan Zhu
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Guoping Tang
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zhou Yang
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ruicai Han
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wei Deng
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xianhua Shen
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Renliang Huang
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
5
|
Wang H, Wang G, Qin R, Gong C, Zhou D, Li D, Luo B, Jin J, Deng Q, Wang S, Zhu J, Zou T, Li S, Liang Y, Li P. Improvement of Quality and Disease Resistance for a Heavy-Panicle Hybrid Restorer Line, R600, in Rice ( Oryza sativa L.) by Gene Pyramiding Breeding. Curr Issues Mol Biol 2024; 46:10762-10778. [PMID: 39451519 PMCID: PMC11505696 DOI: 10.3390/cimb46100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The utilization of heavy-panicle hybrid rice exemplifies the successful integration of architectural enhancement and heterosis, which has been widely adopted in the southwest rice-producing area of China. Iterative improvement in disease resistance and grain quality of heavy-panicle hybrid rice varieties is crucial to promote their sustainable utilization. Here, we performed a molecular design breeding strategy to introgress beneficial alleles of broad-spectrum disease resistance and grain quality into a heavy-panicle hybrid backbone restorer line Shuhui 600 (R600). We successfully developed introgression lines through marker-assisted selection to pyramid major genes (Wxb + ALKA-GC + Pigm + Xa23) derived from three parents (Huanghuazhan, I135, I488), which significantly enhance grain quality and confer resistance to rice blast and bacterial blight (BB). The improved parental R600 line (iR600) exhibited superior grain quality and elevated disease resistance while maintaining the heavy-panicle architecture and high-yield capacity of R600. Moreover, the iR600 was crossed with male sterility line 608A to obtain a new heavy-panicle hybrid rice variety with excellent eating and cooking quality (ECQ) and high yield potential. This study presents an effective breeding strategy for rice breeders to expedite the improvement of grain quality and disease resistance in heavy-panicle hybrid rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (G.W.); (R.Q.); (C.G.); (D.Z.); (D.L.); (B.L.); (J.J.); (Q.D.); (S.W.); (J.Z.); (T.Z.); (S.L.)
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China (G.W.); (R.Q.); (C.G.); (D.Z.); (D.L.); (B.L.); (J.J.); (Q.D.); (S.W.); (J.Z.); (T.Z.); (S.L.)
| |
Collapse
|
6
|
Wu B, Luo H, Chen Z, Amin B, Yang M, Li Z, Wu S, Salmen SH, Alharbi SA, Fang Z. Rice Promoter Editing: An Efficient Genetic Improvement Strategy. RICE (NEW YORK, N.Y.) 2024; 17:55. [PMID: 39212859 PMCID: PMC11364747 DOI: 10.1186/s12284-024-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Gene expression levels in rice (Oryza sativa L.) and other plant species are determined by the promoters, which directly control phenotypic characteristics. As essential components of genes, promoters regulate the intensity, location, and timing of gene expression. They contain numerous regulatory elements and serve as binding sites for proteins that modulate transcription, including transcription factors and RNA polymerases. Genome editing can alter promoter sequences, thereby precisely modifying the expression patterns of specific genes, and ultimately affecting the morphology, quality, and resistance of rice. This paper summarizes research on rice promoter editing conducted in recent years, focusing on improvements in yield, heading date, quality, and disease resistance. It is expected to inform the application of promoter editing and encourage further research and development in crop genetic improvement with promote.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Hangfei Luo
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhongbo Chen
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Bakht Amin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Manyu Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Shuai Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Wu H, Wang S, Wu M. The Waxy Gene Has Pleiotropic Effects on Hot Water-Soluble and -Insoluble Amylose Contents in Rice ( Oryza sativa) Grains. Int J Mol Sci 2024; 25:6561. [PMID: 38928265 PMCID: PMC11203747 DOI: 10.3390/ijms25126561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Rice (Oryza sativa) is a cereal crop with a starchy endosperm. Starch is composed of amylose and amylopectin. Amylose content (AC) is the principal determinant of rice quality, but varieties with similar ACs can still vary substantially in their quality. In this study, we analyzed the total AC (TAC) and its constituent fractions, the hot water-soluble amylose content (SAC) and hot water-insoluble amylose content (IAC), in two sets of related chromosome segment substitution lines of rice with a common genetic background grown in two years. We searched for quantitative trait loci (QTLs) associated with SAC, IAC, and TAC and identified one common QTL (qSAC-6, qIAC-6, and qTAC-6) on chromosome 6. Map-based cloning revealed that the gene underlying the trait associated with this common QTL is Waxy (Wx). An analysis of the colors of soluble and insoluble starch-iodine complexes and their λmax values (wavelengths at the positions of their peak absorbance values) as well as gel permeation chromatography revealed that Wx is responsible for the biosynthesis of amylose, comprising a large proportion of the soluble fractions of the SAC. Wx is also involved in the biosynthesis of long chains of amylopectin, comprising the hot water-insoluble fractions of the IAC. These findings highlight the pleiotropic effects of Wx on the SAC and IAC. This pleiotropy indicates that these traits have a positive genetic correlation. Therefore, further studies of rice quality should use rice varieties with the same Wx genotype to eliminate the pleiotropic effects of this gene, allowing the independent relationship between the SAC or IAC and rice quality to be elucidated through a multiple correlation analysis. These findings are applicable to other valuable cereal crops as well.
Collapse
Affiliation(s)
- Hongkai Wu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (S.W.); (M.W.)
| | | | | |
Collapse
|
8
|
Gao J, Gao L, Chen W, Huang J, Qing D, Pan Y, Ma C, Wu H, Zhou W, Li J, Yang X, Dai G, Deng G. Genetic Effects of Grain Quality Enhancement in Indica Hybrid Rice: Insights for Molecular Design Breeding. RICE (NEW YORK, N.Y.) 2024; 17:39. [PMID: 38874692 PMCID: PMC11178727 DOI: 10.1186/s12284-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Improving rice quality remains a crucial breeding objective, second only to enhancing yield, yet progress in quality improvement lags behind yield. The high temperature and ripening conditions in Southern China often result in poor rice quality, impacting hybrid rice production and utilization. Therefore, to address this challenge, analyzing the molecular basis of high-quality traits is essential for molecular design breeding of high-quality hybrid rice varieties. In this study, we investigated the molecular basis of grain shape, amylose content, gel consistency, gelatinization temperature, and aroma, which influence rice quality. We discovered that quality related alleles gs3, GW7TFA, gw8, chalk5, Wxb, ALKTT, and fgr can enhance rice quality when applied in breeding programs. Polymerization of gs3, GW7TFA, gw8, and chalk5 genes improves rice appearance quality. The gs3 and GW7TFA allele polymerization increasing the grain's length-width ratio, adding the aggregation of gw8 allele can further reducing grain width. The chalk5 gene regulates low chalkiness, but low correlation to chalkiness was exhibited with grain widths below 2.0 mm, with minimal differences between Chalk5 and chalk5 alleles. Enhancing rice cooking and eating quality is achieved through Wxb and ALKTT gene polymerization, while introducing the fgr(E7) gene significantly improved rice aroma. Using molecular marker-assisted technology, we aggregated these genes to develop a batch of indica hybrid rice parents with improved rice quality are obtained. Cross-combining these enhanced parents can generate new, high-quality hybrid rice varieties suitable for cultivation in Southern China. Therefore, our findings contribute to a molecular breeding model for grain quality improvement in high-quality indica hybrid rice. This study, along with others, highlights the potential of molecular design breeding for enhancing complex traits, particularly rice grain quality.
Collapse
Affiliation(s)
- Ju Gao
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Lijun Gao
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Juan Huang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Dongjin Qing
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Chonglie Ma
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Hao Wu
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.
| | - Guofu Deng
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.
| |
Collapse
|
9
|
Nie S, Chen L, Zheng M, Dong J, Ma Y, Zhou L, Wang J, Chen J, Hu H, Yang T, Zhao J, Zhang S, Yang W. GWAS and Transcriptomic Analysis Identify OsRING315 as a New Candidate Gene Controlling Amylose Content and Gel Consistency in Rice. RICE (NEW YORK, N.Y.) 2024; 17:38. [PMID: 38849622 PMCID: PMC11161452 DOI: 10.1186/s12284-024-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
Cooking quality is the main factor determining the market value of rice. Although several major genes and a certain number of QTLs controlling cooking quality have been identified, the genetic complexity and environmental susceptibility limit the further improvement for cooking quality by molecular breeding. This research conducted a genome-wide association study to elucidate the QTLs related to cooking quality including amylose content (AC), gel consistency (GC) and alkali spreading value (ASV) by using 450 rice accessions consisting of 300 indica and 150 japonica accessions in two distinct environments. A total of 54 QTLs were identified, including 25 QTLs for AC, 12 QTLs for GC and 17 QTLs for ASV. Among them, 10 QTLs were consistently observed by the same population in both environments. Six QTLs were co-localized with the reported QTLs or cloned genes. The Wx gene for AC and GC, and the ALK gene for ASV were identified in every population across the two environments. The qAC9-2 for AC and the qGC9-2 for GC were defined to the same interval. The OsRING315 gene, encoding an E3 ubiquitin ligase, was considered as the candidate gene for both qAC9-2 and qGC9-2. The higher expression of OsRING315 corresponded to the lower AC and higher GC. Three haplotypes of OsRING315 were identified. The Hap 1 mainly existed in the japonica accessions and had lower AC. The Hap 2 and Hap 3 were predominantly present in the indica accessions, associated with higher AC. Meanwhile, the GC of accessions harboring Hap 1 was higher than that of accessions harboring Hap 3. In addition, the distribution of the three haplotypes in several rice-growing regions was unbalanced. The three traits of cooking quality are controlled by both major and minor genes and susceptible to environmental factors. The expression level of OsRING315 is related to both AC and GC, and this gene can be a promising target in quality improvement by using the gene editing method. Moreover, the haplotypes of OsRING315 differentiate between indica and japonica, and reveal the differences in GC and AC between indica and japonica rice.
Collapse
Affiliation(s)
- Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Minhua Zheng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China.
| |
Collapse
|
10
|
Jiang J, Song S, Hu C, Jing C, Xu Q, Li X, Zhang M, Hai M, Shen J, Zhang Y, Wang D, Dang X. QTL Detection and Candidate Gene Identification for Eating and Cooking Quality Traits in Rice ( Oryza sativa L.) via a Genome-Wide Association Study. Int J Mol Sci 2024; 25:630. [PMID: 38203801 PMCID: PMC10779416 DOI: 10.3390/ijms25010630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The eating and cooking quality (ECQ) directly affects the taste of rice, being closely related to factors such as gelatinization temperature (GT), gel consistency (GC) and amylose content (AC). Mining the quantitative trait loci (QTLs), and gene loci controlling ECQ-related traits is vital. A genome-wide association study on ECQ-related traits was conducted, combining 1.2 million single nucleotide polymorphisms (SNPs) with the phenotypic data of 173 rice accessions. Two QTLs for GT, one for GC and five for AC were identified, of which two were found in previously reported genes, and six were newly found. There were 28 positional candidate genes in the region of qAC11. Based on a linkage disequilibrium (LD) analysis, three candidate genes were screened within the LD region associated with AC. There were significant differences between the haplotypes of LOC_Os11g10170, but no significant differences were found for the other two genes. The qRT-PCR results showed that the gene expression levels in the accessions with high ACs were significantly larger than those in the accessions with low ACs at 35d and 42d after flowering. Hap 2 and Hap 3 of LOC_Os11g10170 reduced the AC by 13.09% and 10.77%, respectively. These results provide a theoretical and material basis for improving the ECQ of rice.
Collapse
Affiliation(s)
- Jianhua Jiang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shaojie Song
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Changmin Hu
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chunyu Jing
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Qing Xu
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xinru Li
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Mengyuan Zhang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Mei Hai
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jiaming Shen
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ying Zhang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dezheng Wang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaojing Dang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
11
|
Zhang Y, Zhang S, Zhang J, Wei W, Zhu T, Qu H, Liu Y, Xu G. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2654-2670. [PMID: 37623700 PMCID: PMC10651157 DOI: 10.1111/pbi.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Improving rice eating and cooking quality (ECQ) is one of the primary tasks in rice production to meet the rising demands of consumers. However, improving grain ECQ without compromising yield faces a great challenge under varied nitrogen (N) supplies. Here, we report the approach to upgrade rice ECQ by native promoter-controlled high expression of a key N-dependent floral and circadian clock regulator Nhd1. The amplification of endogenous Nhd1 abundance alters rice heading date but does not affect the entire length of growth duration, N use efficiency and grain yield under both low and sufficient N conditions. Enhanced expression of Nhd1 reduces amylose content, pasting temperature and protein content while increasing gel consistence in grains. Metabolome and transcriptome analyses revealed that increased expression of Nhd1 mainly regulates the metabolism of carbohydrates and amino acids in the grain filling stage. Moreover, expression level of Nhd1 shows a positive relationship with grain ECQ in some local main cultivars. Thus, intensifying endogenous abundance of Nhd1 is a promising strategy to upgrade grain ECQ in rice production.
Collapse
Affiliation(s)
- Yuyi Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jinfei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Wei Wei
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
12
|
Chandra D, Cho K, Pham HA, Lee JY, Han O. Down-Regulation of Rice Glutelin by CRISPR-Cas9 Gene Editing Decreases Carbohydrate Content and Grain Weight and Modulates Synthesis of Seed Storage Proteins during Seed Maturation. Int J Mol Sci 2023; 24:16941. [PMID: 38069264 PMCID: PMC10707166 DOI: 10.3390/ijms242316941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The glutelins are a family of abundant plant proteins comprised of four glutelin subfamilies (GluA, GluB, GluC, and GluD) encoded by 15 genes. In this study, expression of subsets of rice glutelins were suppressed using CRISPR-Cas9 gene-editing technology to generate three transgenic rice variant lines, GluA1, GluB2, and GluC1. Suppression of the targeted glutelin genes was confirmed by SDS-PAGE, Western blot, and q-RT-PCR. Transgenic rice variants GluA1, GluB2, and GluC1 showed reduced amylose and starch content, increased prolamine content, reduced grain weight, and irregularly shaped protein aggregates/protein bodies in mature seeds. Targeted transcriptional profiling of immature seeds was performed with a focus on genes associated with grain quality, starch content, and grain weight, and the results were analyzed using the Pearson correlation test (requiring correlation coefficient absolute value ≥ 0.7 for significance). Significantly up- or down-regulated genes were associated with gene ontology (GO) and KEGG pathway functional annotations related to RNA processing (spliceosomal RNAs, group II catalytic introns, small nucleolar RNAs, microRNAs), as well as protein translation (transfer RNA, ribosomal RNA and other ribosome and translation factors). These results suggest that rice glutelin genes may interact during seed development with genes that regulate synthesis of starch and seed storage proteins and modulate their expression via post-transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Hue Anh Pham
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| |
Collapse
|
13
|
Yang X, Pan Y, Xia X, Qing D, Chen W, Nong B, Zhang Z, Zhou W, Li J, Li D, Dai G, Deng G. Molecular basis of genetic improvement for key rice quality traits in Southern China. Genomics 2023; 115:110745. [PMID: 37977332 DOI: 10.1016/j.ygeno.2023.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Grain qualities including milling quality, appearance quality, eating and cooking quality, and nutritional quality are important indicators in rice breeding. Significant achievements in genetic improvement of rice quality have been made. In this study, we analyzed the variation patterns of 16 traits in 1570 rice varieties and found significant improvements in appearance quality and eating and cooking quality, particularly in hybrid rice. Through genome-wide association study and allelic functional nucleotide polymorphisms analysis of quality trait genes, we found that ALK, FGR1, FLO7, GL7/GW7, GLW7, GS2, GS3, ONAC129, OsGRF8, POW1, WCR1, and Wx were associated with the genetic improvement of rice quality traits in Southern China. Allelic functional nucleotide polymorphisms analysis of 13 important rice quality genes, including fragrance gene fgr, were performed using the polymerase chain reaction amplification refractory mutation system technology. The results showed that Gui516, Gui569, Gui721, Ryousi, Rsimiao, Rbasi, and Yuehui9802 possessed multiple superior alleles. This study elucidates the phenotypic changes and molecular basis of key quality traits of varieties in Southern China. The findings will provide guidance for genetic improvement of rice quality and the development of new varieties.
Collapse
Affiliation(s)
- Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Dongjin Qing
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weiyong Zhou
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Jingcheng Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| | - Gaoxing Dai
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| |
Collapse
|
14
|
Chen YH, Lu J, Yang X, Huang LC, Zhang CQ, Liu QQ, Li QF. Gene editing of non-coding regulatory DNA and its application in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6158-6175. [PMID: 37549968 DOI: 10.1093/jxb/erad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has provided precise and efficient strategies to edit target genes and generate transgene-free crops. Significant progress has been made in the editing of protein-coding genes; however, studies on the editing of non-coding DNA with regulatory roles lags far behind. Non-coding regulatory DNAs, including those which can be transcribed into long non-coding RNAs (lncRNAs), and miRNAs, together with cis-regulatory elements (CREs), play crucial roles in regulating plant growth and development. Therefore, the combination of CRISPR/Cas technology and non-coding regulatory DNA has great potential to generate novel alleles that affect various agronomic traits of crops, thus providing valuable genetic resources for crop breeding. Herein, we review recent advances in the roles of non-coding regulatory DNA, attempts to edit non-coding regulatory DNA for crop improvement, and potential application of novel editing tools in modulating non-coding regulatory DNA. Finally, the existing problems, possible solutions, and future applications of gene editing of non-coding regulatory DNA in modern crop breeding practice are also discussed.
Collapse
Affiliation(s)
- Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xia Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
15
|
Hao Y, Huang F, Gao Z, Xu J, Zhu Y, Li C. Starch Properties and Morphology of Eight Floury Endosperm Mutants in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3541. [PMID: 37896005 PMCID: PMC10610063 DOI: 10.3390/plants12203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Besides increasing grain yield, improving rice (Oryza sativa L.) quality has been paid more and more attention recently. Cooking and eating quality (CEQ) is an important indicator of rice quality. Since CEQs are quantitative traits and challenging for measurement, efforts have mainly focused on two major genes, Wx and SSIIa. Chalkiness and floury endosperm significantly affect the eating quality of rice, leading to noticeable changes in CEQ. Due to the easily observable phenotype of floury endosperm, cloning single gene mutations that cause floury endosperm and evaluating changes in CEQs indirectly facilitate the exploration of the minor genes controlling CEQ. In this study, eight mutants with different degrees of floury endosperm, generated through ethylmethane sulfonate (EMS) mutagenesis, were analyzed. These mutants exhibited wide variation in starch morphology and CEQs. Particularly, the z2 mutant showed spherical starch granules significantly increased rapid visco analyzer (RVA) indexes and urea swelling, while the z4 mutant displayed extremely sharp starch granules and significantly decreased RVA indexes and urea swelling compared to the wild type. Additionally, these mutants still maintained correlations with certain RVA profiles, suggesting that the genes PUL, which affect these indexes, may not undergo mutation. Cloning these mutated genes in the future, especially in z2 and z4, will enhance the genetic network of rice eating quality and hold significant importance for molecular marker-assisted breeding to improve rice quality.
Collapse
Affiliation(s)
- Yuanyuan Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (F.H.); (Z.G.)
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (F.H.); (Z.G.)
| | - Zhennan Gao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (F.H.); (Z.G.)
| | - Junfeng Xu
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China;
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
| | - Chunshou Li
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (F.H.); (Z.G.)
| |
Collapse
|
16
|
Gu Z, Gong J, Zhu Z, Li Z, Feng Q, Wang C, Zhao Y, Zhan Q, Zhou C, Wang A, Huang T, Zhang L, Tian Q, Fan D, Lu Y, Zhao Q, Huang X, Yang S, Han B. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nat Genet 2023; 55:1745-1756. [PMID: 37679493 PMCID: PMC10562254 DOI: 10.1038/s41588-023-01495-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Exploitation of crop heterosis is crucial for increasing global agriculture production. However, the quantitative genomic analysis of heterosis was lacking, and there is currently no effective prediction tool to optimize cross-combinations. Here 2,839 rice hybrid cultivars and 9,839 segregation individuals were resequenced and phenotyped. Our findings demonstrated that indica-indica hybrid-improving breeding was a process that broadened genetic resources, pyramided breeding-favorable alleles through combinatorial selection and collaboratively improved both parents by eliminating the inferior alleles at negative dominant loci. Furthermore, we revealed that widespread genetic complementarity contributed to indica-japonica intersubspecific heterosis in yield traits, with dominance effect loci making a greater contribution to phenotypic variance than overdominance effect loci. On the basis of the comprehensive dataset, a genomic model applicable to diverse rice varieties was developed and optimized to predict the performance of hybrid combinations. Our data offer a valuable resource for advancing the understanding and facilitating the utilization of heterosis in rice.
Collapse
Affiliation(s)
- Zhoulin Gu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Junyi Gong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhou Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Zhan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ahong Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shihua Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
17
|
Wang A, Jing Y, Cheng Q, Zhou H, Wang L, Gong W, Kou L, Liu G, Meng X, Chen M, Ma H, Shu X, Yu H, Wu D, Li J. Loss of function of SSIIIa and SSIIIb coordinately confers high RS content in cooked rice. Proc Natl Acad Sci U S A 2023; 120:e2220622120. [PMID: 37126676 PMCID: PMC10175802 DOI: 10.1073/pnas.2220622120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.
Collapse
Affiliation(s)
- Anqi Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Qiao Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hongju Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Lijun Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Wanxin Gong
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou310029, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Haiyan Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou310029, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou310029, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Yazhou Bay Laboratory, Sanya572025, China
| |
Collapse
|
18
|
Wang Q, Chen P, Wang H, Chao S, Guo W, Zhang Y, Miao C, Yuan H, Peng B. Physiological and transcriptomic analysis of OsLHCB3 knockdown lines in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:38. [PMID: 37312752 PMCID: PMC10248686 DOI: 10.1007/s11032-023-01387-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
The photosystem II (PSII) outer antenna LHCB3 protein plays critical roles in distributing the excitation energy and modulating the rate of state transition for photosynthesis. Here, OsLHCB3 knockdown mutants were produced using the RNAi system. Phenotypic analyses showed that OsLHCB3 knockdown led to pale green leaves and lower chlorophyll contents at both tillering and heading stages. In addition, mutant lines exhibited decreased non-photochemical quenching (NPQ) capacity and net photosynthetic rate (Pn) by downregulating the expression of PSII-related genes. Moreover, RNA-seq experiments were performed at both tillering and heading stages. The differentially expressed genes (DEGs) mainly involved in chlorophyll binding response to abscisic acid, photosystem II, response to chitin, and DNA-binding transcription factor. Besides, our transcriptomic and physiological data indicated that OsLHCB3 was essential for binding chlorophyll, but not for the metabolism of chlorophyll in rice. OsLHCB3 RNAi knockdown plants affected the expression of PS II-related genes, but not PS I-related genes. Overall, these results suggest that OsLHCB3 also plays vital roles in regulating photosynthesis and antenna proteins in rice as well as responses to environment stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01387-z.
Collapse
Affiliation(s)
- Quanxiu Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Pingli Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Honglin Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Shuangshuang Chao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Wenru Guo
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Yuxue Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Chenglin Miao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Hongyu Yuan
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Bo Peng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| |
Collapse
|
19
|
Singh BK, Venkadesan S, Ramkumar MK, Shanmugavadivel PS, Dutta B, Prakash C, Pal M, Solanke AU, Rai A, Singh NK, Mohapatra T, Sevanthi AM. Meta-Analysis of Microarray Data and Their Utility in Dissecting the Mapped QTLs for Heat Acclimation in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:1697. [PMID: 37111920 PMCID: PMC10142300 DOI: 10.3390/plants12081697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/19/2023]
Abstract
In the current global warming scenario, it is imperative to develop crops with improved heat tolerance or acclimation, for which knowledge of major heat stress-tolerant genes or genomic regions is a prerequisite. Though several quantitative trait loci (QTLs) for heat tolerance have been mapped in rice, candidate genes from these QTLs have not been reported yet. The meta-analysis of microarray datasets for heat stress in rice can give us a better genomic resource for the dissection of QTLs and the identification of major candidate genes for heat stress tolerance. In the present study, a database, RiceMetaSys-H, comprising 4227 heat stress-responsive genes (HRGs), was created using seven publicly available microarray datasets. This included in-house-generated microarray datasets of Nagina 22 (N22) and IR64 subjected to 8 days of heat stress. The database has provisions for searching the HRGs through genotypes, growth stages, tissues, and physical intervals in the genome, as well as Locus IDs, which provide complete information on the HRGs with their annotations and fold changes, along with the experimental material used for the analysis. The up-regulation of genes involved in hormone biosynthesis and signalling, sugar metabolism, carbon fixation, and the ROS pathway were found to be the key mechanisms of enhanced heat tolerance. Integrating variant and expression analysis, the database was used for the dissection of the major effect of QTLs on chromosomes 4, 5, and 9 from the IR64/N22 mapping population. Out of the 18, 54, and 62 genes in these three QTLs, 5, 15, and 12 genes harboured non-synonymous substitutions. Fifty-seven interacting genes of the selected QTLs were identified by a network analysis of the HRGs in the QTL regions. Variant analysis revealed that the proportion of unique amino acid substitutions (between N22/IR64) in the QTL-specific genes was much higher than the common substitutions, i.e., 2.58:0.88 (2.93-fold), compared to the network genes at a 0.88:0.67 (1.313-fold) ratio. An expression analysis of these 89 genes showed 43 DEGs between IR64/N22. By integrating the expression profiles, allelic variations, and the database, four robust candidates (LOC_Os05g43870, LOC_Os09g27830, LOC_Os09g27650, andLOC_Os09g28000) for enhanced heat stress tolerance were identified. The database thus developed in rice can be used in breeding to combat high-temperature stress.
Collapse
Affiliation(s)
- Bablee Kumari Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | | | - M. K. Ramkumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - P. S. Shanmugavadivel
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur 208024, India
| | - Bipratip Dutta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Chandra Prakash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amolkumar U. Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110001, India
| | | |
Collapse
|
20
|
Seong GU, Kim JY, Kim JS, Jeong SU, Cho JH, Lee JY, Lee SB, Kabange NR, Park DS, Moon KD, Kang JW. Quality Characteristics of Rice-Based Ice Creams with Different Amylose Contents. Foods 2023; 12:foods12071518. [PMID: 37048338 PMCID: PMC10094488 DOI: 10.3390/foods12071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Ice cream consumption has increased over the years. In this study, we investigated the potential of using rice varieties with varying amylose contents for ice cream production. We analyzed the physical and chemical properties and sensory quality characteristics (appearance, taste, texture, chewiness, aroma, and rice flavor) of rice-based ice cream made from five varieties with low and high amylose levels. To make the ice cream, we ground rice into a fine powder and combined it with skim milk powder, butter, sugar, glycerin esters of fatty acids, locust bean gum, and water to form a gelatinized mixture. This mixture was then aged, frozen, and hardened. The ice cream’s key quality characteristics, such as viscosity (2170–25,030 cP), hardness (4.27–49.55 N cm−2), and overrun (17.95–46.99%), showed a wide range. Ice cream made from Saemimyeon (high amylose content rice variety) exhibited the highest hardness value (49.55 N cm−2) among the varieties tested, but had relatively low viscosity (4030 cP), overrun (17.95%), and drip-through (0.75 g/min) values. These findings suggest that rice varieties with different amylose contents are suitable for making ice cream and have the potential to expand the rice processing market and increase its value.
Collapse
Affiliation(s)
- Gi-Un Seong
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Ji-Yoon Kim
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung-Soo Kim
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sae-Ul Jeong
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Hyeon Cho
- National Institute of Crop Science, Rural Development Administration, Sangju 37139, Republic of Korea
| | - Ji-Yoon Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Sais-Beul Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Nkulu-Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Dong-Soo Park
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Kwang-Deog Moon
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| |
Collapse
|
21
|
Hu Z, Niu F, Yan P, Wang K, Zhang L, Yan Y, Zhu Y, Dong S, Ma F, Lan D, Liu S, Xin X, Wang Y, Yang J, Cao L, Wu S, Luo X. The kinase OsSK41/OsGSK5 negatively regulates amylose content in rice endosperm by affecting the interaction between OsEBP89 and OsBP5. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36965127 DOI: 10.1111/jipb.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Amylose content (AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice (Oryza sativa) grains. AC in rice grains is mainly controlled by different alleles of the Waxy (Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC-like protein OsBP5 to synergistically regulate the expression of Wx. Here, we determined that the GLYCOGEN SYNTHASE KINASE 5 (OsGSK5, also named SHAGGY-like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites (Thr-28, Thr-30, Ser-238, and Thr-257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimic variant OsEBP89E -OsBP5 but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A -OsBP5. Therefore, OsSK41-mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.
Collapse
Affiliation(s)
- Zejun Hu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fuan Niu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kai Wang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Lixia Zhang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Ying Yan
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yu Zhu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shiqing Dong
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dengyong Lan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Siwen Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoyun Xin
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shujun Wu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
22
|
Three Starch Synthase IIa ( SSIIa) Alleles Reveal the Effect of SSIIa on the Thermal and Rheological Properties, Viscoelasticity, and Eating Quality of Glutinous Rice. Int J Mol Sci 2023; 24:ijms24043726. [PMID: 36835139 PMCID: PMC9962474 DOI: 10.3390/ijms24043726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Glutinous rice accumulates amylose-free starch and is utilized for rice cakes and crackers, owing to the loss of the Waxy gene which encodes granule-bound starch synthase I (GBSSI). Starch synthase IIa (SSIIa) elongates amylopectin chains with a degree of polymerization (DP) of 6-12 to 13-24 and greatly influences starch properties. To elucidate the relationship between the branch length of amylopectin and the thermal and rheological properties, viscoelasticity, and eating quality of glutinous rice, three allelic near isogenic lines with high, low, or no SSIIa activity were generated (designated as SS2a wx, ss2aL wx, and ss2a wx, respectively). Chain length distribution analyses revealed that ss2a wx exhibited the highest short chain (DP < 12) number and lowest gelatinization temperature, whereas SS2a wx showed the opposite results. Gel filtration chromatography showed that the three lines contained essentially no amylose. Viscoelasticity analyses of rice cakes stored at low temperature for different durations revealed that ss2a wx maintained softness and elasticity for up to 6 days, while SS2a wx hardened within 6 h. Sensory evaluation was consistent with mechanical evaluation. The relationship of amylopectin structure with the thermal and rheological properties, viscoelasticity, and eating quality of glutinous rice is discussed.
Collapse
|
23
|
Imran M, Shafiq S, Tang X. CRISPR-Cas9-mediated editing of BADH2 gene triggered fragrance revolution in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e13871. [PMID: 36748269 DOI: 10.1111/ppl.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/26/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Fragrance is one of the most important quality traits for breeding in rice. The natural aroma substance 2-acetyl-1-pyrroline (2-AP) is a key fragrance compound among over 200 volatiles identified in fragrant rice. In addition to rice, there are other plant species that contain a germplasm that naturally produces a fragrant aroma. These other plant species all have lower activity levels of the enzyme BETAINE ALDEHYDE DEHYDROGENASE 2 (BADH2). Therefore, improving fragrance efficiency has been a focus of intensive research. Recent studies have engineered BADH2 gene, which is responsible for fragrance trait in non-fragrant cultivars of rice, using CRISPR-Cas9. Although engineering rice BADH2 can be useful for upregulating 2-AP, there are still a lot of restrictions on how it can be applied in practice. In this review article, we discuss the recent developments in BADH2 editing and propose potential future strategies to effectively target BADH2 for transcriptional regulation, with the goal of producing a better fragrance.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
24
|
Zhang Q, Zhang S, Yu X, Wei X, Huang X, Zhou X. Fine-tuning grain amylose contents by genome editing of Waxy cis-regulatory region in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:72. [PMID: 37313325 PMCID: PMC10248690 DOI: 10.1007/s11032-022-01342-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/12/2022] [Indexed: 06/15/2023]
Abstract
Rice grain amylose contents (ACs) is a key quantitative trait influencing eating and cooking quality. Regulating the expression level of Waxy, a key gene controlling ACs, and in turn fine-tuning the grain ACs, is an ideal approach to improve grain quality of rice varieties. Based on CRISPR/Cas9 genome editing technology, we designed eight targets in the cis-regulatory region of Wxa background, screened phenotypic changes of the transgenic lines and generated eight novel Waxy alleles with altered grain ACs. Among the eight alleles, we found that a 407-bp non-homologous substitution (NHS) in the 5'UTR-intron caused by genome editing regulated Waxy expression and decreased grain ACs by 2.9%. Moreover, embedding the 407-bp NHS into the cis-regulatory region of Wxb allele can also affect gene activity. Our work suggested the effect of 5'UTR-intron on Waxy gene expression regulation, and provided a potentially useful allele in breeding that can finely adjust rice grain ACs.
Collapse
Affiliation(s)
- Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Sinan Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Xiting Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| |
Collapse
|
25
|
Identification of volatile organic compounds related to the eating quality of cooked japonica rice. Sci Rep 2022; 12:18133. [PMID: 36307468 PMCID: PMC9616908 DOI: 10.1038/s41598-022-21863-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 12/30/2022] Open
Abstract
Eating quality (EQ) of rice has a complex nature composed of physicochemical properties. Nevertheless, breeding programs evaluating EQ through sensory test or taste-evaluation instruments have been laborious, time-consuming and inefficient. EQ is affected by both taste and aroma. However, in actual breeding programs, aroma of cooked rice has been considered the least due to lack of information. Here we identified a total of 41 volatile compounds potentially affecting the EQ of non-aromatic, cooked japonica rice, identified by GC-MS, sensory panel test, and Toyo taste-meter analyses. Partial least squares discriminant analysis demonstrated an outstanding classification effect of the identified volatile compounds on eating-quality discrimination. Several volatile compounds related to lipid oxidation and fatty acid degradation were identified to affect the EQ in japonica rice. Of them, 1-octen-3-ol, 1-ethyl-3,5-dimethylbenzene, 2,6,11-trimethyldodecane, 3-ethyloctane, 2,7,10-trimethyldodecane, methyl salicylate, 2-octanone, and heptanal were selected as important compounds. The discriminant model for the classification of the quality of cultivars was robust and accurate, an r-squared value was 0.91, a q squared value was 0.85, and an accuracy was 1.0. Overall, the results of this study characterize EQ of rice cultivars based on volatile compounds, suggesting the application of metabolite profiling data for rice breeding of high eating quality.
Collapse
|
26
|
Lee YK, Lee Y, Jang S, Lee T, Woo MO, Seo J, Kim B, Koh HJ. Sequencing and de novo assembly of the Koshihikari genome and identification of the genomic region related to the eating quality of cooked rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:65. [PMID: 37309489 PMCID: PMC10248671 DOI: 10.1007/s11032-022-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/02/2022] [Indexed: 06/14/2023]
Abstract
The japonica rice (Oryza sativa L.) cultivar Koshihikari is considered an important breeding material with good eating quality (EQ). To effectively utilize Koshihikari in molecular breeding programs, determining its whole genome sequence including cultivar-specific segment is crucial. Here, the Koshihikari genome was sequenced using Nanopore and Illumina platforms, and de novo assembly was performed. A highly contiguous Koshihikari genome sequence was compared with Nipponbare, the reference genome of japonica. Genome-wide synteny was observed, as expected, without large structural variations. However, several gaps in alignment were detected on chromosomes 3, 4, 9, and 11. It was notable that previously identified EQ-related QTLs were found in these gaps. Moreover, sequence variations were identified in chromosome 11 at a region flanking the P5 marker, one of the significant markers of good EQ. The Koshihikari-specific P5 region was found to be transmitted through the lineage. High EQ cultivars derived from Koshihikari possessed P5 sequences; on the other hand, Koshihikari-derived low EQ cultivars didn't contain the P5 region, which implies that the P5 genomic region affects the EQ of Koshihikari progenies. The EQ of near-isogenic lines (NILs) of Samnam (a low EQ cultivar) genetic background harboring the P5 segment was improved compared to that of Samnam in Toyo taste value. The structure of the Koshihikari-specific P5 genomic region associated with good EQ was analyzed, which is expected to facilitate the molecular breeding of rice cultivars with superior EQ. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01335-3.
Collapse
Affiliation(s)
- Yoon Kyung Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yunjoo Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Su Jang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Taeyoung Lee
- Bioinformatics Institute, Macrogen Inc, Seoul, 08511 Republic of Korea
| | - Mi-Ok Woo
- Science & Technology Policy Division, Ministry of Agriculture, Food and Rural Affairs, Sejong, South Korea
| | - Jeonghwan Seo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365 Korea
| | - Backki Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Zhao G, Xie S, Zong S, Wang T, Mao C, Shi J, Li J. Mutation of TL1, encoding a novel C 2H 2 zinc finger protein, improves grains eating and cooking quality in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3531-3543. [PMID: 35994056 DOI: 10.1007/s00122-022-04198-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/09/2022] [Indexed: 05/02/2023]
Abstract
The cloning and characterization of a novel C2H2 zinc finger protein that affects rice eating and cooking quality by regulating amylose content and amylopectin chain-length distribution in rice. One of the major objectives in rice breeding aims to increase simultaneously yield and grain quality especially eating and cooking quality (ECQ). Controlling amylose content (AC) and amylopectin chain-length distribution (ACLD) in rice is a major strategy for improving rice ECQ. Previous studies show that some starch synthesis-related genes (SSRGs) are required for normal AC and ACLD, but its underlying regulating network is still unclear. Here, we report the cloning and characterization of a novel C2H2 zinc finger protein TL1 (Translucent endosperm 1) that positively regulates amylose synthesis in rice grains. Loss of TL1 function reduced apparent amylose content (AAC), total starch, gel consistency, and gelatinisation temperature, whereas increased viscosity, total lipid, and ratio of amylopectin A chains with degree of polymerization (DP) 6-12 to B1 chains with DP 13-24, resulting in an enhanced grain ECQ. The improved ECQ was accompanied by altered expression patterns of several tested SSRGs in tl1 mutant grains. Furthermore, knockout of TL1 in the high-yielding rice variety JiaHua NO.1 reduced AAC without obvious side effects on major agronomic traits. These findings expand our understanding of the regulating networks of grain starch metabolism and provide new insights into how rice ECQ quality can be improved via genetic approach.
Collapse
Affiliation(s)
- Guochao Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Shuifeng Xie
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shipeng Zong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianyue Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
28
|
Effect of Heading Date on the Starch Structure and Grain Yield of Rice Lines with Low Gelatinization Temperature. Int J Mol Sci 2022; 23:ijms231810783. [PMID: 36142691 PMCID: PMC9502985 DOI: 10.3390/ijms231810783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Early flowering trait is essential for rice cultivars grown at high latitude since delayed flowering leads to seed development at low temperature, which decreases yield. However, early flowering at high temperature promotes the formation of chalky seeds with low apparent amylose content and high starch gelatinization temperature, thus affecting grain quality. Deletion of starch synthase IIa (SSIIa) shows inverse effects of high temperature, and the ss2a mutant shows higher apparent amylose content and lower gelatinization temperature. Heading date 1 (Hd1) is the major regulator of flowering time, and a nonfunctional hd1 allele is required for early flowering. To understand the relationship among heading date, starch properties, and yield, we generated and characterized near-isogenic rice lines with ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 genotypes. The ss2a Hd1 line showed the highest plant biomass; however, its grain yield varied by year. The ss2a Hd1 hd1 showed higher total grain weight than ss2a hd1. The ss2a hd1 line produced the lowest number of premature seeds and showed higher gelatinization temperature and lower apparent amylose content than ss2a Hd1. These results highlight Hd1 as the candidate gene for developing high-yielding rice cultivars with the desired starch structure.
Collapse
|
29
|
Xia D, Wang Y, Shi Q, Wu B, Yu X, Zhang C, Li Y, Fu P, Li M, Zhang Q, Liu Q, Gao G, Zhou H, He Y. Effects of Wx Genotype, Nitrogen Fertilization, and Temperature on Rice Grain Quality. FRONTIERS IN PLANT SCIENCE 2022; 13:901541. [PMID: 35937336 PMCID: PMC9355397 DOI: 10.3389/fpls.2022.901541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Quality is a complex trait that is not only the key determinant of the market value of the rice grain, but is also a major constraint in rice breeding. It is influenced by both genetic and environmental factors. However, the combined effects of genotypes and environmental factors on rice grain quality remain unclear. In this study, we used a three-factor experimental design to examine the grain quality of different Wx genotypes grown under different nitrogen fertilization and temperature conditions during grain development. We found that the three factors contributed differently to taste, appearance, and nutritional quality. Increased Wx function and nitrogen fertilization significantly reduced eating quality, whereas high temperature (HT) had almost no effect. The main effects of temperature on appearance quality and moderate Wx function at low temperatures (LTs) contributed to better appearance, and higher nitrogen fertilization promoted appearance at HTs. With regard to nutritional quality, Wx alleles promoted amylose content (AC) as well as starch-lipids content (SLC); nitrogen fertilization increased storage protein content (PC); and higher temperature increased lipid content but decreased the PC. This study helps to broaden the understanding of the major factors that affect the quality of rice and provides constructive messages for rice quality improvement and the cultivation of high-quality rice varieties.
Collapse
Affiliation(s)
- Duo Xia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yipei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qingyun Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaoman Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Pei Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Minqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Yang W, Hao Q, Liang J, Tan Q, Luan X, Lin S, Zhu H, Bu S, Liu Z, Liu G, Wang S, Zhang G. Fine Mapping of Two Major Quantitative Trait Loci for Rice Chalkiness With High Temperature-Enhanced Additive Effects. FRONTIERS IN PLANT SCIENCE 2022; 13:957863. [PMID: 35845647 PMCID: PMC9280674 DOI: 10.3389/fpls.2022.957863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 05/31/2023]
Abstract
Chalkiness is a crucial determinant of rice quality. During seed filling period, high temperature usually increases grain chalkiness, resulting in poor grain quality. Rice chalkiness was controlled by quantitative trait loci (QTLs) and influenced by environmental conditions. In this study, we identified two single-segment substitution lines (SSSLs) 22-05 and 15-06 with significantly lower percentage of grain chalkiness (PGC) than recipient Huajingxian 74 (HJX74) over 6 cropping seasons. Two major QTLs for chalkiness, qPGC5 and qPGC6, were located by substitution mapping of SSSLs 22-05 and 15-06, respectively. qPGC5 was located in the 876.5 kb interval of chromosome 5 and qPGC6 was located in the 269.1 kb interval of chromosome 6. Interestingly, the PGC of HJX74 was significantly different between the two cropping seasons per year, with 25.8% in the first cropping season (FCS) and 16.6% in the second cropping season (SCS), while the PGC of SSSLs 22-05 and 15-06 did not significantly differ between FCS and SCS. The additive effects of qPGC5 and qPGC6 on chalkiness in the SSSLs were significantly greater in FCS than in SCS. These results showed that qPGC5 and qPGC6 had major effects on chalkiness and the SSSL alleles were more effective in reducing chalkiness under high temperature condition in FCS. The fine-mapping of the two QTLs will facilitate the cloning of genes for chalkiness and provide new genetic resources to develop new cultivars with low chalkiness even under high temperature condition.
Collapse
Affiliation(s)
- Weifeng Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qingwen Hao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayan Liang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Quanya Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xin Luan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Shaojun Lin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Suhong Bu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
31
|
Fu Y, Luo T, Hua Y, Yan X, Liu X, Liu Y, Liu Y, Zhang B, Liu R, Zhu Z, Zhu J. Assessment of the Characteristics of Waxy Rice Mutants Generated by CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2022; 13:881964. [PMID: 35755680 PMCID: PMC9226628 DOI: 10.3389/fpls.2022.881964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The cooking and eating quality of rice grains is a major focus from a consumer's perspective and is mainly determined by the apparent amylose content (AAC) of the starch. Waxy rice, a type of rice with an AAC of less than 2%, is an important goal for the breeding of high-quality rice. In recent years, the cloning of the Waxy (Wx) gene has revealed the molecular mechanism of the formation of waxy traits in rice. However, there have been limited studies on the physicochemical properties, such as gelatinization temperature, rapid viscosity analyzer profile, and amylopectin fine structure of wx mutants. In the current study, a rapid and highly efficient strategy was developed through the CRISPR/Cas9 gene-editing system for generating wx mutants in the background of five different rice varieties. The wx mutation significantly reduced the AAC and starch viscosity but did not affect the major agronomic traits (such as plant height, panicle number per plant, grain number per panicle, and seed-setting frequency). Incorporation of the wx mutation into varieties with low initial AAC levels resulted in further reduction in AAC, but without significantly affecting the original, desirable gelatinization traits and amylopectin structure types, suggesting that parents with low initial AAC should be preferred in breeding programs.
Collapse
Affiliation(s)
- Yuhao Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Luo
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yonghuan Hua
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xuehai Yan
- Leshan Municipal Bureau of Agriculture and Rural Affairs, Leshan, China
| | - Xu Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Baoli Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Rui Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Zizhong Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Miura S, Narita M, Crofts N, Itoh Y, Hosaka Y, Oitome NF, Abe M, Takahashi R, Fujita N. Improving Agricultural Traits While Maintaining High Resistant Starch Content in Rice. RICE (NEW YORK, N.Y.) 2022; 15:28. [PMID: 35662383 PMCID: PMC9167398 DOI: 10.1186/s12284-022-00573-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Resistant starch (RS) is beneficial for human health. Loss of starch branching enzyme IIb (BEIIb) increases the proportion of amylopectin long chains, which greatly elevates the RS content. Although high RS content cereals are desired, an increase in RS content is often accompanied by a decrease in seed weight. To further increase the RS content, genes encoding active-type starch synthase (SS) IIa, which elongates amylopectin branches, and high expression-type granule-bound SSI (GBSSI), which synthesizes amylose, were introduced into the be2b mutant rice. This attempt increased the RS content, but further improvement of agricultural traits was required because of a mixture of indica and japonica rice phonotype, such as different grain sizes, flowering times, and seed shattering traits. In the present study, the high RS lines were backcrossed with an elite rice cultivar, and the starch properties of the resultant high-yielding RS lines were analyzed. RESULTS The seed weight of high RS lines was greatly improved after backcrossing, increasing up to 190% compared with the seed weight before backcrossing. Amylopectin structure, gelatinization temperature, and RS content of high RS lines showed almost no change after backcrossing. High RS lines contained longer amylopectin branch chains than the wild type, and lines with active-type SSIIa contained a higher proportion of long amylopectin chains compared with the lines with less active-SSIIa, and thus showed higher gelatinization temperature. Although the RS content of rice varied with the cooking method, those of high RS lines remained high after backcrossing. The RS contents of cooked rice of high RS lines were high (27-35%), whereas that of the elite parental rice was considerably low (< 0.7%). The RS contents of lines with active-type SSIIa and high-level GBSSI expression in be2b or be2b ss3a background were higher than those of lines with less-active SSIIa. CONCLUSIONS The present study revealed that backcrossing high RS rice lines with elite rice cultivars could increase the seed weight, without compromising the RS content. It is likely that backcrossing introduced loci enhancing seed length and width as well as loci promoting early flowering for ensuring an optimum temperature during RS biosynthesis.
Collapse
Affiliation(s)
- Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Maiko Narita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Yuki Itoh
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko F. Oitome
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Misato Abe
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Rika Takahashi
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| |
Collapse
|
33
|
Chen F, Lu Y, Pan L, Fan X, Li Q, Huang L, Zhao D, Zhang C, Liu Q. The Underlying Physicochemical Properties and Starch Structures of indica Rice Grains with Translucent Endosperms under Low-Moisture Conditions. Foods 2022; 11:foods11101378. [PMID: 35626949 PMCID: PMC9141583 DOI: 10.3390/foods11101378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023] Open
Abstract
Rice grain quality is a complex trait that includes processing, appearance, eating, cooking, and nutrition components. The amylose content (AC) in the rice endosperm affects the eating and cooking quality along with the appearance of milled rice. In this study, four indica rice varieties with different ACs were used to study the factors affecting endosperm transparency along with the physical and chemical characteristics and eating quality of translucent endosperm varieties. Endosperm transparency was positively correlated with water content and negatively correlated with the cumulative area of cavities within starch granules. The indica landrace 28Zhan had a translucent endosperm and exhibited good taste. Based on starch fine structure analysis, long-chain amylopectin and the B2 chain of amylopectin might be major contributors to the good taste and relatively slow digestion of this landrace.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
| | - Yan Lu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
| | - Lixu Pan
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
| | - Xiaolei Fan
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
| | - Qianfeng Li
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
| | - Lichun Huang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
| | - Dongsheng Zhao
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
| | - Changquan Zhang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.C.); (Y.L.); (L.P.); (X.F.); (Q.L.); (L.H.); (D.Z.); (C.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
34
|
Sharma V, Fandade V, Kumar P, Parveen A, Madhawan A, Bathla M, Mishra A, Sharma H, Rishi V, Satbhai SB, Roy J. Protein targeting to starch 1, a functional protein of starch biosynthesis in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2022; 109:101-113. [PMID: 35332427 DOI: 10.1007/s11103-022-01260-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
TaPTST1, a wheat homolog of AtPTST1 containing CBM can interact with GBSSI and regulate starch metabolism in wheat endosperm. In cereal endosperm, native starch comprising amylose and amylopectin is synthesized by the coordinated activities of several pathway enzymes. Amylose in starch influences its physio-chemical properties resulting in several human health benefits. The Granule-Bound Starch Synthase I (GBSSI) is the most abundant starch-associated protein. GBSSI lacks dedicated Carbohydrate-binding module (CBM). Previously, Protein Targeting To Starch 1 (PTST1) was identified as a crucial protein for the localization of GBSSI to the starch granules in Arabidopsis. The function of its homologous protein in the wheat endosperm is not known. In this study, TaPTST1, an AtPTST1 homolog, containing a CBM and a coiled-coil domain was identified in wheat. Protein-coding nucleotide sequence of TaPTST1 from Indian wheat variety 'C 306' was cloned and characterized. Homology modelling and molecular docking suggested the potential interaction of TaPTST1 with glucans and GBSSI. The TaPTST1 expression was higher in wheat grain than the other tissues, suggesting a grain-specific function. In vitro binding assays demonstrated different binding affinities of TaPTST1 for native starch, amylose, and amylopectin. Furthermore, the immunoaffinity pull-down assay revealed that TaPTST1 directly interacts with GBSSI, and the interaction is mediated by a coiled-coil domain. The direct protein-protein interaction was further confirmed by bimolecular fluorescence complementation assay (BiFC) in planta. Based on our findings we postulate a functional role for TaPTST1 in starch metabolism by targeting GBSSI to starch granules in wheat endosperm.
Collapse
Affiliation(s)
- Vinita Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Vikas Fandade
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Prashant Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Afsana Parveen
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Akansha Madhawan
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Manik Bathla
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Ankita Mishra
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India.
| |
Collapse
|
35
|
CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. Int J Mol Sci 2022; 23:ijms23084454. [PMID: 35457271 PMCID: PMC9027422 DOI: 10.3390/ijms23084454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
To increase the potentiality of crop production for future food security, new technologies for plant breeding are required, including genome editing technology—being one of the most promising. Genome editing with the CRISPR/Cas system has attracted researchers in the last decade as a safer and easier tool for genome editing in a variety of living organisms including rice. Genome editing has transformed agriculture by reducing biotic and abiotic stresses and increasing yield. Recently, genome editing technologies have been developed quickly in order to avoid the challenges that genetically modified crops face. Developing transgenic-free edited plants without introducing foreign DNA has received regulatory approval in a number of countries. Several ongoing efforts from various countries are rapidly expanding to adopt the innovations. This review covers the mechanisms of CRISPR/Cas9, comparisons of CRISPR/Cas9 with other gene-editing technologies—including newly emerged Cas variants—and focuses on CRISPR/Cas9-targeted genes for rice crop improvement. We have further highlighted CRISPR/Cas9 vector construction model design and different bioinformatics tools for target site selection.
Collapse
|
36
|
Feng T, Wang L, Li L, Liu Y, Chong K, Theißen G, Meng Z. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. THE NEW PHYTOLOGIST 2022; 234:77-92. [PMID: 35067957 DOI: 10.1111/nph.17990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
Starch synthesis makes a dramatic contribution to the yield and nutritional value of cereal crops. Although several starch synthesis enzymes and related regulators have been reported, the underlying regulatory mechanisms of starch synthesis remain largely unknown. OsMADS14 is a FRUITFULL (FUL)-like MADS-box gene in rice (Oryza sativa). Here we show that two null mutations of OsMADS14 result in a shrunken and chalky grain phenotype. It is caused by obviously defective compound starch granules and a significantly reduced content of both total starch and amylose in the endosperm. Transcriptomic profiling analyses revealed that the loss-of-function of OsMADS14 leads to significantly downregulated expression of many core starch synthesis genes, including OsAGPL2 and Waxy. Both in vitro and in vivo assays demonstrate that the OsMADS14 protein directly binds to stretches of DNA with a CArG-box consensus in the putative regulatory regions of OsAGPL2 and Waxy. Protein-protein interaction experiments also suggest that OsMADS14 interacts with nuclear factor NF-YB1 to promote the transcription of OsAGPL2 and Waxy. Our study thus demonstrates that OsMADS14 plays an essential role in the synthesis of storage starch and provides novel insights into the underlying molecular mechanism that may be used to improve rice cultivars by molecular breeding.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiyun Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
37
|
Zhou L, Zhang C, Zhang Y, Wang C, Liu Q. Genetic manipulation of endosperm amylose for designing superior quality rice to meet the demands in the 21st century. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
John D, Sureshkumar S, Raman M. Type‐2 diabetes and identification of major genetic determinants of glycemic index in rice‐ A review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Deepa John
- Department of Biotechnology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| | - S Sureshkumar
- Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| | - Maya Raman
- Department of Food Science and Technology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| |
Collapse
|
39
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
40
|
Okpala NE, Aloryi KD, An T, He L, Tang X. The roles of starch branching enzymes and starch synthase in the biosynthesis of amylose in rice. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Crofts N, Domon A, Miura S, Hosaka Y, Oitome NF, Itoh A, Noge K, Fujita N. Starch synthases SSIIa and GBSSI control starch structure but do not determine starch granule morphology in the absence of SSIIIa and SSIVb. PLANT MOLECULAR BIOLOGY 2022; 108:379-398. [PMID: 34671919 DOI: 10.1007/s11103-021-01197-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 05/21/2023]
Abstract
High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Asaka Domon
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Ayaka Itoh
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
42
|
Crofts N, Satoh Y, Miura S, Hosaka Y, Abe M, Fujita N. Active-type starch synthase (SS) IIa from indica rice partially complements the sugary-1 phenotype in japonica rice endosperm. PLANT MOLECULAR BIOLOGY 2022; 108:325-342. [PMID: 34287741 DOI: 10.1007/s11103-021-01161-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/03/2021] [Indexed: 05/21/2023]
Abstract
Introduction of higher SSIIa activity to mild-type isa1 mutant by crossing results in restoration of crystallinity, starch granule structure, and production of plump seeds. Isoamylase 1 (ISA1) removes improper α-1, 6 glycosidic branches of amylopectin generated by starch branching enzymes and is essential for the formation of proper amylopectin structure. Rice isa1 (sug-1) mutants in japonica cultivar with less-active starch synthase IIa (SSIIa) and low granule-bound SSI (GBSSI) expression display wrinkled seed phenotype by accumulating water-soluble phytoglycogen instead of insoluble amylopectin. Expression of active SSIIa in transgenic rice produced with a severe-type isa1 mutant accumulated some insoluble glucan with weak B-type crystallinity at the periphery of seeds but their seeds remained wrinkled. To see whether introduction of high levels of SSIIa and/or GBSSI can restore the grain filling of the mild-type sug-1 mutant (EM653), new rice lines (SS2a gbss1L isa1, ss2aL GBSS1 isa1, and SS2a GBSS1 isa1) were generated by crossing japonica isa1 mutant (ss2aL gbss1L isa1) with wild type indica rice (SS2a GBSS1 ISA1). The results showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 lines generated chalky plump seeds accumulating insoluble amylopectin-like glucans with an increase in DP 13-35, while ss2aL GBSS1 isa1 generated wrinkly seeds and accumulated soluble glucans enriched with DP < 13. Scanning electron microscopic observation of cross-section of the seeds showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 produced wild type-like polygonal starch granules. These starches showed the A-type crystallinity comparable to the wild type, while the japonica isa1 mutant and the transgenic rice do not show any or little crystallinity, respectively. These results indicate that introduction of higher SSIIa activity can mostly complements the mild-type sug-1 phenotype.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yoshiki Satoh
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Misato Abe
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
43
|
Zhang C, Hao W, Lu Y, Yang Y, Chen Z, Li Q, Fan X, Luo J, Liu Q. A comparative evaluation of the effect of SSI and Wx allelic variation on rice grain quality and starch physicochemical properties. Food Chem 2022; 371:131205. [PMID: 34598118 DOI: 10.1016/j.foodchem.2021.131205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/26/2021] [Accepted: 09/19/2021] [Indexed: 11/24/2022]
Abstract
Near-isogenic lines Nip(Wxb/SSIj), Nip(Wxb/SSIi), Nip(wx/SSIj) and Nip(wx/SSIi) in the japonica rice Nipponbare (Nip) background containing allelic variation in the starch synthase gene SSI and Wx were investigated for cooked rice grain quality, starch morphology, pasting profiles, fine structure and crystallinity characteristics. Rice grains carrying the SSIi allele had poor cooked rice taste in the Wxb background. The introduction of SSIi caused reduced cooked rice grain elongation, especially in the wx background. Starch granule size was reduced in SSIi rice and the viscosity of flour and starch prepared from SSIi rice was markedly increased. Moreover, analysis of the starch molecular structure revealed a remarkable increase in the short amylopectin chains and reduced starch relative crystallinity compared with SSIj rice, which resulted in decreased gelatinization characteristics. These results suggest that SSI allelic variation has multiple effects on rice grain quality, as well as starch fine structure.
Collapse
Affiliation(s)
- Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Weizhuo Hao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yan Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yong Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zhuanzhuan Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jixun Luo
- Commonwealth Scientific and Industrial Research Organisation, Agriculture & Food/Precision Health Future Science Platform, Acton, ACT 2601, Australia
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
Lu Y, Xu Y, Li N. Early Domestication History of Asian Rice Revealed by Mutations and Genome-Wide Analysis of Gene Genealogies. RICE (NEW YORK, N.Y.) 2022; 15:11. [PMID: 35166949 PMCID: PMC8847465 DOI: 10.1186/s12284-022-00556-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/22/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Asian rice (Oryza sativa L.) has been a model plant but its cultivation history is inadequately understood, and its origin still under debate. Several enigmas remain, including how this annual crop shifted its growth habit from its perennial ancestor, O. rufipogon, why genetic divergence between indica and japonica appears older than the history of human domestication, and why some domestication genes do not show signals of introgression between subgroups. Addressing these issues may benefit both basic research and rice breeding. RESULTS Gene genealogy-based mutation (GGM) analysis shows that history of Asian rice is divided into two phases (Phase I and II) of about equal lengths. Mutations occurred earlier than the partition of indica and japonica to Os genome mark Phase-I period. We diagnosed 91 such mutations among 101 genes sampled across 12 chromosomes of Asian rice and its wild relatives. Positive selection, detected more at 5' regions than at coding regions of some of the genes, involved 22 loci (e.g., An-1, SH4, Rc, Hd3a, GL3.2, OsMYB3, OsDFR, and OsMYB15), which affected traits from easy harvesting, grain color, flowering time, productivity, to likely taste and tolerance. Phase-I mutations of OsMYB3, OsHd3a and OsDFR were experimentally tested and all caused enhanced functions of the genes in vivo. Phase-II period features separate cultivations, lineage-specific selection, and expanded domestication to more genes. Further genomic analysis, along with phenotypic comparisons, indicates that O. sativa is hybrid progeny of O. rufipogon and O. nivara, inherited slightly more genes of O. rufipogon. Congruently, modern alleles of the sampled genes are approximately 6% ancient, 38% uni-specific, 40% bi-specific (mixed), and 15% new after accumulating significant mutations. Results of sequencing surveys across modern cultivars/landraces indicate locus-specific usages of various alleles while confirming the associated mutations. CONCLUSIONS Asian rice was initially domesticated as one crop and later separate selection mediated by human resulted in its major subgroups. This history and the hybrid origin well explain previous puzzles. Positive selection, particularly in 5' regions, was the major force underlying trait domestication. Locus-specific domestication can be characterized and the result may facilitate breeders in developing better rice varieties in future.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Present Address: College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
45
|
Jin SK, Zhang MQ, Leng YJ, Xu LN, Jia SW, Wang SL, Song T, Wang RA, Yang QQ, Tao T, Cai XL, Gao JP. OsNAC129 Regulates Seed Development and Plant Growth and Participates in the Brassinosteroid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:905148. [PMID: 35651773 PMCID: PMC9149566 DOI: 10.3389/fpls.2022.905148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Grain size and the endosperm starch content determine grain yield and quality in rice. Although these yield components have been intensively studied, their regulatory mechanisms are still largely unknown. In this study, we show that loss-of-function of OsNAC129, a member of the NAC transcription factor gene family that has its highest expression in the immature seed, greatly increased grain length, grain weight, apparent amylose content (AAC), and plant height. Overexpression of OsNAC129 had the opposite effect, significantly decreasing grain width, grain weight, AAC, and plant height. Cytological observation of the outer epidermal cells of the lemma using a scanning electron microscope (SEM) revealed that increased grain length in the osnac129 mutant was due to increased cell length compared with wild-type (WT) plants. The expression of OsPGL1 and OsPGL2, two positive grain-size regulators that control cell elongation, was consistently upregulated in osnac129 mutant plants but downregulated in OsNAC129 overexpression plants. Furthermore, we also found that several starch synthase-encoding genes, including OsGBSSI, were upregulated in the osnac129 mutant and downregulated in the overexpression plants compared with WT plants, implying a negative regulatory role for OsNAC129 both in grain size and starch biosynthesis. Additionally, we found that the expression of OsNAC129 was induced exclusively by abscisic acid (ABA) in seedlings, but OsNAC129-overexpressing plants displayed reduced sensitivity to exogenous brassinolide (BR). Therefore, the results of our study demonstrate that OsNAC129 negatively regulates seed development and plant growth, and further suggest that OsNAC129 participates in the BR signaling pathway.
Collapse
Affiliation(s)
- Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xiu-Ling Cai,
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Ji-Ping Gao,
| |
Collapse
|
46
|
Zhang H, Xu H, Jiang Y, Zhang H, Wang S, Wang F, Zhu Y. Genetic Control and High Temperature Effects on Starch Biosynthesis and Grain Quality in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:757997. [PMID: 34975940 PMCID: PMC8718882 DOI: 10.3389/fpls.2021.757997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 05/29/2023]
Abstract
Grain quality is one of the key targets to be improved for rice breeders and covers cooking, eating, nutritional, appearance, milling, and sensory properties. Cooking and eating quality are mostly of concern to consumers and mainly determined by starch structure and composition. Although many starch synthesis enzymes have been identified and starch synthesis system has been established for a long time, novel functions of some starch synthesis genes have continually been found, and many important regulatory factors for seed development and grain quality control have recently been identified. Here, we summarize the progress in this field as comprehensively as possible and hopefully reveal some underlying molecular mechanisms controlling eating quality in rice. The regulatory network of amylose content (AC) determination is emphasized, as AC is the most important index for rice eating quality (REQ). Moreover, the regulatory mechanism of REQ, especially AC influenced by high temperature which is concerned as a most harmful environmental factor during grain filling is highlighted in this review.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Heng Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yingying Jiang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shiyu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Fulin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
47
|
Management for Paddy, Oil Palm, and Pineapple Plantations in Malaysia: Current Status and Reviews. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2021. [DOI: 10.33736/jaspe.3438.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heavy rainfall causes a loss of fertiliser to the environment, and it leads to environmental issues such as eutrophication. Replenishment of fertiliser to replace the loss imposes a financial impact since frequent applications are costly and labour intensive. Therefore, investigations on proper fertiliser application in maintaining good soil pH, improving plant growth, and increasing crop yield from various plantations across Malaysia are of paramount importance. Meanwhile, limited agricultural-related studies about crop management in Malaysia have been done. This study presents a state-of-the-art review of Malaysia’s paddy, oil palm, pineapple plantations, and the existing nutrient management and fertilisation practices throughout the crop cycle. A systematic study of the existing crop management in terms of farming practices, nutrient management, and fertiliser application on the plantations of paddy, oil palm, and pineapple in Malaysia was carried out. Industry overviews for these three crop types based on past situations and future directions are also included. Recommendations on how to better manage these plantations are also outlined to promote a better understanding of the past, current, and future direction of the agricultural activities and management for principal edible crops like paddy, oil palm, and pineapple in Malaysia.
Collapse
|
48
|
KHARSHIING GAYLE, CHRUNGOO NIKHILK. Wx alleles in rice: relationship with apparent amylose content of starch and a possible role in rice domestication. J Genet 2021. [DOI: 10.1007/s12041-021-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Maung TZ, Yoo JM, Chu SH, Kim KW, Chung IM, Park YJ. Haplotype Variations and Evolutionary Analysis of the Granule-Bound Starch Synthase I Gene in the Korean World Rice Collection. FRONTIERS IN PLANT SCIENCE 2021; 12:707237. [PMID: 34504507 PMCID: PMC8421862 DOI: 10.3389/fpls.2021.707237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Granule-bound starch synthase I (GBSSI) is responsible for Waxy gene encoding the, which is involved in the amylose synthesis step of starch biosynthesis. We investigated the genotypic and haplotypic variations of GBSSI (Os06g0133000) gene, including its evolutionary relatedness in the nucleotide sequence level using single-nucleotide polymorphisms (SNPs), indels, and structural variations (SVs) from 475 Korean World Rice Collection (KRICE_CORE), which comprised 54 wild rice and 421 cultivated represented by 6 ecotypes (temperate japonica, indica, tropical japonica, aus, aromatic, and admixture) or in another way by 3 varietal types (landrace, weedy, and bred). The results revealed that 27 of 59 haplotypes indicated a total of 12 functional SNPs (fSNPs), identifying 9 novel fSNPs. According to the identified novel fSNPs, we classified the entire rice collection into three groups: cultivated, wild, and mixed (cultivated and wild) rice. Five novel fSNPs were localized in wild rice: four G/A fSNPs in exons 2, 9, and 12 and one T/C fSNP in exon 13. We also identified the three previously reported fSNPs, namely, a G/A fSNP (exon 4), an A/C fSNP (exon 6), and a C/T fSNP (exon 10), which were observed only in cultivated rice, whereas an A/G fSNP (exon 4) was observed exclusively in wild rice. All-against-all comparison of four varietal types or six ecotypes of cultivated rice with wild rice showed that the GBSSI diversity was higher only in wild rice (π = 0.0056). The diversity reduction in cultivated rice can be useful to encompass the origin of this gene GBSSI during its evolution. Significant deviations of positive (wild and indica under balancing selection) and negative (temperate and tropical japonica under purifying selection) Tajima's D values from a neutral model can be informative about the selective sweeps of GBSSI genome insights. Despite the estimation of the differences in population structure and principal component analysis (PCA) between wild and subdivided cultivated subgroups, an inbreeding effect was quantified by F ST statistic, signifying the genetic relatedness of GBSSI. Our findings of a novel wild fSNPS can be applicable for future breeding of waxy rice varieties. Furthermore, the signatures of selective sweep can also be of informative into further deeper insights during domestication.
Collapse
Affiliation(s)
- Thant Zin Maung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Ji-Min Yoo
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Sang-Ho Chu
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| | - Kyu-Won Kim
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| | - Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul, South Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| |
Collapse
|
50
|
Hong WJ, Jiang X, Choi SH, Kim YJ, Kim ST, Jeon JS, Jung KH. A Systemic View of Carbohydrate Metabolism in Rice to Facilitate Productivity. PLANTS 2021; 10:plants10081690. [PMID: 34451735 PMCID: PMC8401045 DOI: 10.3390/plants10081690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023]
Abstract
Carbohydrate metabolism is an important biochemical process related to developmental growth and yield-related traits. Due to global climate change and rapid population growth, increasing rice yield has become vital. To understand whole carbohydrate metabolism pathways and find related clues for enhancing yield, genes in whole carbohydrate metabolism pathways were systemically dissected using meta-transcriptome data. This study identified 866 carbohydrate genes from the MapMan toolkit and the Kyoto Encyclopedia of Genes and Genomes database split into 11 clusters of different anatomical expression profiles. Analysis of functionally characterized carbohydrate genes revealed that source activity and eating quality are the most well-known functions, and they each have a strong correlation with tissue-preferred clusters. To verify the transcriptomic dissection, three pollen-preferred cluster genes were used and found downregulated in the gori mutant. Finally, we summarized carbohydrate metabolism as a conceptual model in gene clusters associated with morphological traits. This systemic analysis not only provided new insights to improve rice yield but also proposed novel tissue-preferred carbohydrate genes for future research.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Xu Jiang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Seok-Hyun Choi
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Sun-Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|