1
|
Paterson ID, Mangan R, Downie DA, Coetzee JA, Hill MP, Burke AM, Downey PO, Henry TJ, Compton SG. Two in one: cryptic species discovered in biological control agent populations using molecular data and crossbreeding experiments. Ecol Evol 2016; 6:6139-50. [PMID: 27648231 PMCID: PMC5016637 DOI: 10.1002/ece3.2297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/20/2023] Open
Abstract
There are many examples of cryptic species that have been identified through DNA‐barcoding or other genetic techniques. There are, however, very few confirmations of cryptic species being reproductively isolated. This study presents one of the few cases of cryptic species that has been confirmed to be reproductively isolated and therefore true species according to the biological species concept. The cryptic species are of special interest because they were discovered within biological control agent populations. Two geographically isolated populations of Eccritotarsus catarinensis (Carvalho) [Hemiptera: Miridae], a biological control agent for the invasive aquatic macrophyte, water hyacinth, Eichhornia crassipes (Mart.) Solms [Pontederiaceae], in South Africa, were sampled from the native range of the species in South America. Morphological characteristics indicated that both populations were the same species according to the current taxonomy, but subsequent DNA analysis and breeding experiments revealed that the two populations are reproductively isolated. Crossbreeding experiments resulted in very few hybrid offspring when individuals were forced to interbreed with individuals of the other population, and no hybrid offspring were recorded when a choice of mate from either population was offered. The data indicate that the two populations are cryptic species that are reproductively incompatible. Subtle but reliable diagnostic characteristics were then identified to distinguish between the two species which would have been considered intraspecific variation without the data from the genetics and interbreeding experiments. These findings suggest that all consignments of biological control agents from allopatric populations should be screened for cryptic species using genetic techniques and that the importation of multiple consignments of the same species for biological control should be conducted with caution.
Collapse
Affiliation(s)
- Iain D Paterson
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Rosie Mangan
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Douglas A Downie
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Julie A Coetzee
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Martin P Hill
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Ashley M Burke
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Paul O Downey
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa; Institute for Applied Ecology University of Canberra Canberra Australian Capital Territory 2601 Australia
| | - Thomas J Henry
- Systematic Entomology Laboratory ARS, USDA, c/o National Museum of Natural History Smithsonian Institution Washington District of Columbia 20013
| | - Stephe G Compton
- Department of Zoology and Entomology Rhodes University PO Box 94 Grahamstown 6140 South Africa
| |
Collapse
|
2
|
Santos J, Pascual M, Simões P, Fragata I, Rose MR, Matos M. Fast evolutionary genetic differentiation during experimental colonizations. J Genet 2014; 92:183-94. [PMID: 23970074 DOI: 10.1007/s12041-013-0239-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Founder effects during colonization of a novel environment are expected to change the genetic composition of populations, leading to differentiation between the colonizer population and its source population. Another expected outcome is differentiation among populations derived from repeated independent colonizations starting from the same source. We have previously detected significant founder effects affecting rate of laboratory adaptation among Drosophila subobscura laboratory populations derived from the wild. We also showed that during the first generations in the laboratory, considerable genetic differentiation occurs between foundations. The present study deepens that analysis, taking into account the natural sampling hierarchy of six foundations, derived from different locations, different years and from two samples in one of the years. We show that striking stochastic effects occur in the first two generations of laboratory culture, effects that produce immediate differentiation between foundations, independent of the source of origin and despite similarity among all founders. This divergence is probably due to powerful genetic sampling effects during the first few generations of culture in the novel laboratory environment, as a result of a significant drop in Ne. Changes in demography as well as high variance in reproductive success in the novel environment may contribute to the low values of Ne. This study shows that estimates of genetic differentiation between natural populations may be accurate when based on the initial samples collected in the wild, though considerable genetic differentiation may occur in the very first generations of evolution in a new, confined environment. Rapid and significant evolutionary changes can thus occur during the early generations of a founding event, both in the wild and under domestication, effects of interest for both scientific and conservation purposes.
Collapse
Affiliation(s)
- Josiane Santos
- Centro de Biologia Ambiental, Departamento de Biologia Animal, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
3
|
Matute DR. The role of founder effects on the evolution of reproductive isolation. J Evol Biol 2013; 26:2299-311. [DOI: 10.1111/jeb.12246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 07/03/2013] [Accepted: 08/09/2013] [Indexed: 11/29/2022]
Affiliation(s)
- D. R. Matute
- Department of Human Genetics; The University of Chicago; Chicago IL USA
- The Chicago Fellows Program; The University of Chicago; Chicago IL USA
| |
Collapse
|
4
|
Santos J, Pascual M, Simões P, Fragata I, Lima M, Kellen B, Santos M, Marques A, Rose MR, Matos M. From nature to the laboratory: the impact of founder effects on adaptation. J Evol Biol 2012; 25:2607-22. [PMID: 23110657 DOI: 10.1111/jeb.12008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/29/2022]
Abstract
Most founding events entail a reduction in population size, which in turn leads to genetic drift effects that can deplete alleles. Besides reducing neutral genetic variability, founder effects can in principle shift additive genetic variance for phenotypes that underlie fitness. This could then lead to different rates of adaptation among populations that have undergone a population size bottleneck as well as an environmental change, even when these populations have a common evolutionary history. Thus, theory suggests that there should be an association between observable genetic variability for both neutral markers and phenotypes related to fitness. Here, we test this scenario by monitoring the early evolutionary dynamics of six laboratory foundations derived from founders taken from the same source natural population of Drosophila subobscura. Each foundation was in turn three-fold replicated. During their first few generations, these six foundations showed an abrupt increase in their genetic differentiation, within and between foundations. The eighteen populations that were monitored also differed in their patterns of phenotypic adaptation according to their immediately ancestral founding sample. Differences in early genetic variability and in effective population size were found to predict differences in the rate of adaptation during the first 21 generations of laboratory evolution. We show that evolution in a novel environment is strongly contingent not only on the initial composition of a newly founded population but also on the stochastic changes that occur during the first generations of colonization. Such effects make laboratory populations poor guides to the evolutionary genetic properties of their ancestral wild populations.
Collapse
Affiliation(s)
- J Santos
- Departamento de Biologia Animal, Campo Grande, Centro de Biologia Ambiental, Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Roderick GK, Croucher PJP, Vandergast AG, Gillespie RG. Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago. Evol Biol 2012; 39:192-206. [PMID: 22707805 PMCID: PMC3364410 DOI: 10.1007/s11692-012-9184-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation.
Collapse
Affiliation(s)
- George K. Roderick
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, Berkeley, CA 94720-3114 USA
| | - Peter J. P. Croucher
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, Berkeley, CA 94720-3114 USA
| | - Amy G. Vandergast
- U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road, Suite 200, San Diego, CA 92101 USA
| | - Rosemary G. Gillespie
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, Berkeley, CA 94720-3114 USA
| |
Collapse
|
6
|
Kim YK, Ruiz-García M, Alvarez D, Phillips DR, Anderson WW. Sexual isolation between North American and Bogota strains of Drosophila pseudoobscura. Behav Genet 2011; 42:472-82. [PMID: 22065259 DOI: 10.1007/s10519-011-9517-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/19/2011] [Indexed: 11/30/2022]
Abstract
Sexual isolation, the reduced ability of organisms of different species to successfully mate, is one of the reproductive barriers that prevent gene flow between different taxa. Various species-specific signals during courtship are attributed to the sexual isolation between them. Drosophila pseudoobscura has been widely used to study the behavioral and genetic mechanisms underlying selection for sexual isolation, as a model system for speciation. D. pseudoobscura and its sibling species, D. persmilis, live together in many locations but are reproductively isolated from one another. North American geographic strains of D. pseudoobscura from the American West mate at random. Several decades ago, D. pseudoobscura was collected in the vicinity of Bogota, Colombia, and later named the subspecies D. pseudoobscura bogotana. Nearly 5,000 matings were observed in this study. We analyzed mating behavior and cuticular hydrocarbon profiles as well as courtship within and between North American and Bogota strains of D. pseudoobscura. Here we report for the first time that Bogota strains of D. pseudoobscura do show statistically significant sexual isolation from North American strains. In addition, there are quantitative variations in cuticular hydrocarbons as well as in courtship behavior between Bogota and North American strains, and females of both North American and Bogota strains show strong preference for North American strain males having high mating propensities, suggesting that the Bogota strains are at an early stage that could lead to a separate species.
Collapse
Affiliation(s)
- Yong-Kyu Kim
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
7
|
McPeek MA, Shen L, Farid H. THE CORRELATED EVOLUTION OF THREE-DIMENSIONAL REPRODUCTIVE STRUCTURES BETWEEN MALE AND FEMALE DAMSELFLIES. Evolution 2009; 63:73-83. [DOI: 10.1111/j.1558-5646.2008.00527.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
McPeek M, Shen L, Torrey J, Farid H. The Tempo and Mode of Three‐Dimensional Morphological Evolution in Male Reproductive Structures. Am Nat 2008; 171:E158-78. [DOI: 10.1086/587076] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Abstract
The concept of genetic accommodation remains controversial, in part because it remains unclear whether evolution by genetic accommodation forces a revolution, or merely a shift in emphasis, in our understanding of how evolution produces adaptive new traits. Here I outline a perspective that largely favors the latter view. I argue that evolution by genetic accommodation can easily be integrated into traditional evolutionary concepts. At the same time, evolution by genetic accommodation invites novel empirical and theoretical approaches that may allow biologists to push the boundaries of our current understanding of the process of evolution and to solve some long-standing controversies. Specifically, I discuss the role of developmental mechanisms as natural, and likely ubiquitous, capacitors of cryptic genetic variation, and the role of environmental perturbations as mechanisms by which such variation can become visible to selection on an individual to population-wide scale. I argue that in combination, developmental capacitance and large-scale environmental perturbations have the potential to facilitate rapid evolution including the origin of novel adaptive features while circumventing otherwise powerful genetic and population-biological constraints on adaptive evolution. I end by highlighting several promising avenues for future empirical research to explore the mechanisms and significance of evolution by genetic accommodation.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
10
|
Carroll SP. Natives adapting to invasive species: ecology, genes, and the sustainability of conservation. Ecol Res 2007. [DOI: 10.1007/s11284-007-0352-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
|
12
|
Carroll SP. Brave New World: the epistatic foundations of natives adapting to invaders. Genetica 2006; 129:193-204. [PMID: 16924403 DOI: 10.1007/s10709-006-9014-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 01/21/2006] [Indexed: 10/24/2022]
Abstract
Classical examples indicated rapid evolution to be both rare and largely anthropogenic. As the pace and scale of human disturbance increase, such evolution is becoming more the norm. Genetically based adaptation may underlie successful biological invasions, and may likewise characterize responses in natives to invasives. Recent published studies confirm that natives are adapting morphologically, behaviorally, physiologically and life historically to selection from invasive species. Some of the processes involved are evident in our studies of recent host shifts to invasive plants by native soapberry bugs in North America and Australia. On both continents populations have differentiated extensively in fitness traits. Genetic architecture of these adaptations involves a surprising degree of non-additive variation (epistasis, dominance), a result that in theory may reflect a history of colonization by a small number of individuals followed by population growth. Such "founder-flush" events may unleash extraordinary evolutionary potential, and their importance will be clarified as more studies take advantage of the accidental perturbation experiments that biotic invasions represent. From a conservation standpoint, rapid evolution in natives will present challenges for ecologically appropriate and sustainable management, but at the same time may enhance the capacity of the native community to act in the biological control of invasive species.
Collapse
Affiliation(s)
- Scott P Carroll
- Department of Entomology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Meffert LM, Regan JL. Reversed selection responses in small populations of the housefly (Musca domestica L.). Genetica 2006; 127:1-9. [PMID: 16850208 DOI: 10.1007/s10709-005-2913-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 08/12/2005] [Indexed: 10/24/2022]
Abstract
We compared the efficacy of artificial and natural selection processes in purging the genetic load of perpetually small populations. We subjected replicate lines of the housefly (Musca domestica L.), recently derived from the wild, to artificial selection for increased mating propensity (i.e., the proportion of male-female pairs initiating copulation within 30 min) in efforts to cull out the inbreeding depression effects of long-term small population size (as determined by a selection protocol for increased assortative mating). We also maintained parallel non-selection lines for assessing the spontaneous purge of genetic load due to inbreeding alone. We thus evaluated the fitness of artificially and 'naturally' purging populations held at census sizes of 40 individuals over the course of 18 generations. We found that the artificially selected lines had significant increases in mating propensity (up to 46% higher from the beginning of the protocol) followed by reversed selection responses back to the initial levels, resulting in non-significant heritabilities. Nevertheless, the 'naturally' selected lines had significantly lower fitness overall (a 28% reduction from the beginning of the protocol), although lower effective population sizes could have contributed to this effect. We conclude that artificial selection bolstered fitness, but only in the short-term, because the inadvertent fixation of extant genetic load later resulted in pleiotropic fitness declines. Still, the short-term advantage of the selection protocol likely contributed to the success of the speciation experiment since our recently-derived housefly populations are particularly vulnerable to inbreeding depression effects on mating behavior.
Collapse
Affiliation(s)
- Lisa M Meffert
- Department of Ecology and Evolutionary Biology, Rice University, MS 170, Box 1892, Houston, TX 77251-1892, USA.
| | | |
Collapse
|
14
|
|
15
|
Neiman M, Linksvayer TA. The conversion of variance and the evolutionary potential of restricted recombination. Heredity (Edinb) 2005; 96:111-21. [PMID: 16333302 DOI: 10.1038/sj.hdy.6800772] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic recombination is usually considered to facilitate adaptive evolution. However, recombination prevents the reliable cotransmission of interacting gene combinations and can disrupt complexes of coadapted genes. If interactions between genes have important fitness effects, restricted recombination may lead to evolutionary responses that are different from those predicted from a purely additive model and could even aid adaptation. Theory and data have demonstrated that phenomena that limit the effectiveness of recombination via increasing homozygosity, such as inbreeding and population subdivision and bottlenecks, can temporarily increase the additive genetic variance available to these populations. This effect has been attributed to the conversion of nonadditive to additive genetic variance. Analogously, phenomena such as chromosomal inversions and apomictic parthenogenesis that physically restrict recombination in part or all of the genome may also result in a release of additive variance. Here, we review and synthesize literature concerning the evolutionary potential of populations with effectively or physically restricted recombination. Our goal is to emphasize the common theme of increased short-term access to additive genetic variance in all of these situations and to motivate research directed towards a more complete characterization of the relevance of the conversion of variance to the evolutionary process.
Collapse
Affiliation(s)
- M Neiman
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
16
|
Saarikettu M, Liimatainen JO, Hoikkala A. Intraspecific variation in mating behaviour does not cause sexual isolation between Drosophila virilis strains. Anim Behav 2005. [DOI: 10.1016/j.anbehav.2004.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Turgeon J, Stoks R, Thum RA, Brown JM, McPeek MA. Simultaneous Quaternary Radiations of Three Damselfly Clades across the Holarctic. Am Nat 2005; 165:E78-107. [PMID: 15791532 DOI: 10.1086/428682] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 12/27/2004] [Indexed: 11/03/2022]
Abstract
If climate change during the Quaternary shaped the macroevolutionary dynamics of a taxon, we expect to see three features in its history: elevated speciation or extinction rates should date to this time, more northerly distributed clades should show greater discontinuities in these rates, and similar signatures of those effects should be evident in the phylogenetic and phylodemographic histories of multiple clades. In accordance with the role of glacial cycles, speciation rates increased in the Holarctic Enallagma damselflies during the Quaternary, with a 4.25x greater increase in a more northerly distributed clade as compared with a more southern clade. Finer-scale phylogenetic analyses of three radiating clades within the northern clade show similar, complex recent histories over the past 250,000 years to produce 17 Nearctic and four Palearctic extant species. All three are marked by nearly synchronous deep splits that date to approximately 250,000 years ago, resulting in speciation in two. This was soon followed by significant demographic expansions in at least two of the three clades. In two, these expansions seem to have preceded the radiations that have given rise to most of the current biodiversity. Each also produced species at the periphery of the clade's range. In spite of clear genetic support for reproductive isolation among almost all species, mtDNA signals of past asymmetric hybridization between species in different clades also suggest a role for the evolution of mate choice in generating reproductive isolation as species recolonized the landscape following deglaciation. These analyses suggest that recent climate fluctuations resulted in radiations driven by similar combinations of speciation processes acting in different lineages.
Collapse
Affiliation(s)
- Julie Turgeon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
This chapter summarizes several experimental approaches used to identify the effects of dominance, epistasis, and genotype-by-environment interactions in the genetic architecture of the mating behavior of the common house fly (Musca domestica L.). Quantitative genetic investigations of mating behavior hold special intrigue for unraveling the complexities of fitness traits, with applications to theory on sexual selection and speciation. Besides being well suited to large-scale quantitative genetic protocols, the house fly has a remarkably complex courtship repertoire, affording special opportunities for studies on communication, social interactions, and learning. Increased additive genetic variances for the courtship repertoire of experimentally bottlenecked populations provided evidence for the presence of dominance and/or epistasis. Negative genetic variances in these populations suggested genotype-by-environment interactions, where the environment is the mating partner. Line cross assays of populations that had been subjected to selection for divergent courtship repertoire confirmed that both dominance and epistasis have significant effects. These crosses also showed more directly that the expression of the male's genotype is dependent upon the preferences of his mating partner. Repeatability studies also detailed how males alter their courtship performances with successive encounters within and across females, such that the males learn to improve their techniques in securing copulations. A review of 41 animal behavior studies found that a wide range of traits and taxa have dominance, epistasis, and genotype-y-environment interactions, although house fly courtship may remain a unique model where learning is an intersexually selected trait. Future development of more sophisticated molecular techniques for the M. domestica genome will help unravel the underlying biochemical and developmental pathways of these quantitative genetic interactions for a more complete understanding of the processes of inbreeding depression, outbreeding depression, and pleiotropy.
Collapse
Affiliation(s)
- Lisa M Meffert
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77251-1892, USA
| | | |
Collapse
|