1
|
Li N, Yuan D, Huang LJ. Development of a Gateway-compatible two-component expression vector system for plants. Transgenic Res 2019; 28:561-572. [PMID: 31435821 DOI: 10.1007/s11248-019-00167-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Genetic transformation of plants offers the possibility of functional characterization of individual genes and the improvement of plant traits. Development of novel transformation vectors is essential to improve plant genetic transformation technologies for various applications. Here, we present the development of a Gateway-compatible two-component expression vector system for Agrobacterium-mediated plant transformation. The expression system contains two independent plasmid vector sets, the activator vector and the reporter vector, based on the concept of the GAL4/UAS trans-activation system. The activator vector expresses a modified GAL4 protein (GAL4-VP16) under the control of specific promoter. The GAL4-VP16 protein targets the UAS in the reporter vector and subsequently activates reporter gene expression. Both the activator and reporter vectors contain the Gateway recombination cassette, which can be rapidly and efficiently replaced by any specific promoter and reporter gene of interest, to facilitate gene cloning procedures. The efficiency of the activator-reporter expression system has been assessed using agroinfiltration mediated transient expression assay in Nicotiana benthamiana and stable transgenic expression in Arabidopsis thaliana. The reporter genes were highly expressed with precise tissue-specific and subcellular localization. This Gateway-compatible two-component expression vector system will be a useful tool for advancing plant gene engineering.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, 410004, Hunan, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, 410004, Hunan, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, 410004, Hunan, China.
| |
Collapse
|
2
|
Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula. PLoS One 2017; 12:e0188923. [PMID: 29186192 PMCID: PMC5706680 DOI: 10.1371/journal.pone.0188923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Promoters with tissue-specific activity are very useful to address cell-autonomous and non cell autonomous functions of candidate genes. Although this strategy is widely used in Arabidopsis thaliana, its use to study tissue-specific regulation of root symbiotic interactions in legumes has only started recently. Moreover, using tissue specific promoter activity to drive a GAL4-VP16 chimeric transcription factor that can bind short upstream activation sequences (UAS) is an efficient way to target and enhance the expression of any gene of interest. Here, we developed a collection of promoters with different root cell layers specific activities in Medicago truncatula and tested their abilities to drive the expression of a chimeric GAL4-VP16 transcription factor in a trans-activation UAS: β-Glucuronidase (GUS) reporter gene system. By developing a binary vector devoted to modular Golden Gate cloning together with a collection of adapted tissue specific promoters and coding sequences we could test the activity of four of these promoters in trans-activation GAL4/UAS systems and compare them to “classical” promoter GUS fusions. Roots showing high levels of tissue specific expression of the GUS activity could be obtained with this trans-activation system. We therefore provide the legume community with new tools for efficient modular Golden Gate cloning, tissue specific expression and a trans-activation system. This study provides the ground work for future development of stable transgenic lines in Medicago truncatula.
Collapse
|
3
|
Warnasooriya SN, Montgomery BL. Using transgenic modulation of protein synthesis and accumulation to probe protein signaling networks in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:1312-21. [PMID: 21862868 PMCID: PMC3258059 DOI: 10.4161/psb.6.9.16437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deployment of new model species in the plant biology community requires the development and/or improvement of numerous genetic tools. Sequencing of the Arabidopsis thaliana genome opened up a new challenge of assigning biological function to each gene. As many genes exhibit spatiotemporal or other conditional regulation of biological processes, probing for gene function necessitates applications that can be geared toward temporal, spatial and quantitative functional analysis in vivo. The continuing quest to establish new platforms to examine plant gene function has resulted in the availability of numerous genomic and proteomic tools. Classical and more recent genome-wide experimental approaches include conventional mutagenesis, tagged DNA insertional mutagenesis, ectopic expression of transgenes, activation tagging, RNA interference and two-component transactivation systems. The utilization of these molecular tools has resulted in conclusive evidence for the existence of many genes, and expanded knowledge on gene structure and function. This review covers several molecular tools that have become increasingly useful in basic plant research. We discuss their advantages and limitations for probing cellular protein function while emphasizing the contributions made to lay the fundamental groundwork for genetic manipulation of crops using plant biotechnology.
Collapse
Affiliation(s)
- Sankalpi N Warnasooriya
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
4
|
Gorte M, Horstman A, Page RB, Heidstra R, Stromberg A, Boutilier K. Microarray-based identification of transcription factor target genes. Methods Mol Biol 2011; 754:119-41. [PMID: 21720950 DOI: 10.1007/978-1-61779-154-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microarray analysis is widely used to identify transcriptional changes associated with genetic perturbation or signaling events. Here we describe its application in the identification of plant transcription factor target genes with emphasis on the design of suitable DNA constructs for controlling TF activity, the experimental setup, the statistical analysis of the microarray data, and the validation of target genes.
Collapse
Affiliation(s)
- Maartje Gorte
- Molecular Genetics Group, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
5
|
Semenyuk EG, Schmidt MA, Beachy RN, Moravec T, Woodford-Thomas T. Adaptation of an ecdysone-based genetic switch for transgene expression in soybean seeds. Transgenic Res 2010; 19:987-99. [PMID: 20191320 DOI: 10.1007/s11248-010-9377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
Soybean was used as a model for studies of chemical induction of gene expression in seeds. A chimeric transcriptional activator, VGE, driven by the soybean seed glycinin G1 promoter, was used to induce the expression of an ER-targeted GFP(KDEL) reporter protein upon addition of the chemical ligand, methoxyfenozide. The chemical gene switch activated gene expression under in vitro conditions in somatic cotyledonary embryos and zygotic seed embryos cultured from transgenic soybean plants, as well as in seeds in planta under greenhouse conditions. The efficiency of induction of GFP expression under different growth conditions was strongly influenced by the developmental stage of the seed and availability of the inducer. The formation of ER-derived GFP-containing protein bodies in seed storage parenchyma cells was correlated with the level of induced expression.
Collapse
Affiliation(s)
- E G Semenyuk
- Donald Danforth Plant Science Center, 975 N. Warson Road, Saint Louis, MO 63132, USA.
| | | | | | | | | |
Collapse
|
6
|
Corrado G, Karali M. Inducible gene expression systems and plant biotechnology. Biotechnol Adv 2009; 27:733-743. [DOI: 10.1016/j.biotechadv.2009.05.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/29/2022]
|
7
|
Halpern ME, Rhee J, Goll MG, Akitake CM, Parsons M, Leach SD. Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 2008; 5:97-110. [PMID: 18554173 DOI: 10.1089/zeb.2008.0530] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ability to regulate gene expression in a cell-specific and temporally restricted manner provides a powerful means to test gene function, bypass the action of lethal genes, label subsets of cells for developmental studies, monitor subcellular structures, and target tissues for selective ablation or physiological analyses. The galactose-inducible system of yeast, mediated by the transcriptional activator Gal4 and its consensus UAS binding site, has proven to be a highly successful and versatile system for controlling transcriptional activation in Drosophila. It has also been used effectively, albeit in a more limited manner, in the mouse. While zebrafish has lagged behind other model systems in the widespread application of Gal4 transgenic approaches to modulate gene activity during development, recent technological advances are permitting rapid progress. Here we review Gal4-regulated genetic tools and discuss how they have been used in zebrafish as well as their potential drawbacks. We describe some exciting new directions, in large part afforded by the Tol2 transposition system, that are generating valuable new Gal4/UAS reagents for zebrafish research.
Collapse
|
8
|
Jia H, Van Loock B, Liao M, Verbelen JP, Vissenberg K. Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:477-82. [PMID: 17442066 DOI: 10.1111/j.1467-7652.2007.00255.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The experimental control of gene expression in specific tissues or cells at defined time points is a useful tool for the analysis of gene function. GAL4/VP16-UAS enhancer trap lines can be used to selectively express genes in specific tissues or cells, and an ethanol-inducible system can help to control the time of expression. In this study, the combination of the two methods allowed the successful regulation of gene expression in both time and space. For this purpose, a binary vector, 962-UAS::GUS, was constructed in which the ALCR activator and beta-glucuronidase (GUS) reporter gene were placed under the control of upstream activator sequence (UAS) elements and the alcA response element, respectively. Three different GAL4/VP16-UAS enhancer trap lines of Arabidopsis were transformed, resulting in transgenic plants in which GUS activity was detected only on ethanol induction and exclusively in the predicted tissues of the enhancer trap lines. As a library of different enhancer trap lines with distinct green fluorescent protein (GFP) patterns exist, transformation with a similar vector, in which GUS is replaced by another gene, would enable the control of the time and place of transgene expression. We have constructed two vectors for easy cloning of the gene of interest, one with a polylinker site and one that is compatible with the GATEWAY vector conversion system. The method can be extended to other species when enhancer trap lines become available.
Collapse
Affiliation(s)
- Hongge Jia
- University of Antwerp, Department of Biology, Plant Physiology and Morphology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | | | | | | | | |
Collapse
|
9
|
Kanazawa A, O'Dell M, Hellens RP. The binding of nuclear factors to the as-1 element in the CaMV 35S promoter is affected by cytosine methylation in vitro. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:435-41. [PMID: 17099844 DOI: 10.1055/s-2006-924633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transcriptional gene silencing (TGS) is often associated with an increased level of cytosine methylation in the affected promoters. The effect of methylation of the cauliflower mosaic virus (CaMV) 35S promoter sequence on its binding to factors present in the nuclei was analyzed by electrophoretic mobility shift assays using extracts of petunia flowers. Specific DNA-protein interactions were detected in the region of the CaMV 35S promoter that contains the as-1 element and the region between - 345 and - 208. The binding of protein factor(s) to the as-1 element was influenced by cytosine methylation, whereas the binding to the region between - 345 and - 208 was unaffected. The results suggest that cytosine methylation of the as-1 element potentially affects the activity of the CaMV 35S promoter.
Collapse
Affiliation(s)
- A Kanazawa
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Sapporo 060-8589, Japan.
| | | | | |
Collapse
|
10
|
Abstract
DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA sequence identity; therefore, it is mainly associated with CNG and non-symmetrical methylations (rare in animals) in coding and promoter regions of silenced genes. Cytoplasmic viral RNA can affect methylation of homologous nuclear sequences and it maybe one of the feedback mechanisms between the cytoplasm and the nucleus to control gene expression.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|
11
|
Moore I, Samalova M, Kurup S. Transactivated and chemically inducible gene expression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:651-83. [PMID: 16441354 DOI: 10.1111/j.1365-313x.2006.02660.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Several vector systems are available for tissue-specific transactivation or chemical induction of transgene expression in plants. The choice facing researchers is which promoter system to commit to as this determines the range and characteristics of the expression resources available. The decision will not be the same for all species or applications. We present some general discussion on the use of these technologies and review in detail the properties in various (mainly angiosperm) species of the most promising: mGal4:VP16/UAS and pOp/LhG4 for transactivation, and the alc-switch, GVE/VGE, GVG, pOp6/LhGR, and XVE systems for chemical induction.
Collapse
Affiliation(s)
- Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | | | | |
Collapse
|
12
|
Tang W, Newton RJ, Charles TM. High efficiency inducible gene expression system based on activation of a chimeric transcription factor in transgenic pine. PLANT CELL REPORTS 2005; 24:619-28. [PMID: 16133346 DOI: 10.1007/s00299-005-0009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/12/2005] [Accepted: 04/16/2005] [Indexed: 05/04/2023]
Abstract
Inducible gene expression systems are needed in functional genomics of tree species. A glucocorticoid-inducible gene expression system was established in a gymnosperm species Virginia pine (Pinus virginiana Mill.) through Agrobacterium tumefaciens-mediated genetic transformation. The results demonstrate that expression of the m-gfp5-ER reporter gene was tightly controlled and 0.1 microM of the glucocorticoid hormone triamcinolone was able to induce m-gfp5-ER expression in transgenic cells. Differential expression of gfp in transgenic cells induced by different concentrations of triamcinolone was observed and confirmed by Northern Blot analysis and by quantitative green fluorescence analyses with Laser Scanning Microscopy. In transgenic plantlets, triamcinolone was taken up efficiently by roots. Triamcinolone was able to induce m-gfp5-ER activity throughout the whole plant. The phenotype of transgenic plantlets was not affected 6 weeks after treatment with 0.1-10 microM triamcinolone. However, 6-week inductions with 100 microM triamcinolone caused growth retardation and developmental defects, as well as inhibition of root formation and elongation. With careful selection of transgenic lines, the inducible gene expression presented in this study could be a very valuable alternative for functional identification of novel genes in plants, especially in pine.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Cells, Cultured
- Dose-Response Relationship, Drug
- Gene Expression Regulation/genetics
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Gene Transfer Techniques
- Genes, Reporter/drug effects
- Genes, Reporter/genetics
- Genetic Vectors/genetics
- Glucocorticoids/pharmacology
- Green Fluorescent Proteins/genetics
- Microscopy, Electron, Scanning
- Phenotype
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Pinus/drug effects
- Pinus/genetics
- Pinus/growth & development
- Plant Roots/drug effects
- Plant Roots/growth & development
- Plant Shoots/drug effects
- Plant Shoots/genetics
- Plant Shoots/ultrastructure
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Recombinant Fusion Proteins/genetics
- Transcription Factors/drug effects
- Transcription Factors/genetics
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- Transformation, Genetic/genetics
- Triamcinolone/pharmacology
Collapse
Affiliation(s)
- Wei Tang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA.
| | | | | |
Collapse
|
13
|
Rutherford S, Brandizzi F, Townley H, Craft J, Wang Y, Jepson I, Martinez A, Moore I. Improved transcriptional activators and their use in mis-expression traps in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:769-88. [PMID: 16115072 DOI: 10.1111/j.1365-313x.2005.02486.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The synthetic transcription factor LhG4 has been used in numerous mis-expression studies in plants. We show that the sequence encoding the LhG4 activation domain, derived from Saccharomyces cerevisiae GAL4, contains several cryptic polyadenylation signals in Arabidopsis. The GAL4-derived sequence was modified according to preferred Arabidopsis codon usage, generating LhG4AtO which was faithfully transcribed in Arabidopsis plants. In protoplasts, LhG4AtO achieved maximum transactivation of the pOp promoter with 10-fold less input DNA than LhG4. The same methods were used to compare 10 other LhG4 derivatives that carried alternative natural or synthetic activation domains. Lh214 and Lh314, which contain synthetic activation domains comprising trimers of a core acidic activation domain, directed threefold more GUS expression from the pOp promoter with 20-fold less input DNA than LhG4. In contrast, when expressed from the CaMV 35S promoter in transgenic plants carrying a pOp-GUS reporter, Lh214 and Lh314 yielded transformants with substantially lower GUS activities than other constructs including LhG4AtO and LhG4 which performed similarly. When incorporated into an enhancer-trapping vector, however, LhG4AtO and Lh314 yielded enhancer traps with approximately twice the frequency of LhG4, suggesting that the modified activation domains offer improved performance when expressed from weaker transcription signals. To increase the number of LhG4 patterns available for mis-expression studies, we describe a population of enhancer-trap lines obtained with LhG4AtO in a pOp-GUS background. We show that enhancer-trap lines can transactivate an unlinked pOp-green fluorescent protein (pOp-GFP) reporter in the pattern predicted by staining for GUS activity.
Collapse
Affiliation(s)
- Stephen Rutherford
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hull AK, Yusibov V, Mett V. Inducible expression in plants by virus-mediated transgene activation. Transgenic Res 2005; 14:407-16. [PMID: 16201407 DOI: 10.1007/s11248-005-0388-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have developed a plant virus-mediated transgene activation (VMTA) system that utilizes a viral expression vector to present the inducer. The concept was tested using two well characterized components: (i) an artificial promoter based on the yeast GAL4 upstream activating sequence and the minimal TATA element of Cauliflower Mosaic Virus 35S RNA promoter, and (ii) a transcriptional activator (TA) consisting of a fusion between the GAL4 DNA binding domain and the Herpes simplex virus VP16 activation domain. The TA was expressed under the control of the subgenomic promoter of a Tobacco Mosaic Virus-based expression vector. The VMTA system was functional in transient Agroinfiltration assays with the reporter gene beta-glucuronidase, the intracellular domain of the diabetes associated autoimmune antigen, IA-2ic, and with the anti-tetanus antibody 9F12. Transgenic lines harboring the reporter gene were also examined. The VMTA system displayed tight transcriptional control in both transient assays and in transgenic Nicotiana benthamiana plants carrying the TA-inducible reporter.
Collapse
Affiliation(s)
- Anna K Hull
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711, USA
| | | | | |
Collapse
|
15
|
Engineer CB, Fitzsimmons KC, Schmuke JJ, Dotson SB, Kranz RG. Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC PLANT BIOLOGY 2005; 5:9. [PMID: 15941484 PMCID: PMC1164422 DOI: 10.1186/1471-2229-5-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 06/07/2005] [Indexed: 05/02/2023]
Abstract
BACKGROUND Gal4 enhancer trap systems driving expression of LacZ and GFP reporters have been characterized and widely used in Drosophila. However, a Gal4 enhancer trap system in Arabidopsis has not been described in the primary literature. In Drosophila, the reporters possess a Gal4 upstream activation sequence (UAS) as five repeats (5XUAS) and lines that express Gal4 from tissue specific enhancers have also been used for the ectopic expression of any transgene (driven by a 5XUAS). While Gal4 transactivation has been demonstrated in Arabidopsis, wide use of a trap has not emerged in part because of the lack of detailed analysis, which is the purpose of the present study. RESULTS A key feature of this study is the use of luciferase (LUC) as the primary reporter and rsGFP-GUS as secondary reporters. Reporters driven by a 5XUAS are better suited in Arabidopsis than those containing a 1X or 2X UAS. A 5XUAS-LUC reporter is expressed at high levels in Arabidopsis lines transformed with Gal4 driven by the full, enhanced 35S promoter. In contrast, a minimum 35S (containing the TATA region) upstream of Gal4 acts as an enhancer trap system. Luciferase expression in trap lines of the T1, T2, and T3 generations are generally stable but by the T4 generation approximately 25% of the lines are significantly silenced. This silencing is reversed by growing plants on media containing 5-aza-2'-deoxycytidine. Quantitative multiplex RT-PCR on the Gal4 and LUC mRNA indicate that this silencing can occur at the level of Gal4 or LUC transcription. Production of a 10,000 event library and observations on screening, along with the potential for a Gal4 driver system in other plant species are discussed. CONCLUSION The Gal4 trap system described here uses the 5XUAS-LUC and 5XUAS rsGFP-GUS as reporters and allows for in planta quantitative screening, including the rapid monitoring for silencing. We conclude that in about 75% of the cases silencing is at the level of transcription of the Gal4 transgene and is at an acceptable frequency to make the Gal4 trap system in Arabidopsis of value. This system will be useful for the isolation and comprehensive characterization of specific reporter and driver lines.
Collapse
Affiliation(s)
- Cawas B Engineer
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| | - Karen C Fitzsimmons
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| | | | | | - Robert G Kranz
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| |
Collapse
|
16
|
Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:899-918. [PMID: 15743453 DOI: 10.1111/j.1365-313x.2005.02342.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To facilitate glucocorticoid-inducible transgene expression from the pOp promoter in Arabidopsis the ligand-binding domain of a rat glucocorticoid receptor (GR LBD) was fused to the amino terminus of the synthetic transcription factor LhG4 to generate LhGR-N. Fusions bearing the GR LBD at other positions in LhG4 exhibited incomplete repression or inefficient induction. LhGR-N was stringently repressed in the absence of exogenous glucocorticoid but was fully activated by addition of 2 microm dexamethasone which resulted in 1000-fold increase in GUS reporter activity. Half maximal induction was achieved with 0.2 microm dexamethasone. Reporter transcripts were detectable within 2 h of dexamethasone application and peaked 4-10 h later. Neither LhGR-N nor dexamethasone affected seedling development although ethanol retarded development when used as a solvent for dexamethasone. The efficiency of the pOp target promoter was improved 10- to 20-fold by incorporating six copies of the ideal lac operator with sufficient inter-operator spacing to allow simultaneous occupancy. Introduction of the TMV Omega sequence into the 5'UTR resulted in a further 10-fold increase in dexamethasone-inducible reporter activity and an increase in the induction factor to 10(4). Although promoters containing the TMV Omega sequence exhibited slightly increased basal expression levels in the absence of dexamethasone, stringent regulation of the cytokinin biosynthetic gene ipt was achieved with all promoters. Despite the severity of the induced ipt phenotypes, transcripts for the KNOX homoeodomain transcription factors BREVIPEDICELLUS and SHOOTMERISTEMLESS were not significantly increased within 48 h of dexamethasone application to seedlings.
Collapse
Affiliation(s)
- Judith Craft
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Baroux C, Blanvillain R, Betts H, Batoko H, Craft J, Martinez A, Gallois P, Moore I. Predictable activation of tissue-specific expression from a single gene locus using the pOp/LhG4 transactivation system in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:91-101. [PMID: 17168902 DOI: 10.1111/j.1467-7652.2004.00104.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The pOp/LhG4 transcription factor system was used to determine whether the synthetic pOp promoter, integrated at one position in the Arabidopsis genome, could be efficiently and faithfully activated by the heterologous transcription factor, LhG4, expressed in a variety of different patterns. This is a precondition for the development and exploitation of large collections of LhG4 activation lines that direct predictable tissue-specific expression of transgenes. We selected a pOp-GUS reporter insertion that was efficiently activated after crossing to an activator line that expressed the synthetic transcription factor LhG4 from the Cauliflower Mosaic Virus 35S promoter. This reporter line, pOp-GUS(g2), was then combined with activator loci that expressed LhG4 from one of seven different promoters, each with a different tissue specificity. pOp-GUS(g2) was activated faithfully in combination with six of these seven activator constructs, but generated an unexpected expression pattern in combination with the seventh construct, a fusion to a cyclin promoter (CYC-LhG4). The aberrant expression pattern could be attributed to the pOp-GUS(g2) insertion site, as the CYC-LhG4 activator lines directed the expected pattern of expression from a second pOp-GUS insertion. These results show that it is feasible to construct an activator collection in which LhG4 is expressed from diverse promoters or enhancer traps, but that individual pOp reporter loci can vary in their competence to respond to certain activator patterns. We discuss the implications for the design and use of mis-expression technology in Arabidopsis.
Collapse
Affiliation(s)
- Célia Baroux
- Laboratoire de Génome et Développement des Plantes, Université de Perpignan, 52 avenue de Villeneuve, 66860 Perpignan Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tang W, Newton RJ. Regulated gene expression by glucocorticoids in cultured Virginia pine (Pinus virginiana Mill.) cells. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1499-1508. [PMID: 15181111 DOI: 10.1093/jxb/erh180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of six glucocorticoids (dexamethasone, hydrocortisone, 6-methylprednisolone, prednisolone, prednisone, and triamcinolone) on inducible gene expression, based on the chimaeric transcriptional activator GVG and carried by the binary expression vector pINDEX3-m-gfp5-ER, were evaluated in transgenic Virginia pine cell cultures. The concentration that activated GVG transcription factor activity, the level of inducible m-gfp5-ER expression, and the kinetics of inducible m-gfp5-ER expression were determined for each glucocorticoid. Transgenic cells produced green fluorescence upon blue light excitation after treatment with prednisolone, prednisone, 6-methylprednisolone, dexamethasone, triamcinolone, and hydrocortisone. Green fluorescence was observed at 6-12 h after treatment of all six glucocorticoids at concentrations of 1, 3, 5, and 10 mg l(-1). Differential expression of gfp was confirmed by northern blot analysis and by quantitative fluorescence analyses of confocal images taken by a LSM 510 Laser Scanning Microscope. Fresh and dry weight increases of transgenic cell cultures were not affected by all six glucocorticoids at concentrations of 0.1, 0.5, 1, 3, and 5 mg l(-1). It is shown that triamcinolone had the most potent effect on the GVG system. Different glucocorticoids can therefore be used to regulate the GVG transcriptional activator and to induce gene expression in transgenic plant cells, and this property could be useful in establishing an optimum system of transgene regulation.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA.
| | | |
Collapse
|
19
|
Tang W, Collver H, Kinken K. Dexamethasone-inducible green fluorescent protein gene expression in transgenic plant cells. GENOMICS, PROTEOMICS & BIOINFORMATICS 2004; 2:15-23. [PMID: 15629039 PMCID: PMC5172439 DOI: 10.1016/s1672-0229(04)02003-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genomic research has made a large number of sequences of novel genes or expressed sequence tags available. To investigate functions of these genes, a system for conditional control of gene expression would be a useful tool. Inducible transgene expression that uses green fluorescent protein gene (gfp) as a reporter gene has been investigated in transgenic cell lines of cotton (COT; Gossypium hirsutum L.), Fraser fir [FRA; Abies fraseri (Pursh) Poir], Nordmann fir (NOR; Abies nordmanniana Lk.), and rice (RIC; Oryza sativa L. cv. Radon). Transgenic cell lines were used to test the function of the chemical inducer dexamethasone. Inducible transgene expression was observed with fluorescence and confocal microscopy, and was confirmed by northern blot analyses. Dexamethasone at 5 mg/L induced gfp expression to the nearly highest level 48 h after treatment in COT, FRA, NOR, and RIC. Dexamethasone at 10 mg/L inhibited the growth of transgenic cells in FRA and NOR, but not COT and RIC. These results demonstrated that concentrations of inducer for optimum inducible gene expression system varied among transgenic cell lines. The inducible gene expression system described here was very effective and could be valuable in evaluating the function of novel gene.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA.
| | | | | |
Collapse
|
20
|
Weijers D, Van Hamburg JP, Van Rijn E, Hooykaas PJJ, Offringa R. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. PLANT PHYSIOLOGY 2003; 133:1882-92. [PMID: 0 PMCID: PMC300741 DOI: 10.1104/pp.103.030692] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 09/15/2003] [Accepted: 09/15/2003] [Indexed: 05/17/2023]
Abstract
Fertilization of the female gametophyte in angiosperm plants initiates a process of coordinated development of embryo, endosperm, and seed coat that ensures the production of a viable seed. Mutant analysis has suggested that communication between the endosperm and the seed coat is an important determinant in this process. In addition, cell groups within the embryo, derived from the apical and from the basal cell, respectively, after zygote division, concertedly establish a functional root meristem, and cells in the apical region of the embryo are hypothesized to repress cell divisions in the basal cell-derived suspensor. The available evidence for these interregional communication events mostly relies on the analysis of mutant phenotypes in Arabidopsis. To provide independent and direct evidence for communication events, we used conditional domain-specific expression of the diphtheria toxin A chain (DTA) in developing Arabidopsis seeds. By using a collection of cell- or tissue-type-specific promoters, we show that the mGAL4:VP16/UAS two-component gene expression allows reliable spatiotemporal and conditional expression of the GFP:GUS reporter and the DTA gene in the developing embryo and endosperm. Expression of DTA in the protoderm of the embryo proper led to excessive proliferation of suspensor cells, sometimes resulting in the formation of secondary embryos. Endosperm-specific expression of DTA caused complete cessation of seed growth, followed by pattern defects in the embryo and embryo arrest. Taken together, the results presented here substantiate the evidence for and underline the importance of interregional communication in embryo and seed development and demonstrate the usefulness of conditional toxin expression as a method complementary to phenotypic analysis of developmental mutants.
Collapse
Affiliation(s)
- Dolf Weijers
- Developmental Genetics, Institute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou DX, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:418-27. [PMID: 12887592 DOI: 10.1046/j.1365-313x.2003.01808.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enhancer trapping has provided a powerful strategy for identifying novel genes and regulatory elements. In this study, we adopted an enhancer trap system, consisting of the GAL4/VP16-UAS elements with GUS as the reporter, to generate a trapping population of rice. Currently, 31 443 independent transformants were obtained from two cultivars using Agrobacterium-mediated T-DNA insertion. PCR tests and DNA blot hybridization showed that about 94% of the transformants contained T-DNA insertions. The transformants carried, on average, two copies of the T-DNA, and 42% of the transformants had single-copy insertions. Histochemical assays of approximately 1000 T0 plants revealed various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. The expression pattern of the reporter gene in T1 families corresponded well with the T0 plants and segregated in a 3 : 1 Mendelian ratio in majority of the T1 families tested. The frequency of reporter gene expression in the enhancer trap lines was much higher than that in gene trap lines reported previously. Analysis of flanking sequences of T-DNA insertion sites from about 200 transformants showed that almost all the sequences had homology with the sequences in the rice genome databases. Morphologically conspicuous mutations were observed in about 7.5% of the 2679 T1 families that were field-tested, and segregation in more than one-third of the families fit the 3 : 1 ratio. It was concluded that GAL4/VP16-UAS elements provided a useful system for enhancer trap in rice.
Collapse
Affiliation(s)
- Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Padidam M, Gore M, Lu DL, Smirnova O. Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Res 2003; 12:101-9. [PMID: 12650528 DOI: 10.1023/a:1022113817892] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have developed an inducible gene expression system with potential for field application using the ecdysone receptor (EcR) from the spruce budworm and the non-steroidal EcR agonist, methoxyfenozide. Chimeric transcription activators were constructed with EcR ligand binding domain, GAL4 and LexA DNA binding domains, and VP16 activation domain. In the presence of methoxyfenozide, the transcription activators induced expression of the luciferase reporter gene cloned downstream of a promoter containing GAL4A- or LexA-response element and a minimal 35S promoter. Low basal and high induced luciferase expression was optimized by cloning the activator and the reporter genes in different tandem orientations. Many transgenic Arabidopsis and tobacco plants were obtained with little or no basal expression in the absence of methoxyfenozide and inducible expression that was several fold higher than that observed with the constitutive 35S promoter. Moreover, gene expression was controlled over a wide range of methoxyfenozide concentration. Our results demonstrate that the inducible gene expression system based on the spruce budworm EcR ligand binding domain with methoxyfenozide as a ligand is very effective in regulating transgenes in plants. It is suitable for field applications because methoxyfenozide is commercially available and has an exceptional health and environmental safety profile.
Collapse
Affiliation(s)
- Malla Padidam
- RHeoGene/Rohm and Haas Company, PO Box 0949, Spring House, PA 19477-0949, USA.
| | | | | | | |
Collapse
|
23
|
Klöti A, He X, Potrykus I, Hohn T, Fütterer J. Tissue-specific silencing of a transgene in rice. Proc Natl Acad Sci U S A 2002; 99:10881-6. [PMID: 12134059 PMCID: PMC125067 DOI: 10.1073/pnas.152330299] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2001] [Accepted: 06/03/2002] [Indexed: 11/18/2022] Open
Abstract
In a transgenic rice line, a beta-glucuronidase reporter gene under the control of the rice tungro bacilliform virus promoter became gradually methylated, and gene activity was lost concomitantly. Methylation was observed only in the homozygous offspring and was initially restricted to the promoter region and accompanied by loss of expression in the vascular bundle tissue only. This expression pattern was similar to that of a promoter with a deletion of a vascular bundle expression element. The gene activity could be reestablished by treatment with 5-azacytidine. Methylation per se did not inhibit the binding to the promoter region of protein factors which also bound to the unmethylated sequence. Instead, promoter methylation enabled the alternative binding of a protein with specificity for sequence and methylation. In further generations of homozygous offspring the methylation spread into the transcribed region and gene activity was completely repressed also in nonvascular cells. The results indicate that different stages are involved in DNA methylation-correlated gene inactivation, and that at least one of them may involve the attraction of a sequence and methylation-specific DNA-binding protein.
Collapse
Affiliation(s)
- A Klöti
- Institute of Plant Sciences, Federal Institute of Technology, Universitätstrasse 2, CH 8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|