1
|
Abstract
Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| |
Collapse
|
2
|
Carrie C, Venne AS, Zahedi RP, Soll J. Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2691-708. [PMID: 25732537 PMCID: PMC4986872 DOI: 10.1093/jxb/erv064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Most mitochondrial proteins contain an N-terminal targeting signal that is removed by specific proteases following import. In plant mitochondria, only mitochondrial processing peptidase (MPP) has been characterized to date. Therefore, we sought to determine the substrates and cleavage sites of the Arabidopsis thaliana homologues to the yeast Icp55 and Oct1 proteins, using the newly developed ChaFRADIC method for N-terminal protein sequencing. We identified 88 and seven putative substrates for Arabidopsis ICP55 and OCT1, respectively. It was determined that the Arabidopsis ICP55 contains an almost identical cleavage site to that of Icp55 from yeast. However, it can also remove a far greater range of amino acids. The OCT1 substrates from Arabidopsis displayed no consensus cleavage motif, and do not contain the classical -10R motif identified in other eukaryotes. Arabidopsis OCT1 can also cleave presequences independently, without the prior cleavage of MPP. It was concluded that while both OCT1 and ICP55 were probably acquired early on in the evolution of mitochondria, their substrate profiles and cleavage sites have either remained very similar or diverged completely.
Collapse
Affiliation(s)
- Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | - A Saskia Venne
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 11, D-44139 Dortmund, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 11, D-44139 Dortmund, Germany
| | - Jürgen Soll
- Department of Biology I, Botany, Ludwig-Maximilians Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany Munich Centre for Integrated Protein Science, CiPSM, Ludwig-Maximilians Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| |
Collapse
|
3
|
Murcha MW, Wang Y, Whelan J. A molecular link between mitochondrial preprotein transporters and respiratory chain complexes. PLANT SIGNALING & BEHAVIOR 2012; 7:1594-7. [PMID: 23073015 PMCID: PMC3578899 DOI: 10.4161/psb.22250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The TIM17:23 complex on the mitochondrial inner membrane is responsible for import of the majority of mitochondrial proteins in plants. In Arabidopsis, Tim17 and Tim23 belong to a large gene family consisting of 16 members termed the Preprotein and Amino acid transporters (PRAT). Recently, two members of this protein family, Tim23-2 and the Complex I subunit B14.7, have been shown to assemble into both Complex I of the respiratory chain and the TIM17:23 complex (Wang et al., 2012), adding to other examples of links between respiratory and protein import complexes. These associations provide a mechanism to coordinate mitochondrial activity and biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
4
|
Kwasniak M, Pogorzelec L, Migdal I, Smakowska E, Janska H. Proteolytic system of plant mitochondria. PHYSIOLOGIA PLANTARUM 2012; 145:187-95. [PMID: 22085399 DOI: 10.1111/j.1399-3054.2011.01542.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The existence of a proteolytic system which can specifically recognize and cleave proteins in mitochondria is now well established. The components of this system comprise processing peptidases, ATP-dependent peptidases and oligopeptidases. A short overview of experimentally confirmed proteases mainly from Arabidopsis thaliana is provided. The role of the mitochondrial peptidases in plant growth and development is emphasized. We also discuss the possibility of existence of as yet unidentified plant homologs of yeast mitochondrial ATP-independent proteases.
Collapse
|
5
|
Teixeira PF, Glaser E. Processing peptidases in mitochondria and chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:360-70. [PMID: 22495024 DOI: 10.1016/j.bbamcr.2012.03.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
Abstract
Most of the mitochondrial and chloroplastic proteins are nuclear encoded and synthesized in the cytosol as precursor proteins with N-terminal extensions called targeting peptides. Targeting peptides function as organellar import signals, they are recognized by the import receptors and route precursors through the protein translocons across the organellar membranes. After the fulfilled function, targeting peptides are proteolytically cleaved off inside the organelles by different processing peptidases. The processing of mitochondrial precursors is catalyzed in the matrix by the Mitochondrial Processing Peptidase, MPP, the Mitochondrial Intermediate Peptidase, MIP (recently called Octapeptidyl aminopeptidase 1, Oct1) and the Intermediate cleaving peptidase of 55kDa, Icp55. Furthermore, different inner membrane peptidases (Inner Membrane Proteases, IMPs, Atp23, rhomboids and AAA proteases) catalyze additional processing functions, resulting in intra-mitochondrial sorting of proteins, the targeting to the intermembrane space or in the assembly of proteins into inner membrane complexes. Chloroplast targeting peptides are cleaved off in the stroma by the Stromal Processing Peptidase, SPP. If the protein is further translocated to the thylakoid lumen, an additional thylakoid-transfer sequence is removed by the Thylakoidal Processing Peptidase, TPP. Proper function of the D1 protein of Photosystem II reaction center requires its C-terminal processing by Carboxy-terminal processing protease, CtpA. Both in mitochondria and in chloroplasts, the cleaved targeting peptides are finally degraded by the Presequence Protease, PreP. The organellar proteases involved in precursor processing and targeting peptide degradation constitute themselves a quality control system ensuring the correct maturation and localization of proteins as well as assembly of protein complexes, contributing to sustenance of organelle functions. Dysfunctions of several mitochondrial processing proteases have been shown to be associated with human diseases. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Pedro Filipe Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
6
|
Gebert N, Gebert M, Oeljeklaus S, von der Malsburg K, Stroud D, Kulawiak B, Wirth C, Zahedi R, Dolezal P, Wiese S, Simon O, Schulze-Specking A, Truscott K, Sickmann A, Rehling P, Guiard B, Hunte C, Warscheid B, van der Laan M, Pfanner N, Wiedemann N. Dual Function of Sdh3 in the Respiratory Chain and TIM22 Protein Translocase of the Mitochondrial Inner Membrane. Mol Cell 2011; 44:811-8. [DOI: 10.1016/j.molcel.2011.09.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/18/2011] [Accepted: 09/20/2011] [Indexed: 10/14/2022]
|
7
|
Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 2009; 9:3580-608. [PMID: 19609964 DOI: 10.1002/pmic.200800984] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our goal was to identify the leaf proteomic changes which appeared during N remobilisation that were associated or not associated with senescence of oilseed rape in response to contrasting nitrate availability. Remobilisation of N and leaf senescence status were followed using (15)N tracing, patterns of chlorophyll level, total protein content and a molecular indicator based on expression of senescence-associated gene 12/Cab genes. Three phases associated with N remobilisation were distinguished. Proteomics revealed that 55 proteins involved in metabolism, energy, detoxification, stress response, proteolysis and protein folding, were significantly induced during N remobilisation. Four proteases were specifically identified. FtsH, a chloroplastic protease, was induced transiently during the early stages of N remobilisation. Considering the dynamics of N remobilisation, chlorophyll and protein content, the pattern of FtsH expression indicated that this protease could be involved in the degradation of chloroplastic proteins. Aspartic protease increased at the beginning of senescence and was maintained at a high level, implicating this protease in proteolysis during the course of leaf senescence. Two proteases, proteasome beta subunit A1 and senescence-associated gene 12, were induced and continued to increase during the later phase of senescence, suggesting that these proteases are more specifically involved in the proteolysis processes occurring at the final stages of leaf senescence.
Collapse
Affiliation(s)
- Marie Desclos
- INRA, UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie et nutritions N C S, IFR 146 ICORE, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, Caen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wiedemann N, van der Laan M, Hutu DP, Rehling P, Pfanner N. Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. ACTA ACUST UNITED AC 2007; 179:1115-22. [PMID: 18070913 PMCID: PMC2140023 DOI: 10.1083/jcb.200709087] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mitochondrial presequence translocase transports preproteins to either matrix or inner membrane. Two different translocase forms have been identified: the matrix transport form, which binds the heat-shock protein 70 (Hsp70) motor, and the inner membrane–sorting form, which lacks the motor but contains translocase of inner mitochondrial membrane 21 (Tim21). The sorting form interacts with the respiratory chain in a Tim21-dependent manner. It is unknown whether the respiratory chain–bound translocase transports preproteins and how the switch between sorting form and motor form occurs. We report that the respiratory chain–bound translocase contains preproteins in transit and, surprisingly, not only sorted but also matrix-targeted preproteins. Presequence translocase-associated motor (Pam) 16 and 18, two regulatory components of the six-subunit motor, interact with the respiratory chain independently of Tim21. Thus, the respiratory chain–bound presequence translocase is not only active in preprotein sorting to the inner membrane but also in an early stage of matrix translocation. The motor does not assemble en bloc with the translocase but apparently in a step-wise manner with the Pam16/18 module before the Hsp70 core.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Freiburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Howell KA, Cheng K, Murcha MW, Jenkin LE, Millar AH, Whelan J. Oxygen initiation of respiration and mitochondrial biogenesis in rice. J Biol Chem 2007; 282:15619-31. [PMID: 17383966 DOI: 10.1074/jbc.m609866200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rice growth under aerobic and anaerobic conditions allowed aspects of mitochondrial biogenesis to be identified as dependent on or independent of an oxygen signal. Analysis of transcripts encoding mitochondrial components found that a subset of these genes respond to oxygen (defined as aerobic), whereas others are relatively unaffected by oxygen availability. Mitochondria formed during growth in anaerobic conditions had reduced protein levels of tricarboxylic acid cycle components and cytochrome-containing complexes of the respiratory chain and repressed respiratory functionality. In general, the capacity of the general import pathway was found to be significantly lower in mitochondria isolated from tissue grown under anaerobic conditions, whereas the carrier import pathway capacity was not affected by changes in oxygen availability. Transcript levels of genes encoding components of the protein import apparatus were generally not affected by the absence of oxygen, and their protein abundance was severalfold higher in mitochondria isolated from anaerobically grown tissue. However, both transcript and protein abundances of the subunits of the mitochondrial processing peptidase, which in plants is integrated into the cytochrome bc(1) complex, were repressed under anaerobic conditions. Therefore, in this system, an increase in import capacity is correlated with an increase in the abundance of the cytochrome bc(1) complex, which is ultimately dependent on the presence of oxygen, providing a link between the respiratory chain and protein import apparatus.
Collapse
Affiliation(s)
- Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Mukhopadhyay A, Hammen P, Waltner-Law M, Weiner H. Timing and structural consideration for the processing of mitochondrial matrix space proteins by the mitochondrial processing peptidase (MPP). Protein Sci 2002; 11:1026-35. [PMID: 11967360 PMCID: PMC2373553 DOI: 10.1110/ps.3760102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 01/19/2001] [Accepted: 01/22/2001] [Indexed: 10/14/2022]
Abstract
Most mitochondrial matrix space proteins are synthesized as a precursor protein, and the N-terminal extension of amino acids that served as the leader sequence is removed after import by the action of a metalloprotease called mitochondrial processing peptidase (MPP). The crystal structure of MPP has been solved very recently, and it has been shown that synthetic leader peptides bind with MPP in an extended conformation. However, it is not known how MPP recognizes hundreds of leader peptides with different primary and secondary structures or when during import the leader is removed. Here we took advantage of the fact that the structure of the leader from rat liver aldehyde dehydrogenase has been determined by 2D-NMR to possess two helical portions separated by a three amino acid (RGP) linker. When the linker was deleted, the leader formed one long continuous helix that can target a protein to the matrix space but is not removed by the action of MPP. Repeats of two and three leaders were fused to the precursor protein to determine the stage of import at which processing occurs, if MPP could function as an endo peptidase, and if it would process if the cleavage site was part of a helix. Native or linker deleted constructs were used. Import into isolated yeast mitochondria or processing with recombinantly expressed MPP was performed. It was concluded that processing did not occur as the precursor was just entering the matrix space, but most likely coincided with the folding of the protein. Further, finding that hydrolysis could not take place if the processing site was part of a stable helix is consistent with the crystal structure of MPP. Lastly, it was found that MPP could function at sites as far as 108 residues from the N terminus of the precursor protein, but its ability to process decreases exponentially as the distance increases.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| | | | | | | |
Collapse
|
11
|
Zhang XP, Sjöling S, Tanudji M, Somogyi L, Andreu D, Eriksson LE, Gräslund A, Whelan J, Glaser E. Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:427-38. [PMID: 11576427 DOI: 10.1046/j.1365-313x.2001.01108.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Determinants for the recognition of a mitochondrial presequence by the mitochondrial processing peptidase (MPP) have been investigated using mutagenesis and bioinformatics approaches. All plant mitochondrial presequences with a cleavage site that was confirmed by experimental studies can be grouped into three classes. Two major classes contain an arginine residue at position -2 or -3, and the third class does not have any conserved arginines. Sequence logos revealed loosely conserved cleavage motifs for the first two classes but no significant amino acid conservation for the third class. Investigation of processing determinants for a class III precursor, Nicotiana plumbaginifolia F1beta precursor of ATP synthase (pF1beta), was performed using a series of pF1beta presequence mutants and mutant presequence peptides derived from the C-terminal portion of the presequence. Replacement of -2 Gln by Arg inhibited processing, whereas replacement of either the most proximally located -5 Arg or -15 Arg by Leu had only a low inhibitory effect. The C-terminal portion of the pF1beta presequence forms a helix-turn-helix structure. Mutations disturbing or prolonging the helical element upstream of the cleavage site inhibited processing significantly. Structural models of potato MPP and the C-terminal pF1beta presequence peptide were built by homology modelling and empirical conformational energy search methods, respectively. Molecular docking of the pF1beta presequence peptide to the MPP model suggested binding of the peptide to the negatively charged binding cleft formed by the alpha-MPP and beta-MPP subunits in close proximity to the H111XXE114H115X(116-190)E191 proteolytic active site on beta-MPP. Our results show for the first time that the amino acid at the -2 position, even if not an arginine, as well as structural properties of the C-terminal portion of the presequence are important determinants for the processing of a class III precursor by MPP.
Collapse
Affiliation(s)
- X P Zhang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|