1
|
Bi YH, Li Z, Zhou ZG. Karyotype analysis of the brown seaweed Saccharina (or Laminaria) japonica. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
2
|
Konečná KP, Kilar A, Kováčiková P, Fajkus J, Sýkorová E, Fojtová M. Compromised function of ARM, the interactor of Arabidopsis telomerase, suggests its role in stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111453. [PMID: 36087885 DOI: 10.1016/j.plantsci.2022.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
ARM was identified previously as an interaction partner of the telomerase protein subunit (TERT) in Arabidopsis thaliana. To investigate the interconnection between ARM and telomerase and to identify ARM cellular functions, we analyzed a set of arm mutant lines and arm/tert double mutants. Telomere length was not affected in arm single mutant plants, in contrast to double mutants. In the second generation of homozygous arm-1/tert double mutants following the heterozygous state during the double mutant construction, telomeres shortened dramatically, even below levels in tert plants displaying severe morphological defects. Intriguingly, homozygous arm-1/tert double mutants with short telomeres grew without obvious phenotypic changes for next two generations. Then, in agreement with the onset of phenotypic changes in tert, morphological defects were timed to the 5th arm-1/tert homozygous generation. RNAseq analyses of arm-1/tert and respective single mutants displayed markedly overlapping sets of differentially expressed genes in arm-1/tert double mutant and arm-1 single mutant lines, indicating a dominant effect of the ARM mutation. RNAseq data further implied ARM involvement in circadian rhythms, responses to drugs and to biotic and abiotic stimuli. In agreement with it, we observed sensitivity of arm-1 single mutant to the heat stress during germination. Altogether, our results suggest ARM involvement in crucial cellular processes without evidencing its role in the telomerase canonical function.
Collapse
Affiliation(s)
- Klára Přikrylová Konečná
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Kováčiková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
3
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
4
|
Luo X, He Z, Liu J, Wu H, Gong X. FISH Mapping of Telomeric and Non-Telomeric (AG3T3)3 Reveal the Chromosome Numbers and Chromosome Rearrangements of 41 Woody Plants. Genes (Basel) 2022; 13:genes13071239. [PMID: 35886022 PMCID: PMC9323580 DOI: 10.3390/genes13071239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Data for the chromosomal FISH mapping localization of (AG3T3)3 are compiled for 37 species belonging 27 families; for 24 species and 14 families, this is the first such report. The chromosome number and length ranged from 14–136 and 0.56–14.48 μm, respectively. A total of 23 woody plants presented chromosome length less than 3 μm, thus belonging to the small chromosome group. Telomeric signals were observed at each chromosome terminus in 38 plants (90.5%) and were absent at several chromosome termini in only four woody plants (9.5%). Non-telomeric signals were observed in the chromosomes of 23 plants (54.8%); in particular, abundant non-telomeric (AG3T3)3 was obviously observed in Chimonanthus campanulatus. Telomeric signals outside of the chromosome were observed in 11 woody plants (26.2%). Overall, ten (AG3T3)3 signal pattern types were determined, indicating the complex genome architecture of the 37 considered species. The variation in signal pattern was likely due to chromosome deletion, duplication, inversion, and translocation. In addition, large primary constriction was observed in some species, probably due to or leading to chromosome breakage and the formation of new chromosomes. The presented results will guide further research focused on determining the chromosome number and disclosing chromosome rearrangements of woody plants.
Collapse
|
5
|
de Souza TB, Parteka LM, de Assis R, Vanzela ALL. Diversity of the repetitive DNA fraction in Cestrum, the genus with the largest genomes within Solanaceae. Mol Biol Rep 2022; 49:8785-8799. [PMID: 35809181 DOI: 10.1007/s11033-022-07728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Cestrum species present large genomes (2 C = ~ 24 pg), a high occurrence of B chromosomes and great diversity in heterochromatin bands. Despite this diversity, karyotypes maintain the chromosome number 2n = 16 (except when they present B chromosomes), and a relative similarity in chromosome morphology and symmetry. To deepen our knowledge of the Cestrum genome composition, low-coverage sequencing data of C. strigilatum and C. elegans were compared, including cytogenomic analyses of seven species. METHODS AND RESULTS Bioinformatics analyses showed retrotransposons comprising more than 70% of the repetitive fraction, followed by DNA transposons (~ 17%), but FISH assays using retrotransposon probes revealed inconspicuous and scattered signals. The four satellite DNA families here analyzed represented approximately 2.48% of the C. strigilatum dataset, and these sequences were used as probes in FISH assays. Hybridization signals were colocalized with all AT- and GC-rich sequences associated with heterochromatin, including AT-rich Cold-Sensitive Regions (CSRs). Although satellite probes hybridized in almost all tested species, a satDNA family named CsSat49 was highlighted because it predominates in centromeric regions. CONCLUSIONS Data suggest that the satDNA fraction is conserved in the genus, although there is variation in the number of FISH signals between karyotypes. Except to the absence of FISH signals with probes CsSat1 and CsSat72 in two species, the other satellites occurred in species of different phylogenetic clades. Some satDNA sequences have been detected in the B chromosomes, indicating that they are rich in preexisting sequences in the chromosomes of the A complement. This comparative study provides an important advance in the knowledge on genome organization and heterochromatin composition in Cestrum, especially on the distribution of satellite fractions between species and their importance for the B chromosome composition.
Collapse
Affiliation(s)
- Thaíssa Boldieri de Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Letícia Maria Parteka
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Rafael de Assis
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil.
| |
Collapse
|
6
|
Deanna R, Acosta MC, Scaldaferro M, Chiarini F. Chromosome Evolution in the Family Solanaceae. FRONTIERS IN PLANT SCIENCE 2022; 12:787590. [PMID: 35154179 PMCID: PMC8832121 DOI: 10.3389/fpls.2021.787590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
This review summarizes and discusses the knowledge of cytogenetics in Solanaceae, the tomato family, its current applications, and prospects for making progress in fundamental systematic botany and plant evolution. We compile information on basic chromosome features (number, size, morphology) and molecular cytogenetics (chromosome banding and rDNA patterns). These data were mapped onto the Solanaceae family tree to better visualize the changes in chromosome features and evaluate them in a phylogenetic context. We conclude that chromosomal features are important in understanding the evolution of the family, especially in delimiting clades, and therefore it is necessary to continue producing this type of data. The potential for future applications in plant biology is outlined. Finally, we provide insights into understanding the mechanisms underlying Solanaceae's diversification that could substantially contribute to developing new approaches for future research.
Collapse
Affiliation(s)
- Rocío Deanna
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, United States
| | | | - Marisel Scaldaferro
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| | - Franco Chiarini
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| |
Collapse
|
7
|
Luo X, Liu J, He Z. Oligo-FISH Can Identify Chromosomes and Distinguish Hippophaë rhamnoides L. Taxa. Genes (Basel) 2022; 13:genes13020195. [PMID: 35205242 PMCID: PMC8872433 DOI: 10.3390/genes13020195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Oligo-fluorescence in situ hybridization (FISH) facilitates precise chromosome identification and comparative cytogenetic analysis. Detection of autosomal chromosomes of Hippophaë rhamnoides has not been achieved using oligonucleotide sequences. Here, the chromosomes of five H. rhamnoides taxa in the mitotic metaphase and mitotic metaphase to anaphase were detected using the oligo-FISH probes (AG3T3)3, 5S rDNA, and (TTG)6. In total, 24 small chromosomes were clearly observed in the mitotic metaphase (0.89–3.03 μm), whereas 24–48 small chromosomes were observed in the mitotic metaphase to anaphase (0.94–3.10 μm). The signal number and intensity of (AG3T3)3, 5S rDNA, and (TTG)6 in the mitotic metaphase to anaphase chromosomes were nearly consistent with those in the mitotic metaphase chromosomes when the two split chromosomes were integrated as one unit. Of note, 14 chromosomes (there is a high chance that sex chromosomes are included) were exclusively identified by (AG3T3)3, 5S rDNA, and (TTG)6. The other 10 also showed a terminal signal with (AG3T3)3. Moreover, these oligo-probes were able to distinguish one wild H. rhamnoides taxon from four H. rhamnoides taxa. These chromosome identification and taxa differentiation data will help in elucidating visual and elaborate physical mapping and guide breeders’ utilization of wild resources of H. rhamnoides.
Collapse
|
8
|
Maravilla AJ, Rosato M, Álvarez I, Nieto Feliner G, Rosselló JA. Interstitial Arabidopsis-Type Telomeric Repeats in Asteraceae. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122794. [PMID: 34961265 PMCID: PMC8705333 DOI: 10.3390/plants10122794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Tandem repeats of telomeric-like motifs at intra-chromosomal regions, known as interstitial telomeric repeats (ITR), have drawn attention as potential markers of structural changes, which might convey information about evolutionary relationships if preserved through time. Building on our previous work that reported outstanding ITR polymorphisms in the genus Anacyclus, we undertook a survey across 132 Asteraceae species, focusing on the six most speciose subfamilies and considering all the ITR data published to date. The goal was to assess whether the presence, site number, and chromosomal location of ITRs convey any phylogenetic signal. We conducted fluorescent in situ hybridization (FISH) using an Arabidopsis-type telomeric sequence as a probe on karyotypes obtained from mitotic chromosomes. FISH signals of ITR sites were detected in species of subfamilies Asteroideae, Carduoideae, Cichorioideae, Gymnarhenoideae, and Mutisioideae, but not in Barnadesioideae. Although six small subfamilies have not yet been sampled, altogether, our results suggest that the dynamics of ITR formation in Asteraceae cannot accurately trace the complex karyological evolution that occurred since the early diversification of this family. Thus, ITRs do not convey a reliable signal at deep or shallow phylogenetic levels and cannot help to delimitate taxonomic categories, a conclusion that might also hold for other important families such as Fabaceae.
Collapse
Affiliation(s)
- Alexis J. Maravilla
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Marcela Rosato
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Inés Álvarez
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Gonzalo Nieto Feliner
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Josep A. Rosselló
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
- Correspondence: ; Tel.: +34-963-156-800
| |
Collapse
|
9
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
10
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
11
|
Fajkus P, Peška V, Fajkus J, Sýkorová E. Origin and Fates of TERT Gene Copies in Polyploid Plants. Int J Mol Sci 2021; 22:1783. [PMID: 33670111 PMCID: PMC7916837 DOI: 10.3390/ijms22041783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.
Collapse
Affiliation(s)
- Petr Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| | - Vratislav Peška
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| | - Jiří Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| |
Collapse
|
12
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
13
|
Červenák F, Sepšiová R, Nosek J, Tomáška Ľ. Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biol Evol 2020; 13:6127219. [PMID: 33537752 PMCID: PMC7857110 DOI: 10.1093/gbe/evaa268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
In virtually every eukaryotic species, the ends of nuclear chromosomes are protected by telomeres, nucleoprotein structures counteracting the end-replication problem and suppressing recombination and undue DNA repair. Although in most cases, the primary structure of telomeric DNA is conserved, there are several exceptions to this rule. One is represented by the telomeric repeats of ascomycetous yeasts, which encompass a great variety of sequences, whose evolutionary origin has been puzzling for several decades. At present, the key questions concerning the driving force behind their rapid evolution and the means of co-evolution of telomeric repeats and telomere-binding proteins remain largely unanswered. Previously published studies addressed mostly the general concepts of the evolutionary origin of telomeres, key properties of telomeric proteins as well as the molecular mechanisms of telomere maintenance; however, the evolutionary process itself has not been analyzed thoroughly. Here, we aimed to inspect the evolution of telomeres in ascomycetous yeasts from the subphyla Saccharomycotina and Taphrinomycotina, with special focus on the evolutionary origin of species-specific telomeric repeats. We analyzed the sequences of telomeric repeats from 204 yeast species classified into 20 families and as a result, we propose a step-by-step model, which integrates the diversity of telomeric repeats, telomerase RNAs, telomere-binding protein complexes and explains a propensity of certain species to generate the repeat heterogeneity within a single telomeric array.
Collapse
Affiliation(s)
- Filip Červenák
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| |
Collapse
|
14
|
Adamusová K, Khosravi S, Fujimoto S, Houben A, Matsunaga S, Fajkus J, Fojtová M. Two combinatorial patterns of telomere histone marks in plants with canonical and non-canonical telomere repeats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:678-687. [PMID: 31834959 DOI: 10.1111/tpj.14653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non-canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate-type telomere repeat TTAGGG or Allium genus-specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non-canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR-dCas9-eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C-3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis-like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco-like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere-associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.
Collapse
Affiliation(s)
- Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Satoru Fujimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| |
Collapse
|
15
|
Liu Y, Liu Z, Wei Y, Wang Y, Shuang J, Peng R. Cloning and preliminary verification of telomere-associated sequences in upland cotton. COMPARATIVE CYTOGENETICS 2020; 14:183-195. [PMID: 32308926 PMCID: PMC7154043 DOI: 10.3897/compcytogen.v14i2.49391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Telomeres are structures enriched in repetitive sequences at the end of chromosomes. In this study, using the telomere primer AA(CCCTAAA)3CCC for the single primer PCR, two DNA sequences were obtained from Gossypium hirsutum (Linnaeus, 1753) accession (acc.) TM-1. Sequence analysis showed that the two obtained sequences were all rich in A/T base, which was consistent with the characteristic of the telomere-associated sequence (TAS). They were designated as GhTAS1 and GhTAS2 respectively. GhTAS1 is 489 bp long, with 57.6% of A/T, and GhTAS2 is 539 bp long, with 63.9% of A/T. Fluorescence in situ hybridization results showed that both of the cloned TASs were located at the ends of the partial chromosomes of G. hirsutum, with the strong signals, which further confirmed that GhTAS1 and GhTAS2 were telomere-associated sequences including highly tandemly repetitive sequences. Results of blast against the assembled genome of G. hirsutum showed that GhTAS sequences may be missed on some assembled chromosomes. The results provide important evidence for the evaluation of the integrity of assembled chromosome end sequences, and will also contribute to the further perfection of the draft genomes of cotton.
Collapse
Affiliation(s)
- Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, 455000, ChinaAnyang Institute of TechnologyAnyang CityChina
| | - Zhen Liu
- Anyang Institute of Technology, Anyang, Henan, 455000, ChinaAnyang Institute of TechnologyAnyang CityChina
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, 455000, ChinaAnyang Institute of TechnologyAnyang CityChina
| | - Yanjun Wang
- Anyang Institute of Technology, Anyang, Henan, 455000, ChinaAnyang Institute of TechnologyAnyang CityChina
| | - Jiaran Shuang
- Anyang Institute of Technology, Anyang, Henan, 455000, ChinaAnyang Institute of TechnologyAnyang CityChina
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, 455000, ChinaAnyang Institute of TechnologyAnyang CityChina
| |
Collapse
|
16
|
Diop SI, Subotic O, Giraldo-Fonseca A, Waller M, Kirbis A, Neubauer A, Potente G, Murray-Watson R, Boskovic F, Bont Z, Hock Z, Payton AC, Duijsings D, Pirovano W, Conti E, Grossniklaus U, McDaniel SF, Szövényi P. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1378-1396. [PMID: 31692190 DOI: 10.1111/tpj.14602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/28/2019] [Indexed: 05/07/2023]
Abstract
Marchantia polymorpha has recently become a prime model for cellular, evo-devo, synthetic biological, and evolutionary investigations. We present a pseudomolecule-scale assembly of the M. polymorpha genome, making comparative genome structure analysis and classical genetic mapping approaches feasible. We anchored 88% of the M. polymorpha draft genome to a high-density linkage map resulting in eight pseudomolecules. We found that the overall genome structure of M. polymorpha is in some respects different from that of the model moss Physcomitrella patens. Specifically, genome collinearity between the two bryophyte genomes and vascular plants is limited, suggesting extensive rearrangements since divergence. Furthermore, recombination rates are greatest in the middle of the chromosome arms in M. polymorpha like in most vascular plant genomes, which is in contrast with P. patens where recombination rates are evenly distributed along the chromosomes. Nevertheless, some other properties of the genome are shared with P. patens. As in P. patens, DNA methylation in M. polymorpha is spread evenly along the chromosomes, which is in stark contrast with the angiosperm model Arabidopsis thaliana, where DNA methylation is strongly enriched at the centromeres. Nevertheless, DNA methylation and recombination rate are anticorrelated in all three species. Finally, M. polymorpha and P. patens centromeres are of similar structure and marked by high abundance of retroelements unlike in vascular plants. Taken together, the highly contiguous genome assembly we present opens unexplored avenues for M. polymorpha research by linking the physical and genetic maps, making novel genomic and genetic analyses, including map-based cloning, feasible.
Collapse
Affiliation(s)
- Seydina I Diop
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Oliver Subotic
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Alejandro Giraldo-Fonseca
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Alexander Kirbis
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Rachel Murray-Watson
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Filip Boskovic
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, CB3 0HE, Cambridge, UK
| | - Zoe Bont
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Zsofia Hock
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Adam C Payton
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | | | - Walter Pirovano
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Elena Conti
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Stuart F McDaniel
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
17
|
Peska V, Garcia S. Origin, Diversity, and Evolution of Telomere Sequences in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:117. [PMID: 32153618 PMCID: PMC7046594 DOI: 10.3389/fpls.2020.00117] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 05/18/2023]
Abstract
Telomeres are basic structures of eukaryote genomes. They distinguish natural chromosome ends from double-stranded breaks in DNA and protect chromosome ends from degradation or end-to-end fusion with other chromosomes. Telomere sequences are usually tandemly arranged minisatellites, typically following the formula (TxAyGz)n. Although they are well conserved across large groups of organisms, recent findings in plants imply that their diversity has been underestimated. Changes in telomeres are of enormous evolutionary importance as they can affect whole-genome stability. Even a small change in the telomere motif of each repeat unit represents an important interference in the system of sequence-specific telomere binding proteins. Here, we provide an overview of telomere sequences, considering the latest phylogenomic evolutionary framework of plants in the broad sense (Archaeplastida), in which new telomeric sequences have recently been found in diverse and economically important families such as Solanaceae and Amaryllidaceae. In the family Lentibulariaceae and in many groups of green algae, deviations from the typical plant telomeric sequence have also been detected recently. Ancestry and possible homoplasy in telomeric motifs, as well as extant gaps in knowledge are discussed. With the increasing availability of genomic approaches, it is likely that more telomeric diversity will be uncovered in the future. We also discuss basic methods used for telomere identification and we explain the implications of the recent discovery of plant telomerase RNA on further research about the role of telomerase in eukaryogenesis or on the molecular causes and consequences of telomere variability.
Collapse
Affiliation(s)
- Vratislav Peska
- Department of Cell Biology and Radiobiology, The Czech Academy of Sciences, Institute of Biophysics, Brno, Czechia
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| |
Collapse
|
18
|
Fajkus P, Peška V, Závodník M, Fojtová M, Fulnečková J, Dobias Š, Kilar A, Dvořáčková M, Zachová D, Nečasová I, Sims J, Sýkorová E, Fajkus J. Telomerase RNAs in land plants. Nucleic Acids Res 2019; 47:9842-9856. [PMID: 31392988 PMCID: PMC6765143 DOI: 10.1093/nar/gkz695] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.
Collapse
Affiliation(s)
- Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic
| | - Michal Závodník
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Miloslava Fojtová
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Fulnečková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Šimon Dobias
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Agata Kilar
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ivona Nečasová
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Jason Sims
- Max Perutz Labs, University of Vienna, Dr. Bohr Gasse 9, A-1030, Vienna, Austria
| | - Eva Sýkorová
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| |
Collapse
|
19
|
de Souza TB, Gaeta ML, Martins C, Vanzela ALL. IGS sequences in Cestrum present AT- and GC-rich conserved domains, with strong regulatory potential for 5S rDNA. Mol Biol Rep 2019; 47:55-66. [PMID: 31571109 DOI: 10.1007/s11033-019-05104-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
The 35S and 5S ribosomal DNA (rDNA) organized in thousands of copies in genomes, have been widely used in numerous comparative cytogenetic studies. Nevertheless, several questions related to the diversity and organization of regulatory motifs in 5S rDNA remain to be addressed. The 5S rDNA unit is composed of a conserved 120 bp length coding region and an intergenic spacer (IGS) containing potential regulatory motifs (Poly-T, AT-rich and GC-rich) differing in number, redundancy and position along the IGS. The Cestrum species (Solanaceae) have large genomes (about 10 pg/1C) and conserved 2n = 16 karyotypes. Strikingly, these genomes show high diversity of heterochromatin distribution, variability in 35S rDNA loci and the occurrence of B chromosomes. However, the 5S rDNA loci are highly conserved in the proximal region of chromosome 8. Comparison of seventy-one IGS sequences in plants revealed several conserved motifs with potential regulatory function. The AT- and GC-rich domains appeared highly conserved in Cestrum chromosomes. The 5S genic and the GC-rich IGS probe produced FISH signals in both A (pair 8) and B chromosomes. The GC-rich domain presented a strong potential for regulation because it may be associated with CpG islands organization, as well as to hairpin and loop organization. Another interesting aspect was the ability of AT- and GC-rich motifs to produce non-heterochromatic CMA/DAPI signals. While the length of the 5S rDNA IGS region varied in size between the Cestrum species, the individual sequence motifs seem to be conserved suggesting their regulatory function. The most striking feature was the conserved GC-rich domain in Cestrum, which is recognized as a signature trait of the proximal region of chromosome pair 8.
Collapse
Affiliation(s)
- Thaíssa Boldieri de Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Marcos Letaif Gaeta
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, CEP 18618689, Brazil
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
20
|
Abstract
Conventional approaches to identify a telomere motif in a new genome are laborious and time-intensive. An efficient new methodology based on next-generation sequencing (NGS), de novo sequence repeat finder (SERF) and fluorescence in situ hybridization (FISH) is presented. Unlike existing heuristic approaches, SERF utilizes an exhaustive analysis of raw NGS reads or assembled contigs for rapid de novo detection of conserved tandem repeats representing telomere motifs. SERF was validated using the NGS data from Ipheion uniflorum and Allium cepa with known telomere motifs. The analysis program was then used on NGS data to investigate the telomere motifs in several additional plant species and together with FISH proved to be an efficient approach to identify as yet unknown telomere motifs.
Collapse
|
21
|
Goffová I, Vágnerová R, Peška V, Franek M, Havlová K, Holá M, Zachová D, Fojtová M, Cuming A, Kamisugi Y, Angelis KJ, Fajkus J. Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1090-1105. [PMID: 30834585 DOI: 10.1111/tpj.14304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 05/11/2023]
Abstract
Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Radka Vágnerová
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Vratislav Peška
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Michal Franek
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Kateřina Havlová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Marcela Holá
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Dagmar Zachová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Miloslava Fojtová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Andrew Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Karel J Angelis
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
22
|
Zhou HC, Pellerin RJ, Waminal NE, Yang TJ, Kim HH. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat. Genes Genomics 2019; 41:839-847. [PMID: 30903554 DOI: 10.1007/s13258-019-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The family Araliaceae contains many medicinal species including ginseng of which the whole genome sequencing analyses have been going on these days. OBJECTIVE To characterize the chromosomal distribution of 5S and 45S rDNAs and telomeric repeat in four ginseng related species of Aralia elata (Miq.) Seem., Dendropanax morbiferus H. Lév., Eleutherococcus sessiliflorus (Rupr. Et Maxim.) Seem., Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz. METHOD Pre-labelled oligoprobe (PLOP)-fluorescence in situ hybridization (FISH) was carried out. RESULTS The chromosome number of A. elata was 2n = 24, whereas that of the other three species of D. morbiferus, E. sessiliflorus, and K. septemlobus was 2n = 48, corresponding to diploid and tetraploid, respectively, based on the basic chromosome number x = 12 in Araliaceae. In all four species, one pair of 5S signals were detected in the proximal regions of the short arms of chromosome 3, whereas in K. septemlobus, the 5S rDNA signals localized in the subtelomeric region of short arm of chromosome 3, while all the 45S rDNA signals localized at the paracentromeric region of the short arm of chromosome 1. And the telomeric repeat signals were detected at the telomeric region of both short and long arms of most chromosomes. CONCLUSION The PLOP-FISH was very effective compared with conventional FISH method. These results provide useful comparative cytogenetic information to better understand the genome structure of each species and will be useful to trace the history of ginseng genomic constitution.
Collapse
Affiliation(s)
- Hui Chao Zhou
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Remnyl Joyce Pellerin
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyun Hee Kim
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
23
|
Sováková PP, Magdolenová A, Konečná K, Rájecká V, Fajkus J, Fojtová M. Telomere elongation upon transfer to callus culture reflects the reprogramming of telomere stability control in Arabidopsis. PLANT MOLECULAR BIOLOGY 2018; 98:81-99. [PMID: 30128721 DOI: 10.1007/s11103-018-0765-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/12/2018] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE Standard pathways involved in the regulation of telomere stability do not contribute to gradual telomere elongation observed in the course of A. thaliana calli propagation. Genetic and epigenetic changes accompanying the culturing of plant cells have frequently been reported. Here we aimed to characterize the telomere homeostasis during long term callus propagation. While in Arabidopsis thaliana calli gradual telomere elongation was observed, telomeres were stable in Nicotiana tabacum and N. sylvestris cultures. Telomere elongation during callus propagation is thus not a general feature of plant cells. The long telomere phenotype in Arabidopsis calli was correlated neither with changes in telomerase activity nor with activation of alternative mechanisms of telomere elongation. The dynamics of telomere length changes was maintained in mutant calli with loss of function of important epigenetic modifiers but compromised in the presence of epigenetically active drug zebularine. To examine whether the cell culture-induced disruption of telomere homeostasis is associated with the modulated structure of chromosome ends, epigenetic properties of telomere chromatin were analysed. Albeit distinct changes in epigenetic modifications of telomere histones were observed, these were broadly stochastic. Our results show that contrary to animal cells, the structure and function of plant telomeres is not determined significantly by the epigenetic character of telomere chromatin. Set of differentially transcribed genes was identified in calli, but considering the known telomere- or telomerase-related functions of respective proteins, none of these changes per se was apparently related to the elongated telomere phenotype. Based on our data, we propose that the disruption in telomere homeostasis in Arabidopsis calli arises from the interplay of multiple factors, as a part of reprogramming of plant cells to long-term culture conditions.
Collapse
Affiliation(s)
- Pavla Polanská Sováková
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Alžbeta Magdolenová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Klára Konečná
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Veronika Rájecká
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., 612 65, Brno, Czech Republic
| | - Miloslava Fojtová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
24
|
Jurečková JF, Sýkorová E, Hafidh S, Honys D, Fajkus J, Fojtová M. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum. PLANTA 2017; 245:549-561. [PMID: 27900472 DOI: 10.1007/s00425-016-2624-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION In tobacco, three sequence variants of the TERT gene have been described. We revealed unbalanced levels of TERT variant transcripts in vegetative tobacco tissues and enhanced TERT transcription and telomerase activity in reproductive tissues. Telomerase is a ribonucleoprotein complex responsible for the maintenance of telomeres, structures delimiting ends of linear eukaryotic chromosomes. In the Nicotiana tabacum (tobacco) allotetraploid plant, three sequence variants (paralogs) of the gene coding for the telomerase reverse transcriptase subunit (TERT) have been described, two of them derived from the maternal N. sylvestris genome (TERT_Cs, TERT_D) and one originated from the N. tomentosiformis paternal genome (TERT_Ct). In this work, we analyzed the transcription of TERT variants in correlation with telomerase activity in tobacco tissues. High and approximately comparable levels of TERT_Ct and TERT_Cs transcripts were detected in seedlings, roots, flower buds and leaves, while the transcript of the TERT_D variant was markedly underrepresented. Similarly, in N. sylvestris tissues, TERT_Cs transcript significantly predominated. A specific pattern of TERT transcripts was found in samples of tobacco pollen with the TERT_Cs variant clearly dominating particularly at the early stage of pollen development. Detailed analysis of TERT_C variants representation in functionally distinct fractions of pollen transcriptome revealed their prevalence in large ribonucleoprotein particles encompassing translationally silent mRNA; only a minority of TERT_Ct and TERT_Cs transcripts were localized in actively translated polysomes. Histones of the TERT_C chromatin were decorated predominantly with the euchromatin-specific epigenetic modification in both telomerase-positive and telomerase-negative tobacco tissues. We conclude that the existence and transcription pattern of tobacco TERT paralogs represents an interesting phenomenon and our results indicate its functional significance. Nicotiana species have again proved to be appropriate and useful model plants in telomere biology studies.
Collapse
Affiliation(s)
- Jana Fišerová Jurečková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Said Hafidh
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic v.v.i., Rozvojová 263, 165 02, Prague, Czech Republic
| | - David Honys
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic v.v.i., Rozvojová 263, 165 02, Prague, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
25
|
Yang QF, Liu L, Liu Y, Zhou ZG. Telomeric localization of the Arabidopsis-type heptamer repeat, (TTTAGGG) n , at the chromosome ends in Saccharina japonica (Phaeophyta). JOURNAL OF PHYCOLOGY 2017; 53:235-240. [PMID: 27885670 DOI: 10.1111/jpy.12497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Telomeres generally consist of short repeats of minisatellite DNA sequences and are useful in chromosome identification and karyotype analysis. To date, telomeres have not been characterized in the economically important brown seaweed Saccharina japonica, thus its full cytogenetic research and genetic breeding potential has not been realized. Herein, the tentative sequence of telomeres in S. japonica was identified by PCR amplification with primers designed based on the Arabidopsis-type telomere sequence (TTTAGGG)n , which was chosen out of three possible telomeric repeat DNA sequences typically present in plants and algae. After PCR optimization and cloning, sequence analysis of the amplified products from S. japonica genomic DNA showed that they were composed of repeat units, (TTTAGGG)n , in which the repeat number ranged from 15 to 63 (n = 46). This type of repeat sequence was verified by a Southern blot assay with the Arabidopsis-type telomere sequence as a probe. The digestion of S. japonica genomic DNA with the exonuclease Bal31 illustrated that the target sequence corresponding to the Arabidopsis-type telomere sequence was susceptible to Bal31 digestion, suggesting that the repeat sequence was likely located at the outermost ends of the kelp chromosomes. Fluorescence in situ hybridizations with the aforementioned probe provided the initial cytogenetic evidence that the hybridization signals were principally localized at both ends of S. japonica chromosomes. This study indicates that the telomeric repeat of the kelp chromosomes is (TTTAGGG)n which differs from the previously reported (TTAGGG)n sequence in Ectocarpus siliculosus through genome sequencing, thereby suggesting distinct telomeres in brown seaweeds.
Collapse
Affiliation(s)
- Qi-Fan Yang
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Liu
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu Liu
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
26
|
Peška V, Sitová Z, Fajkus P, Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods 2016; 114:16-27. [PMID: 27595912 DOI: 10.1016/j.ymeth.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022] Open
Abstract
This article describes a novel method to identify as yet undiscovered telomere sequences, which combines next generation sequencing (NGS) with BAL31 digestion of high molecular weight DNA. The method was applied to two groups of plants: i) dicots, genus Cestrum, and ii) monocots, Allium species (e.g. A. ursinum and A. cepa). Both groups consist of species with large genomes (tens of Gb) and a low number of chromosomes (2n=14-16), full of repeat elements. Both genera lack typical telomeric repeats and multiple studies have attempted to characterize alternative telomeric sequences. However, despite interesting hypotheses and suggestions of alternative candidate telomeres (retrotransposons, rDNA, satellite repeats) these studies have not resolved the question. In a novel approach based on the two most general features of eukaryotic telomeres, their repetitive character and sensitivity to BAL31 nuclease digestion, we have taken advantage of the capacity and current affordability of NGS in combination with the robustness of classical BAL31 nuclease digestion of chromosomal termini. While representative samples of most repeat elements were ensured by low-coverage (less than 5%) genomic shot-gun NGS, candidate telomeres were identified as under-represented sequences in BAL31-treated samples.
Collapse
Affiliation(s)
- Vratislav Peška
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Zdeňka Sitová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
27
|
Yamamoto M. Molecular cytogenetic and epigenetic components of crossing barriers and peculiar reproduction ability in Allium hybrids. THE NUCLEUS 2016. [DOI: 10.1007/s13237-015-0153-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Kim C, Sung S, Lee J. Internal genomic regions mobilized for telomere maintenance in C. elegans. WORM 2016; 5:e1146856. [PMID: 27073737 PMCID: PMC4805358 DOI: 10.1080/21624054.2016.1146856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/04/2016] [Accepted: 01/19/2016] [Indexed: 12/17/2022]
Abstract
Because DNA polymerase cannot replicate telomeric DNA at linear chromosomal ends, eukaryotes have developed specific telomere maintenance mechanisms (TMMs). A major TMM involves specialized reverse transcriptase, telomerase. However, there also exist various telomerase-independent TMMs (TI-TMMs), which can arise both in pathological conditions (such as cancers) and during evolution. The TI-TMM in cancer cells is called alternative lengthening of telomeres (ALT), whose mechanism is not fully understood. We generated stably maintained telomerase-independent survivors from C. elegans telomerase mutants and found that, unlike previously described survivors in worms, these survivors "mobilize" specific internal sequence blocks for telomere lengthening, which we named TALTs (templates for ALT). The cis-duplication of internal genomic TALTs produces "reservoirs" of TALTs, whose trans-duplication occurs at all chromosome ends in the ALT survivors. Our discovery that different TALTs are utilized in different wild isolates provides insight into the molecular events leading to telomere evolution.
Collapse
Affiliation(s)
- Chuna Kim
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Sanghyun Sung
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Junho Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Tran TD, Cao HX, Jovtchev G, Neumann P, Novák P, Fojtová M, Vu GTH, Macas J, Fajkus J, Schubert I, Fuchs J. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1087-99. [PMID: 26485466 DOI: 10.1111/tpj.13058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 05/25/2023]
Abstract
Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.
Collapse
Affiliation(s)
- Trung D Tran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Gabriele Jovtchev
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Pavel Neumann
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Miloslava Fojtová
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Giang T H Vu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jiří Macas
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Jiří Fajkus
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 61265, Brno, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
30
|
Fulnečková J, Ševčíková T, Lukešová A, Sýkorová E. Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales). Chromosoma 2015; 125:437-51. [PMID: 26596989 DOI: 10.1007/s00412-015-0557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022]
Abstract
Telomeres are nucleoprotein structures that distinguish native chromosomal ends from double-stranded breaks. They are maintained by telomerase that adds short G-rich telomeric repeats at chromosomal ends in most eukaryotes and determines the TnAmGo sequence of canonical telomeres. We employed an experimental approach that was based on detection of repeats added by telomerase to identify the telomere sequence type forming the very ends of chromosomes. Our previous studies that focused on the algal order Chlamydomonadales revealed several changes in telomere motifs that were consistent with the phylogeny and supported the concept of the Arabidopsis-type sequence being the ancestral telomeric motif for green algae. In addition to previously described independent transitions to the Chlamydomonas-type sequence, we report that the ancestral telomeric motif was replaced by the human-type sequence in the majority of algal species grouped within a higher order clade, Caudivolvoxa. The Arabidopsis-type sequence was apparently retained in the Polytominia clade. Regarding the telomere sequence, the Chlorogonia clade within Caudivolvoxa bifurcates into two groups, one with the human-type sequence and the other group with the Arabidopsis-type sequence that is solely formed by the Chlorogonium species. This suggests that reversion to the Arabidopsis-type telomeric motif occurred in the common ancestral Chlorogonium species. The human-type sequence is also synthesized by telomerases of algal strains from Arenicolinia, Dunaliellinia and Stephanosphaerinia, except a distinct subclade within Stephanosphaerinia, where telomerase activity was not detected and a change to an unidentified telomeric motif might arise. We discuss plausible reasons why changes in telomeric motifs were tolerated during evolution of green algae.
Collapse
Affiliation(s)
- Jana Fulnečková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic.,Faculty of Science, and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Life Science Research Centre & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-71000, Ostrava, Czech Republic
| | - Alena Lukešová
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, v.vi., Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic. .,Faculty of Science, and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
31
|
Dvořáčková M, Fojtová M, Fajkus J. Chromatin dynamics of plant telomeres and ribosomal genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:18-37. [PMID: 25752316 DOI: 10.1111/tpj.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 05/03/2023]
Abstract
Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
32
|
Jankowska M, Fuchs J, Klocke E, Fojtová M, Polanská P, Fajkus J, Schubert V, Houben A. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 2015; 124:519-28. [PMID: 26062516 DOI: 10.1007/s00412-015-0524-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/24/2022]
Abstract
Species with holocentric chromosomes are often characterized by a rapid karyotype evolution. In contrast to species with monocentric chromosomes where acentric fragments are lost during cell division, breakage of holocentric chromosomes creates fragments with normal centromere activity. To decipher the mechanism that allows holocentric species an accelerated karyotype evolution via chromosome breakage, we analyzed the chromosome complements of irradiated Luzula elegans plants. The resulting chromosomal fragments and rearranged chromosomes revealed holocentromere-typical CENH3 and histone H2AThr120ph signals as well as the same mitotic mobility like unfragmented chromosomes. Newly synthesized telomeres at break points become detectable 3 weeks after irradiation. The presence of active telomerase suggests a telomerase-based mechanism of chromosome healing. A successful transmission of holocentric chromosome fragments across different generations was found for most offspring of irradiated plants. Hence, a combination of holokinetic centromere activity and the fast formation of new telomeres at break points enables holocentric species a rapid karyotype evolution involving chromosome fissions and rearrangements.
Collapse
Affiliation(s)
- Maja Jankowska
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Correnstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Correnstrasse 3, D-06466, Stadt Seeland, Germany
| | - Evelyn Klocke
- Julius Kühn-Institute, Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Straße 27, D-06484, Quedlinburg, Germany
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Pavla Polanská
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Correnstrasse 3, D-06466, Stadt Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Correnstrasse 3, D-06466, Stadt Seeland, Germany.
| |
Collapse
|
33
|
Peška V, Fajkus P, Fojtová M, Dvořáčková M, Hapala J, Dvořáček V, Polanská P, Leitch AR, Sýkorová E, Fajkus J. Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:644-54. [PMID: 25828846 DOI: 10.1111/tpj.12839] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 05/26/2023]
Abstract
The characterization of unusual telomere sequence sheds light on patterns of telomere evolution, maintenance and function. Plant species from the closely related genera Cestrum, Vestia and Sessea (family Solanaceae) lack known plant telomeric sequences. Here we characterize the telomere of Cestrum elegans, work that was a challenge because of its large genome size and few chromosomes (1C 9.76 pg; n = 8). We developed an approach that combines BAL31 digestion, which digests DNA from the ends and chromosome breaks, with next-generation sequencing (NGS), to generate data analysed in RepeatExplorer, designed for de novo repeats identification and quantification. We identify an unique repeat motif (TTTTTTAGGG)n in C. elegans, occurring in ca. 30 400 copies per haploid genome, averaging ca. 1900 copies per telomere, and synthesized by telomerase. We demonstrate that the motif is synthesized by telomerase. The occurrence of an unusual eukaryote (TTTTTTAGGG)n telomeric motif in C. elegans represents a switch in motif from the 'typical' angiosperm telomere (TTTAGGG)n . That switch may have happened with the divergence of Cestrum, Sessea and Vestia. The shift in motif when it arose would have had profound effects on telomere activity. Thus our finding provides a unique handle to study how telomerase and telomeres responded to genetic change, studies that will shed more light on telomere function.
Collapse
Affiliation(s)
- Vratislav Peška
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Petr Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Miloslava Fojtová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Martina Dvořáčková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Jan Hapala
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Vojtěch Dvořáček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Pavla Polanská
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Faculty of Science, and CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
34
|
Fojtová M, Sýkorová E, Najdekrová L, Polanská P, Zachová D, Vagnerová R, Angelis KJ, Fajkus J. Telomere dynamics in the lower plant Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2015; 87:591-601. [PMID: 25701469 DOI: 10.1007/s11103-015-0299-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells. Here we examine these principles in Physcomitrella patens as a representative of lower plants. To follow telomerase expression, we first characterize the gene coding for the telomerase reverse transcriptase subunit PpTERT in P. patens, for which only incomplete prediction has been available so far. In protonema cultures of P. patens, growing by filament apical cell division, the proportion of apical (dividing) cells was quantified and telomere length, telomerase expression and activity were determined. Our results show telomere stability and demonstrate proportionality of telomerase activity and expression with the number of apical cells. In addition, we analyze telomere maintenance in mre11, rad50, nbs1, ku70 and lig4 mutants of P. patens and compare the impact of these mutations in double-strand-break (DSB) repair pathways with earlier observations in corresponding A. thaliana mutants. Telomere phenotypes are absent and DSB repair kinetics is not affected in P. patens mutants for DSB factors involved in non-homologous end joining (NHEJ). This is compliant with the overall dominance of homologous recombination over NHEJ pathways in the moss, contrary to the inverse situation in flowering plants.
Collapse
Affiliation(s)
- Miloslava Fojtová
- Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Marcon-Tavares AB, Felinto F, Feitoza L, Barros e Silva AE, Guerra M. Different Patterns of Chromosomal Histone H3 Phosphorylation in Land Plants. Cytogenet Genome Res 2014; 143:136-43. [DOI: 10.1159/000364815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Fojtová M, Fajkus J. Epigenetic Regulation of Telomere Maintenance. Cytogenet Genome Res 2014; 143:125-35. [DOI: 10.1159/000360775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Golczyk H, Massouh A, Greiner S. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses. THE PLANT CELL 2014; 26:1280-93. [PMID: 24681616 PMCID: PMC4001384 DOI: 10.1105/tpc.114.122655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.
Collapse
Affiliation(s)
- Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynów 1I 20-708, Poland
- Address correspondence to
| | - Amid Massouh
- Max Planck Institute of Molecular Plant Physiology, Department 3, Potsdam-Golm 14476, Germany
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Department 3, Potsdam-Golm 14476, Germany
| |
Collapse
|
38
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
39
|
Fulnecková J, Sevcíková T, Fajkus J, Lukesová A, Lukes M, Vlcek C, Lang BF, Kim E, Eliás M, Sykorová E. A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol Evol 2013; 5:468-83. [PMID: 23395982 PMCID: PMC3622300 DOI: 10.1093/gbe/evt019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap, we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: 1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; 2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; 3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; and 4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently.
Collapse
Affiliation(s)
- Jana Fulnecková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ogrocká A, Sýkorová E, Fajkus J, Fojtová M. Developmental silencing of the AtTERT gene is associated with increased H3K27me3 loading and maintenance of its euchromatic environment. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4233-41. [PMID: 22511802 PMCID: PMC3398451 DOI: 10.1093/jxb/ers107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Telomerase, an enzyme responsible for the maintenance of linear chromosome ends, is precisely regulated during plant development. In animals, involvement of the epigenetic state of the telomerase reverse transcriptase (TERT) gene in the complex regulation of telomerase activity has been reported. To reveal whether epigenetic mechanisms participate in the regulation of plant telomerase, the relationship between telomerase activity in tissues of Arabidopsis thaliana and DNA methylation and histone modifications in the A. thaliana TERT (AtTERT) upstream region was studied. As expected, a gradual decrease of telomerase activity during leaf maturation was observed. A different pattern with a more progressive loss of telomerase activity and AtTERT transcription during leaf development was revealed in MET1 gene-knockout mutants. Analysis of DNA methylation in the AtTERT upstream region showed low levels of methylated cytosines without notable differences between telomerase-positive and telomerase-negative wild-type tissues. Surprisingly, a high level of CG methylation was found in the AtTERT coding region, although this type of methylation is a characteristic attribute of constitutively expressed genes. Analysis of chromatin modifications in the AtTERT upstream region and in exon 5 showed increased loading of the H3K27me3 mark in the telomerase-negative mature leaf compared to telomerase-positive seedlings, whereas H3K4me3, H3K9Ac, and H3K9me2 were approximately at the same level. Consistently, the chromatin structure of the AtTERT gene was maintained. These results are discussed in the context of the general involvement of epigenetic mechanisms in the regulation of gene expression and with respect to similar studies performed in animal models.
Collapse
Affiliation(s)
- Anna Ogrocká
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Sýkorová
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 65, 612 65 Brno, Czech Republic
| | - Jiří Fajkus
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 65, 612 65 Brno, Czech Republic
| | - Miloslava Fojtová
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Fulnečková J, Hasíková T, Fajkus J, Lukešová A, Eliáš M, Sýkorová E. Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales. Genome Biol Evol 2012; 4:248-64. [PMID: 22247428 PMCID: PMC3318450 DOI: 10.1093/gbe/evs007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Telomeres, which form the protective ends of eukaryotic chromosomes, are a ubiquitous and conserved structure of eukaryotic genomes but the basic structural unit of most telomeres, a repeated minisatellite motif with the general consensus sequence TnAmGo, may vary between eukaryotic groups. Previous studies on several species of green algae revealed that this group exhibits at least two types of telomeric sequences, a presumably ancestral type shared with land plants (Arabidopsis type, TTTAGGG) and conserved in, for example, Ostreococcus and Chlorella species, and a novel type (Chlamydomonas type, TTTTAGGG) identified in Chlamydomonas reinhardtii. We have employed several methodical approaches to survey the diversity of telomeric sequences in a phylogenetically wide array of green algal species, focusing on the order Chlamydomonadales. Our results support the view that the Arabidopsis-type telomeric sequence is ancestral for green algae and has been conserved in most lineages, including Mamiellophyceae, Chlorodendrophyceae, Trebouxiophyceae, Sphaeropleales, and most Chlamydomonadales. However, within the Chlamydomonadales, at least two independent evolutionary changes to the Chlamydomonas type occurred, specifically in a subgroup of the Reinhardtinia clade (including C. reinhardtii and Volvox carteri) and in the Chloromonadinia clade. Furthermore, a complex structure of telomeric repeats, including a mix of the ancestral Arabidopsis-type motifs and derived motifs identical to the human-type telomeric repeats (TTAGGG), was found in the chlamydomonadalean clades Dunaliellinia and Stephanosphaeria. Our results indicate that telomere evolution in green algae, particularly in the order Chlamydomonadales, is far more dynamic and complex than thought before. General implications of our findings for the mode of telomere evolution are discussed.
Collapse
Affiliation(s)
- Jana Fulnečková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
42
|
Fojtová M, Peška V, Dobšáková Z, Mozgová I, Fajkus J, Sýkorová E. Molecular analysis of T-DNA insertion mutants identified putative regulatory elements in the AtTERT gene. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5531-45. [PMID: 21865176 PMCID: PMC3223050 DOI: 10.1093/jxb/err235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Analysis of plants bearing a T-DNA insertion is a potent tool of modern molecular biology, providing valuable information about the function and involvement of genes in metabolic pathways. A collection of 12 Arabidopsis thaliana lines with T-DNA insertions in the gene coding for the catalytic subunit of telomerase (AtTERT) and in adjacent regions was screened for telomerase activity [telomere repeat amplification protocol (TRAP) assay], telomere length (terminal restriction fragments), and AtTERT transcription (quantitative reverse transcription-PCR). Lines with the insertion located upstream of the start codon displayed unchanged telomere stability and telomerase activity, defining a putative minimal AtTERT promoter and the presence of a regulatory element linked to increased transcription in the line SALK_048471. Lines bearing a T-DNA insertion inside the protein-coding region showed telomere shortening and lack of telomerase activity. Transcription in most of these lines was unchanged upstream of the T-DNA insertion, while it was notably decreased downstream. The expression profile varied markedly in mutant lines harbouring insertions at the 5' end of AtTERT which showed increased transcription and abolished tissue specificity. Moreover, the line FLAG_385G01 (T-DNA insertion inside intron 1) revealed the presence of a highly abundant downstream transcript with normal splicing but without active telomerase. The role of regulatory elements found along the AtTERT gene is discussed in respect to natural telomerase expression and putative intron-mediated enhancement.
Collapse
Affiliation(s)
- Miloslava Fojtová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Vratislav Peška
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Zuzana Dobšáková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- To whom correspondence should be addressed. E-mail:
| | - Iva Mozgová
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
- Department of Functional Genomics and Proteomics, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Heslop-Harrison JSP, Schwarzacher T. Organisation of the plant genome in chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:18-33. [PMID: 21443620 DOI: 10.1111/j.1365-313x.2011.04544.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production.
Collapse
|
44
|
Shibata F, Hizume M. Survey of Arabidopsis- and Human-type Telomere Repeats in Plants Using Fluorescence in situ Hybridisation. CYTOLOGIA 2011. [DOI: 10.1508/cytologia.76.353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fukashi Shibata
- Biological Institute, Faculty of Education, Ehime University
| | - Masahiro Hizume
- Biological Institute, Faculty of Education, Ehime University
| |
Collapse
|
45
|
Watson JM, Riha K. Comparative biology of telomeres: where plants stand. FEBS Lett 2010; 584:3752-9. [PMID: 20580356 PMCID: PMC3767043 DOI: 10.1016/j.febslet.2010.06.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 01/02/2023]
Abstract
Telomeres are essential structures at the ends of eukaryotic chromosomes. Work on their structure and function began almost 70 years ago in plants and flies, continued through the Nobel Prize winning work on yeast and ciliates, and goes on today in many model and non-model organisms. The basic molecular mechanisms of telomeres are highly conserved throughout evolution, and our current understanding of how telomeres function is a conglomeration of insights gained from many different species. This review will compare the current knowledge of telomeres in plants with other organisms, with special focus on the functional length of telomeric DNA, the search for TRF homologs, the family of POT1 proteins, and the recent discovery of members of the CST complex.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
46
|
Abstract
Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size) between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small ( pg), there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.
Collapse
|
47
|
Telomere maintenance in liquid crystalline chromosomes of dinoflagellates. Chromosoma 2010; 119:485-93. [DOI: 10.1007/s00412-010-0272-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
48
|
Shakirov EV, Song X, Joseph JA, Shippen DE. POT1 proteins in green algae and land plants: DNA-binding properties and evidence of co-evolution with telomeric DNA. Nucleic Acids Res 2010; 37:7455-67. [PMID: 19783822 PMCID: PMC2794166 DOI: 10.1093/nar/gkp785] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins varied in their minimal DNA-binding sites and nucleotide recognition properties. Green alga POT1 exhibited a strong preference for the canonical plant telomere repeat sequence TTTAGGG with no detectable binding to hexanucleotide telomere repeat TTAGGG found in vertebrates and some plants, including Asparagus. In contrast, POT1 proteins from maize and Asparagus bound TTAGGG repeats with only slightly reduced affinity relative to the TTTAGGG sequence. We conclude that the nucleic acid binding site in plant POT1 proteins is evolving rapidly, and that the recent acquisition of TTAGGG telomere repeats in Asparagus appears to have co-evolved with changes in POT1 DNA sequence recognition.
Collapse
Affiliation(s)
- Eugene V Shakirov
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | | | |
Collapse
|
49
|
Fernandes T, Rego LDNADA, Nardy M, Yuyama PM, Vanzela ALL. Karyotype differentiation of four Cestrum species (Solanaceae) revealed by fluorescent chromosome banding and FISH. Genet Mol Biol 2009; 32:320-7. [PMID: 21637687 PMCID: PMC3036934 DOI: 10.1590/s1415-47572009000200019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/08/2008] [Indexed: 11/21/2022] Open
Abstract
The karyotypes of four South American species of Cestrum (C. capsulare,C. corymbosum,C. laevigatum and C. megalophylum) were studied using conventional staining, C-CMA/DAPI chromosome banding and FISH with 45S and 5S rDNA probes. The karyotypes showed a chromosome number of 2n = 2x = 16, with metacentric chromosomes, except for the eighth submeta- to acrocentric pair. Several types of heterochromatin were detected, which varied in size, number, distribution and base composition. The C-CMA+ bands and 45S rDNA were located predominantly in terminal regions. The C-CMA + /DAPI + bands appeared in interstitial and terminal regions, and the C-DAPI + bands were found in all chromosome regions. The 5S rDNA sites were observed on the long arm of pair 8 in all species except C. capsulare, where they were found in the paracentromeric region of the long arm of pair 4. The differences in band patterns among the species studied here, along with data from other nine species reported in the literature, suggest that the bands are dispersed in an equilocal and non-equilocal manner and that structural rearrangements can be responsible for internal karyotype diversification. However, it is important to point out that the structural changes involving repetitive segments did not culminate in substantial changes in the general karyotype structure concerning chromosome size and morphology.
Collapse
|
50
|
Shakirov EV, Salzberg SL, Alam M, Shippen DE. Analysis of Carica papaya Telomeres and Telomere-Associated Proteins: Insights into the Evolution of Telomere Maintenance in Brassicales. TROPICAL PLANT BIOLOGY 2008; 1:202-215. [PMID: 20664721 PMCID: PMC2909770 DOI: 10.1007/s12042-008-9018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Telomeres are terminal regions of linear eukaryotic chromosomes that are critical for genome stability and continued cell proliferation. The draft assembly of the papaya genome provides an opportunity to analyze and compare the evolution of telomeric DNA sequence composition and telomere maintenance machinery in this and other organisms of the Brassicales Order, which includes Arabidopsis. Here we investigate telomere size and sequence variation at papaya chromosome ends. As with most other plant species, papaya telomeres consist of TTTAGGG repeats. However, in contrast to members of the closely related Brassicaceae family, telomeres in papaya are ~10-fold longer. Sequence analysis reveals that many centromereproximal telomere repeats in papaya harbor nucleotide substitutions and insertions of Gs and Ts. In contrast, we found very few N-to-C substitutions, and even fewer instances of nucleotide deletion, suggesting that a six-nucleotide telomere repeat is not well tolerated. The papaya genome encodes single-copy sequence homologues of several genes involved in telomere maintenance and chromosome end protection, including the Telomerase Reverse Transcriptase (TERT) and Protection Of Telomeres (POT1). Notably, unlike Arabidopsis, which encodes six Telomere Repeat binding Factor-like (TRFL) proteins that bind double-stranded telomere DNA, papaya appears to encode only two such proteins. Thus, the more streamlined genome of papaya will provide an excellent resource for comparative and functional analysis of telomeres in plants.
Collapse
Affiliation(s)
- E. V. Shakirov
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - S. L. Salzberg
- Center for Bioinformatics and Computational Biology, and Department of Computer Science, University of Maryland, 3125 Biomolecular Sciences Bldg, College Park, MD 20742, USA
| | - M. Alam
- Advanced Studies in Genomics, Proteomics and Bioinformatics, and Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - D. E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA,
| |
Collapse
|