1
|
uORF Shuffling Fine-Tunes Gene Expression at a Deep Level of the Process. PLANTS 2020; 9:plants9050608. [PMID: 32403214 PMCID: PMC7284334 DOI: 10.3390/plants9050608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/01/2023]
Abstract
Upstream open reading frames (uORFs) are present in the 5’ leader sequences (or 5’ untranslated regions) upstream of the protein-coding main ORFs (mORFs) in eukaryotic polycistronic mRNA. It is well known that a uORF negatively affects translation of the mORF. Emerging ribosome profiling approaches have revealed that uORFs themselves, as well as downstream mORFs, can be translated. However, it has also been revealed that plants can fine-tune gene expression by modulating uORF-mediated regulation in some situations. This article reviews several proposed mechanisms that enable genes to escape from uORF-mediated negative regulation and gives insight into the application of uORF-mediated regulation for precisely controlling gene expression.
Collapse
|
2
|
Abstract
Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. Phytochromes are red-light photoreceptors in plants that regulate key life cycle processes, yet their evolutionary origins are not well understood. Using transcriptomic and genomic data, Li et al. find that canonical plant phytochromes originated in a common ancestor of land plants and charophyte algae.
Collapse
|
3
|
Talmor-Neiman M, Stav R, Frank W, Voss B, Arazi T. Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:25-37. [PMID: 16824179 DOI: 10.1111/j.1365-313x.2006.02768.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Micro-RNAs (miRNAs) are one class of small non-coding RNAs that have important regulatory roles in higher plants. Much less is known about their prevalence and function in lower land plants. Previously we cloned 100 non-structural small RNAs from the moss Physcomitrella patens but could annotate only 11 as miRNAs. To identify additional moss miRNAs among cloned small RNAs we have analyzed their genomic sequences for a characteristic miRNA precursor-like structure. This analysis revealed 19 new moss miRNAs that are predicted to be encoded by 22 putative foldbacks. Northern blot analysis confirmed the expression of 14 new miRNA representatives. Half of these were gametophore specific, the rest were detected at low levels in the protonema. We predicted 12 genes as targets of nine new miRNAs. Three of these show homology to transcription factors and the others appear to play roles in diverse physiological processes including light and cytokine signaling, which have not to date been shown to be regulated by a miRNA in flowering plants. Four target genes, which show homology to ATN1-like protein kinase, NAC transcription factors and a cytokinin receptor, have been validated by miRNA-mediated mRNA cleavage. In addition, our analysis revealed that seven small RNAs represent miRNA* and three represent intermediates of pre-miRNA processing, providing evidence for specific DICER-like cleavage steps during miRNA biogenesis in moss. Our findings suggest that miRNAs are common in mosses and set the stage for the elucidation of their varied biological functions.
Collapse
Affiliation(s)
- Mali Talmor-Neiman
- Department of Ornamental Horticulture, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | | | | | | | | |
Collapse
|
4
|
McDaniel SF, Shaw AJ. Selective sweeps and intercontinental migration in the cosmopolitan moss Ceratodon purpureus (Hedw.) Brid. Mol Ecol 2006; 14:1121-32. [PMID: 15773940 DOI: 10.1111/j.1365-294x.2005.02484.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The moss Ceratodon purpureus has long been used as a model system in plant development and physiology. However, the molecular population genetics of the species remains virtually unexplored. In this study, we used population genetic analyses of DNA sequence data from three unlinked loci (atpB-rbcL spacer, adk, and phy2) to examine biogeographical patterns in a global sample of this species. The three loci differed significantly in mutation frequency spectra and implied population structure. Pairs of haplotypes from single populations were frequently more divergent than haplotypes sampled from widely disjunct populations. In the atpB-rbcL spacer and adk samples, Australasian haplotypes were more closely related to Northern Hemisphere haplotypes than to haplotypes found in the equatorial regions. In contrast, the phy2 sample showed that the north and south temperate regions were genetically divergent, with the equatorial regions intermediate. Maximum-likelihood estimates (MLE) of the rates of migration between the two hemispheres were significantly different for the two nuclear genes. The frequency spectra of mutations indicated that differences in implied population structure among the three loci resulted from directional selection on the chloroplast genome and on the chromosomal segment containing adk. Collectively, these data suggest that long-distance migration within the Northern Hemisphere and Australasian regions is common (relative to the mutation rate) and that migration between these two regions, potentially via equatorial populations, is more frequent than migration among equatorial populations.
Collapse
Affiliation(s)
- Stuart F McDaniel
- Biology Department, Box 90338, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
5
|
Böse G, Schwille P, Lamparter T. The mobility of phytochrome within protonemal tip cells of the moss Ceratodon purpureus, monitored by fluorescence correlation spectroscopy. Biophys J 2004; 87:2013-21. [PMID: 15345577 PMCID: PMC1304604 DOI: 10.1529/biophysj.103.038521] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2003] [Accepted: 05/07/2004] [Indexed: 11/18/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a versatile tool for investigating the mobilities of fluorescent molecules in cells. In this article, we show that it is possible to distinguish between freely diffusing and membrane-bound forms of biomolecules involved in signal transduction in living cells. Fluorescence correlation spectroscopy was used to measure the mobility of phytochrome, which plays a role in phototropism and polarotropism in protonemal tip cells of the moss Ceratodon purpureus. The phytochrome was loaded with phycoerythrobilin, which is fluorescent only in the phytochrome-bound state. Confocal laser scanning microscopy was used for imaging and selecting the xy measuring position in the apical zone of the tip cell. Fluorescence correlation was measured at ancient z-positions in the cell. Analysis of the diffusion coefficients by nonlinear least-square fits showed a subcellular fraction of phytochrome at the cell periphery with a sixfold higher diffusion coefficient than in the core fraction. This phytochrome is apparently bound to the membrane and probably controls the phototropic and polarotropic response.
Collapse
Affiliation(s)
- Guido Böse
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, D-37077 Germany
| | | | | |
Collapse
|
6
|
Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P, Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci U S A 2003; 100:8007-12. [PMID: 12808149 PMCID: PMC164703 DOI: 10.1073/pnas.0932694100] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mosses and flowering plants diverged >400 million years ago. The mosses have haploid-dominant life cycles, whereas the flowering plants are diploid-dominant. The common ancestors of land plants have been inferred to be haploid-dominant, suggesting that genes used in the diploid body of flowering plants were recruited from the genes used in the haploid body of the ancestors during the evolution of land plants. To assess this evolutionary hypothesis, we constructed an EST library of the moss Physcomitrella patens, and compared the moss transcriptome to the genome of Arabidopsis thaliana. We constructed full-length enriched cDNA libraries from auxin-treated, cytokinin-treated, and untreated gametophytes of P. patens, and sequenced both ends of >40,000 clones. These data, together with the mRNA sequences in the public databases, were assembled into 15,883 putative transcripts. Sequence comparisons of A. thaliana and P. patens showed that at least 66% of the A. thaliana genes had homologues in P. patens. Comparison of the P. patens putative transcripts with all known proteins, revealed 9,907 putative transcripts with high levels of similarity to vascular plant genes, and 850 putative transcripts with high levels of similarity to other organisms. The haploid transcriptome of P. patens appears to be quite similar to the A. thaliana genome, supporting the evolutionary hypothesis. Our study also revealed that a number of genes are moss specific and were lost in the flowering plant lineage.
Collapse
Affiliation(s)
- Tomoaki Nishiyama
- Division of Speciation Mechanisms 2 and Computer Laboratory, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Suzuki T, Takio S, Yamamoto I, Satoh T. Characterization of cDNA of the liverwort phytochrome gene, and phytochrome involvement in the light-dependent and light-independent protochlorophyllide oxidoreductase gene expression in Marchantia paleacea var. diptera. PLANT & CELL PHYSIOLOGY 2001; 42:576-582. [PMID: 11427676 DOI: 10.1093/pcp/pce070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cDNA of the phytochrome gene in the liverwort Marchantia paleacea var. diptera (MpdPHY1) was isolated. MpdPHY1 encoded a conventional phytochrome apoprotein. The MpdPHY1 transcript was accumulated in the dark and suppressed in the light. The degradation of the MpdPHY1 transcript by red light irradiation had red/far-red reversibility, suggesting that the liverwort phytochrome gene expression was regulated by a phytochrome. Northern blot analysis of the transcripts in cells irradiated by red/far-red light revealed that the liverwort phytochrome was involved in the expressions of chlB, chlL, chlN, or por, which encode subunits of light-independent and light-dependent protochlorophyllide oxidoreductase, respectively.
Collapse
Affiliation(s)
- T Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Japan
| | | | | | | |
Collapse
|
8
|
Chang KS, Lee SH, Hwang SB, Park KY. Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:45-56. [PMID: 11029703 DOI: 10.1046/j.0960-7412.2000.00854.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We characterized a carnation genomic clone, gDcADC8, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 77.7 kDa. The unusually long 5'-UTR that contained a short upstream open reading frame (uORF) of seven amino acids (MQKSLHI) was predicted to form an extensive secondary structure (free energy of approximately -117 kcal mol-1) using the Zuker m-fold algorithm. The result that an ADC antibody detected two bands of 45 and 33 kDa in a petal extract suggested the full length of the 78 kDa polypeptide precursor converted into two polypeptides in the processing reaction. To investigate the role of the transcript leader in translation, in vitro transcription/translation reactions with various constructs of deletion and mutation were performed using wheat germ extract. The ADC transcript leader affected positively downstream translation in both wheatgerm extract and primary transformant overexpressing ADC gene. It was demonstrated that heptapeptide (8.6 kDa) encoded by the ADC uORF was synthesized in vitro. Both uORF peptide, and the synthetic heptapeptide MQKSLHI of the uORF, repressed the translation of downstream ORF. Mutation of the uORF ATG codon alleviated the inhibitory effect. ORF translation was not affected by either a frame-shift mutation in uORF or a random peptide. To our knowledge, this is the first report to provide evidence that a uORF may inhibit the translation of a downstream ORF, not only in cis but also in trans, and that the leader sequence of the ADC gene is important for efficient translation.
Collapse
Affiliation(s)
- K S Chang
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
9
|
Sperling P, Lee M, Girke T, Zähringer U, Stymne S, Heinz E. A bifunctional delta-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b5 superfamily. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3801-11. [PMID: 10848999 DOI: 10.1046/j.1432-1327.2000.01418.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many plant genes have been cloned that encode regioselective desaturases catalyzing the formation of cis-unsaturated fatty acids. However, very few genes have been cloned that encode enzymes catalyzing the formation of the functional groups found in unusual fatty acids (e.g. hydroxy, epoxy or acetylenic fatty acids). Here, we describe the characterization of an acetylenase from the moss Ceratodon purpureus with a regioselectivity differing from the previously described Delta12-acetylenase. The gene encoding this protein, together with a Delta6-desaturase, was cloned by a PCR-based approach with primers derived from conserved regions in Delta5-, Delta6-fatty-acid desaturases and Delta8-sphingolipid desaturases. The proteins that are encoded by the two cloned cDNAs are likely to consist of a N-terminal extension of unknown function, a cytochrome b5-domain, and a C-terminal domain that is similar to acyl lipid desaturases with characteristic histidine boxes. The proteins were highly homologous in sequence to the Delta6-desaturase from the moss Physcomitrella patens. When these two cDNAs were expressed in Saccharomyces cerevisiae, both transgenic yeast cultures desaturated Delta9-unsaturated C16- and C18-fatty acids by inserting an additional Delta6cis-double bond. One of these transgenic yeast clones was also able to introduce a Delta6-triple bond into gamma-linolenic and stearidonic acid. This resulted in the formation of 9,12,15-(Z,Z,Z)-octadecatrien-6-ynoic acid, the main fatty acid found in C. pupureus. These results demonstrate that the Delta6-acetylenase from C. pupureus is a bifunctional enzyme, which can introduce a Delta6cis-double bond into 9,12,(15)-C18-polyenoic acids as well as converting a Delta6cis-double bond to a Delta6-triple bond.
Collapse
Affiliation(s)
- P Sperling
- Institut für Allgemeine Botanik, Universität Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Zeidler M, Lamparter T, Hughes J, Hartmann E, Remberg A, Braslavsky S, Schaffner K, Gärtner W. Recombinant phytochrome of the moss Ceratodon purpureus: heterologous expression and kinetic analysis of Pr-->Pfr conversion. Photochem Photobiol 1998; 68:857-63. [PMID: 9867036 DOI: 10.1111/j.1751-1097.1998.tb05296.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phytochrome-encoding gene Cerpu;PHY;2 (CP2) of the moss Ceratodon purpureus was heterologously expressed in Saccharomyces cerevisiae as a polyhistidine-tagged apoprotein and assembled with phytochromobilin (P phi B) and phycocyanobilin (PCB). Nickel-affinity chromatography yielded a protein fraction containing approximately 80% phytochrome. The holoproteins showed photoreversibility with both chromophores. Difference spectra gave maxima at 644/716 nm (red-absorbing phytochrome [Pr]/far-red-absorbing phytochrome [Pfr]) for the PCB adduct, and 659/724 nm for the P phi B-adduct, the latter in close agreement with values for phytochrome extracted from Ceratodon itself, implying that P phi B is the native chromophore in this moss species. Immunoblots stained with the antiphytochrome antibody APC1 showed that the recombinant phytochrome had the same molecular size as phytochrome from Ceratodon extracts. Further, the mobility of recombinant CP2 holophytochrome on native size-exclusion chromatography was similar to that of native oat phytochrome, implying that CP2 forms a dimer. Kinetics of absorbance changes during the Pr-->Pfr photoconversion of the PCB adduct, monitored between 620 and 740 nm in the microsecond range, revealed the rapid formation of a red-shifted intermediate (I700), decaying with a time constant of approximately 110 microseconds. This is similar to the behavior of phytochromes from higher plants when assembled with the same chromophore. When following the formation of the Pfr state, two major processes were identified (with time constants of 3 and 18 ms) that are followed by slow reactions in the range of 166 ms and 8 s, respectively, albeit with very small amplitudes.
Collapse
Affiliation(s)
- M Zeidler
- Institut für Pflanzenphysiologie der FU Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|